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Abstract. The theorem prover Isabelle is used to formalise and repro-
duce some of the styles of reasoning used by Newton in his Principia.
The Principia’s reasoning is resolutely geometric in nature but contains
“infinitesimal” elements and the presence of motion that take it beyond
the traditional boundaries of Euclidean Geometry. These present diffi-
culties that prevent Newton’s proofs from being mechanised using only
the existing geometry theorem proving (GTP) techniques.
Using concepts from Robinson’s Nonstandard Analysis (NSA) and a pow-
erful geometric theory, we introduce the concept of an infinitesimal ge-

ometry in which quantities can be infinitely small or infinitesimal. We
reveal and prove new properties of this geometry that only hold because
infinitesimal elements are allowed and use them to prove lemmas and
theorems from the Principia.

1 Introduction

Isaac Newton’s Philosophiæ Naturalis Principia Mathematica (Mathematical
Principles of Natural Philosophy [9]), or Principia as it is usually called, was
first published in 1687 and set much of the foundations of modern science. We
now know that Newton’s view of the world was only approximate but the laws
and proofs he developed are still relevant and used in our everyday world. The
elegance of the geometrical techniques used by Newton in the Principia is little
known since demonstrations of most of the propositions set out in it are usually
done using calculus.

In Newton’s time, however, geometrical proofs were very much the norm.
It follows that some of the lemmas of the Principia can be proved using just
Euclidean geometry and we do so using our formalisation in Isabelle [11] of GTP
rules proposed by Chou, Gao, and Zhang [4, 5]. According to De Gandt [6] many
of Newton’s propositions and lemmas, however, do go beyond the boundaries
of traditional Euclidean geometry in important respects such as the presence of
motion and the admission of the infinitely small. Below we shall describe how
we used the concept of the infinitesimal from Nonstandard Analysis (NSA) [12]
to help formalise the notion of infinitely small geometric quantities.



Our initial aim is to study the geometric proofs of the Principia and inves-
tigate ways of mechanising them. We want to use some of the methods already
developed for GTP in our own proofs. Moreover, we hope that some of Newton’s
reasoning procedures can be adapted to produce new methods in mechanised
proofs of geometry theorems and in problem solving for classical mechanics.
This work also hopes to expose some of the remarkable insights that Newton
had in his use of geometry to prove propositions and solve problems.

In section 2 we briefly review the exposition of the Principia and the specific
nature of its geometry. Section 3 gives an overview of the theory of infinitesimals
from NSA that we formalised in Isabelle. Section 4 introduces our axiomatisation
and use of parts of the area and full-angles methods first introduced by Chou et
al. for automated GTP. We also have additional notions such as similar triangles
and definitions of geometric elements such as ellipses and tangents. These are
essential to our formalisation of Newton’s work. In section 5 we describe some of
the main results proved so far. Section 6 offers our comments on related work,
conclusions and possible future work.

2 The Principia and its Mathematical Methods

The Principia is considered to be one of the greatest intellectual achievements
in the history of exact science. It has, however, been influential for over three
centuries rarely in the geometrical terms in which it was originally written but
mostly in the analytico-algebraic form that was used very early to reproduce the
work. Below we examine some of the original methods used in the Principia.

2.1 The Style and Reasoning of the Principia

Newton’s reasoning rests on both his own methods and on geometric facts that
though well known for his time (for example, propositions of Apollonius of Perga
and of Archimedes) might not be easily accessible to modern readers. Moreover,
the style of his proofs is notoriously convoluted due to the use of a repetitive,
connected prose. Whiteside [15] notes the following:

I do not deny that this hallowed ikon of scientific history is far from easy
to read. . . we must suffer the crudities of the text as Newton resigned
it to us when we seek to master the Principia’s complex mathematical
content.

It is therefore one of our aims to show that we can use Isabelle to master
some of the “complex mathematical content” of the work and give formal proofs
of lemmas and propositions of Newton.

In the various figures used by Newton, some elements must be considered as
“very small”: for example, we encounter lines that are infinitely or indefinitely
small or arcs that may be nascent or evanescent. De Gandt argues that there is
a temporal infinitesimal that acts as the independent variable in terms of which



other magnitudes are expressed. However, since time itself is often represented
geometrically using certain procedures, the infinitesimal time or “particle of
time” in Newton’s own expression appears as distance or area1.

2.2 The Infinitesimal Geometry of the Principia

On reading the enunciations of many of the lemmas of the Principia one often
comes across what Newton calls ultimate quantities or properties— for exam-
ple, ultimate ratio (lemma 2,3,4 . . . ), ultimately vanishing angle (lemma 6), and
ultimately similar triangles (lemma 8). Whenever Newton uses the term, he is
referring to some “extreme” situation where, for example, one point might be
about to coincide with another one thereby making the length of the line or arc
between them vanishing, that is, infinitesimal.

Furthermore, as points move along arcs or curves, deformations of the dia-
grams usually take place; other geometric quantities that, at first sight, might
not appear directly involved can start changing and, as we reach the extreme
situation, new ultimate geometric properties usually emerge. We need to be able
to capture these properties and reason about them. The use of infinitesimals
allows us to “freeze” the diagram when such extreme conditions are reached: we
introduce, for example, the notion of the distance between two points being in-
finitesimal, that is, infinitely close to zero and yet not zero when they are about
to coincide. With this done, we can then deduce new or ultimate properties
about angles between lines, areas of triangles, similarity of triangles and so on.
This is what distinguishes our geometry from ordinary Euclidean geometry.

The infinitesimal aspects of the geometry give it an intuitive nature that
seems to agree with the notions of infinitesimals from Nonstardard Analysis
(NSA). Unlike Newton’s reasoning, for which there are no formal rules of writing
and manipulation, the intuitive infinitesimals have a formal basis in Robinson’s
NSA. This enables us to master motion, which is part of Newton’s geometry,
and consider the relations between geometric quantities when it really matters,
that is, at the point when the relations are ultimate.

3 Introducing the Infinitesimal

For a long time, the mathematical community has had a strong aversion to the
notion of an infinitesimal (Bishop Berkeley [3] wrote a famous and vitriolic at-
tack). This was historically due to the incorrect and informal use of infinitesimals
in the development of the calculus. We are used to the powerful intuitions that
infinitesimals can provide in constructing proofs of theorems but we are not al-
lowed to use them in the proofs themselves (though physicists might disagree)
without formal justification.

1 See our exposition below of Proposition 1. Theorem 1 (Kepler’s law of Equal Areas)
for an example.



3.1 The Nonstandard Universe IR⁄

NSA introduces the nonstandard real field IR∗, which is a proper extension of
the complete ordered field of the reals IR. We give here the algebraic facts about
infinitesimals, proved in Isabelle, that follow from the properties above and that
we have used in our geometric proofs. Notions of finite and infinite numbers are
also defined and we have proved many algebraic properties about them as well.
We follow the definitions and mechanically-proved the theorems given in section
1A of Keisler [8].

Definition 1. In an ordered field extension IR∗ ⊇ IR, an element x ∈ IR∗ is

said to be an infinitesimal if |x| < r for all positive r ∈ IR; finite if |x| < r
for some r ∈ IR; infinite if |x| > r for all r ∈ IR.

For an infinitesimal x, it is clear that x ∈ IR∗\IR or x = 0. This means that 0 is
the only real infinitesimal and that other infinitesimals cannot be identified with
any existing real numbers. We prove, in Isabelle, that the set Infinitesimal

of infinitesimals and the set Finite of finite numbers are subrings of IR∗. Also,
Infinitesimal is an ideal in Finite, that is the product of an infinitesimal
element and a finite element is an infinitesimal.

Definition 2. x, y ∈ IR∗ are said to be infinitely close, x ≈ y if |x − y| is

infinitesimal.

It is easily proved that x is an infinitesimal if and only if x ≈ 0 and that we
have defined an equivalence relation above. Ballantyne and Bledsoe [1] observe:

The relation ≈ now solves the problem Leibnitz encountered in that he
was forced to make his infinitesimals simultaneously equal and different
from zero. If one replaces the identity relation with the ≈ relation then
all is well.

We can now formalise, for example, the idea of a point B about to meet
another point A by saying that the distance between them, whether linear or
curvilinear, is infinitesimal. We illustrate what we mean in the case of B moving
along a circular arc of finite radius of curvature and about to meet A:

A

B

R

The length of the circular arc AB is infinitesimal
and given that len(R − A) ∈ Finite, we can
deduce 〈A − R, R − B〉 ∈ Infinitesimal since
arc lenR A B = (|len(R−A)|·〈A−R, R−B〉) ∈
Infinitesimal and Infinitesimal is an ideal in
Finite.

The same reasoning can be applied if point B is moving away from A, that
is to the start of motion. Thus, we can deduce how various geometric quantities
behave when we reach conditions that existing GTP techniques would consider
degenerate since they are infinitesimal. Furthermore, as mentioned previously,
geometric theorems and lemmas that hold at the infinitesimal level do not nec-
essarily hold in general and we now have tools to prove them.



4 A Formalisation of Geometry in Isabelle

There exist efficient techniques for GTP— many of which, though extremely
powerful, are highly algebraic [16]. These have been developed mostly for auto-
mated proofs, which are usually long and extremely difficult to understand. They
consist mostly of a series of algebraic manipulations of polynomials that could
not be farther from the style of reasoning employed by Newton. Fortunately,
there has been recent work in automated GTP by Chou et al. [4, 5] that aim to
produce short, human-readable proofs in geometry using more traditional prop-
erties. We introduce a geometry theory in Isabelle based on some of the rules
used in the algorithms for these new approaches.

4.1 The Geometric Methods

In these methods there are basic lemmas about geometric properties called signed
areas and full-angles. Other rules are obtained by combining several of the basic
ones to cover frequently-used cases and simplify the search process. We have
assumed the basic rules as axioms and formally proved that the combined rules
also hold.

We represent the line from point A to point B by A−B, its length by len(A−
B), and the signed area SdeltaABC of a triangle is the usual notion of area with
its sign depending on how the vertices are ordered. We follow the usual approach
of having SdeltaABC as positive if A − B − C is in anti-clockwise direction and
negative otherwise. Familiar geometric properties such as collinearity, coll, and
parallelism, ‖, can be thus

coll a b c ≡ (Sdelta a b c = 0)

a − b ‖ c − d ≡ (Sdelta a b c = Sdelta a b d)

coll a b c =⇒ len(a− b) × Sdelta p b c = len(b− c) × Sdelta p a b

A full angle 〈u, v〉 is the angle from line u to line v. We note that u and v
are lines rather than rays and define the relation of angular equality as follows:

x =a y ≡ ∃n ∈ Integer. |x − y| = nπ

The relation =a is an equivalence relation that is also used to express the
properties that we might want. For example the idea of two lines being perpen-
dicular becomes

a − b ⊥ c − d ≡ 〈a − b, c − d〉 =a

π

2

Our aim is not to improve approaches to GTP given by Chou et al. since
they are essentially algorithmic and designed to perform automatic proofs. We
have, however, provided a definition for the equality between full-angles. We can
then easily prove that π =a 0 and 3π

2
=a

π

2
. Moreover, this enables us to combine



the area and full-angles methods when carrying out our proofs and deduce, for
example, 〈a− b, b− c〉 =a 0 ⇐⇒ Sdelta a b c = 0. We avoid the problems, such as
π = 0, that would arise if we had used the ordinary equality for angles.

The attractive features of these approaches, as far as we are concerned, are
the short, clear and diagram-independent nature of the proofs they produce and
that they deal easily and elegantly with ratios of segments, ratios of areas and
angles and so on. These are the properties used in the geometry of the Principia.

4.2 Infinitesimal Geometric Relations

Having introduced the basic geometric methods, we can now provide geometric
definitions that make use of infinitesimals. Since we have explicitly defined the
notion of equality between angles, we also need to define the idea of two angles
being infinitely close to one another. We use the infinitely close relation to do
so:

a1 ≈a a2 ≡ ∃n ∈ Integer. |a1 − a2| ≈ nπ

This is an equivalence relation. We prove in Isabelle the following property,
which could provide an alternative definition for ≈a:

a1 ≈a a2 ⇐⇒ ∃ǫ ∈ Infinitesimal. a1 =a a2 + ǫ

Of course, we also have the theorem a1 ≈ a2 =⇒ a1 ≈a a2. We now introduce
a property that can be expressed using the concepts that we have developed so
far in our theory — that of two triangles being ultimately similar. Recall that
two triangles △abc and △a′b′c′ are similar (SIM a b c a′ b′ c′) if they have equal
angles at a and a′, at b and b′, and at c and c′. The definition of ultimately
similar triangles follows:

USIM a b c a′ b′ c′ ≡ 〈b − a, a − c〉 ≈a 〈b′ − a′, a′ − c′〉 ∧

〈a − c, c − b〉 ≈a 〈a′ − c′, c′ − b′〉 ∧

〈c − b, b − a〉 ≈a 〈c′ − b′, b′ − a′〉

This property allows of treatment of triangles that are being deformed and
tending towards similarity as points move in Newton’s dynamic geometry. Elim-
ination and introduction rules are developed to deal with the USIM property.
It follows also, trivially, that SIM a b c a′ b′ c′ =⇒ USIM a b c a′ b′ c′. We also de-
fine the geometric relation of ultimate congruence UCONG and areas, angles and
lengths can be made infinitesimal as needed when carrying out the proofs.

4.3 Other Geometric Definitions

The geometry theory contains other definitions and rules that are required for
the proofs. These include length of arcs, length of chords and area of sectors.



Since Newton deals with circular motion, and the paths of planets around the
sun are elliptical, definitions for the circle, the ellipse and tangents to these
figures are also provided. A few of these are given below.

circlex r ≡ {p. |len(x − p)| = r}

ellipse f f r ≡ {p. |len(f − p)| + |len(f − p)| = r}

e tangent (a − b) f f E ≡ (is ellipse f1 f2 E ∧ a ∈ E ∧

〈f1 − a, a − b〉 =a 〈b − a, a − f2〉)

The definition of the tangent to an ellipse relies on a nice property of the
curve (which also provides an alternative definition): light emitted from one
focus, say f1 will reflect at some point p on the ellipse to the other focus f2.
Thus, light reflects from the curve in exactly the same way as it would from the
tangent line at p. Since the law of reflection means that the angle of incidence is
the same as the angle of reflection, the definition above follows. The tangent line
is important as it shows in the case where the ellipse is the path of an orbiting
object, like a planet, the direction of motion of the object at that point.

5 Mechanised Propositions and Lemmas

Some of the results obtained through the mechanisation of the ideas discussed
above can now be presented. The methods have been used to investigate the na-
ture of the infinitesimal geometry and formally prove many geometry theorems.
Some of these results confirm what one intuitively might expect to hold when
elements are allowed to be infinitesimal.

5.1 Motion Along an Arc of Finite Curvature

Consider Fig. 1 based on diagrams Newton constructed for proofs of his lemmas;
let A − D′′ denote the tangent to the arc ACB and A − R the normal to the
tangent, both at A. Let R be the centre of curvature, r be the antipodal of
the circle of contact at A, the points D, D′ and D′′ be collinear and B − D ⊥
A−D′′. With the point B moving towards A along the arc, we can prove several
properties about this diagram, including some which become possible because
we have infinitesimals:

– △BDA and △ABr are similar and hence len(A − B)2 = len(A − r) ×
len(D −B). The latter result is stated and used but not proved by Newton
in Lemma 11.

– △ABD′ and △rAD′ are similar and hence len(D′ − A)2 = len(D′ − B) ×
len(D′ − r).

– 〈B − A, A − D′′〉 =a 〈B − R, R − A〉/2
– △ABR and △AD′′R are ultimately similar since the angle 〈B−A, A−D′′〉

is infinitesimal when point B is about to coincide with point A. This proves
part of Lemma 8.
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Fig. 1. Point B moving along an arc towards A

– the ultimate ratio of len(A − B), arc len RAB, and len(A − D′′) is
infinitely close to 1. This is Lemma 7.

It is clear from the diagram above that △ABR and △AD′′R are not similar
in ordinary Euclidean Geometry. Infinitesimal notions reveal that we are tending
towards similarity of these triangles when the point B is about to meet point
A. This property cannot be deduced from just the static diagram above. The
dynamics of Newton’s geometry involves the reader using his or her imagination
to incorporate motion and see what is happening to the relations between various
parts of the diagram as points are moving. This task is not always trivial. The
relation USIM A B R A D′′ R can be illustrated by considering the relation between
the parts of the diagram as point B moves towards point A (Fig. 2).

We can see as B moves towards A that 〈B−A, A−D′′〉 is decreasing, as one
might intuitively expect, and when ultimately the distance between B and A is
infinitely close to zero, then we have that 〈R − A, A − B〉 ≈a 〈R − A, A − D′′〉.
From this we can deduce the ultimate similarity of the triangles as required.

We give below a detailed overview of our reasoning and theorems proved
to show the ultimate similarity of these two triangles. We show that the angle
subtended by the arc becomes infinitesimal as B approaches A and that the
angle between the chord and the tangent is always half that angle:

[| arc len R A B ≈ 0; len (A--R) ∈ Finite - Infinitesimal |]

=⇒ <B--R,R--A> ≈ 0

[| c_tangent A D’’ R Circle; B ∈ Circle |]

=⇒ <B--A,A--D’’> =a <B--R,R--A>/2
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A D’’

B

Fig. 2. Ultimately similar triangles

We use the theorem from NSA that Infinitesimal form an ideal in Finite

and the results above to prove that the angle between the chord and the tangent
becomes infinitely close to zero and that 〈R−A, A−D〉 and 〈R−A, A−B〉 are
infinitely close:

[| <B--R,R--A>∈ Infinitesimal; 1/2∈ Finite |]

=⇒<B--R,R--A>*1/2 ∈ Infinitesimal

[| c_tangent A D’’ R Circle; B ∈ Circle; arc len R A B ≈ 0;

len (A--R) ∈ Finite - Infinitesimal |]

=⇒ <B--A,A--D’’> ≈a 0";

<B--A,A--D’’> ≈a 0 =⇒ <R--A,A--D’’> ≈a <R--A,A--B>

Finally, since △ABR and △AD′′R have two corresponding angles that are
infinitely close (they have one common angle in fact), we can show that they are
ultimately similar:

<B--R,R--A> =a <B--R,R--A> =⇒ <B--R,R--A> ≈a <B--R,R--A>

[|<B--R,R--A> ≈a <B--R,R--A>; <R--A,A--D’’> ≈a <R--A,A--B> |]

=⇒ USIM A B R A D’’ R

5.2 Kepler’s Law of Equal Areas

Kepler’s equal area law was published in 1609 and was often regarded until
Newton’s Principia as one of the least important of Kepler’s Laws. This law is
established by Newton as the first mathematical Proposition of the Principia.

In Newton’s diagram (Fig. 3), the polygons ABCDEF are used to approx-
imate the continuous motion of a planet in its orbit. The motion between any
two points such as A and B of the path is not influenced by any force, though



Fig. 3. Original diagram from the Principia showing a body moving under the influence
of a series of impulsive centripetal forces

there are impulsive forces, all directed towards the fixed centre S, that act at
A, B, C, . . .. Newton proved that if the time interval between successive impulses
is fixed then all the triangular areas SAB, SBC, . . ., are equal, that is equal areas
are described in equal times. The demonstration of this law makes no assump-
tion about how this force varies with distance from the centre of force S; its
only restriction is that it be directed toward S. Newton reduces the discontin-
uous motion along the straight edges AB, BC, . . ., to continuous motion along
a smooth orbital path by using an infinitesimal process that lets the size of the
triangles become infinitely small.

We follow Newton’s argument and prove that the area of SAB is equal to that
of SBC using our geometric tools. We quote from the exposition of Proposition
1 in the Principia:

Let time be divided into equal parts, and in the first part of the time
let the body, by its inherent force, describe the straight line AB. In the
second part of the time, the same body, if nothing were to impede it,
would pass on by means of a straight line to c (by Law 1), describing
the line Bc equal to AB, with the result that, radii AS, BS, cS being
drawn to the centre, the areas ASB, BSc would come out equal.



We first observe that the area of SAB equals that of SBc because the trian-
gles have equal bases (since the times are equal and no force has acted to change
the velocity) and the same height:

[| coll A B C; len(A--B) = len(B--c)|]

=⇒ S delta S A B = S delta S B c

The impulsive centripetal force at B makes the body depart from motion in
a straight line and Newton makes the following construction (using the Paral-
lelogram Law of Forces):

Let cC be drawn parallel to BS, meeting BC at C; and, the second
part of the time being completed, the body (by Corollary I of the laws)
will be located at C, in the same plane as the triangle ASB . . . Connect
SC, and because of the parallels SB,Cc, triangle SBC will be equal to
triangle SBc, and therefore to triangle SAB.

This leads to the following lemma, which is also easily proved in Isabelle since
it follows from the definition of parallel lines:

[| S--B || c--C |] =⇒ S delta S B c = S delta S B C

The proof that the areas are equal follows. In fact, this first part of the proof
of Kepler’s Law of Equal Areas is proved automatically in one step by Isabelle
thanks to the presence of powerful proof tactics.

The next step is to decrease the breadth of the triangles to be infinitesimally
small and by Lemma 3 and its corollaries we can substitute the straight edge by
a curved line:

<A--S,S--B> ≈ 0 =⇒ len(A--B) ≈ arc len S A B

And furthermore using the same lemma, the area of the infinitesimal triangle
SAB is infinitely close to the area of the arc and can be substituted:

<A--S,S--B> ≈ 0 =⇒ S delta S A B ≈ arc area S A B

As the triangles become infinitesimal, the perimeter of the path becomes
infinitely close to a curvilinear one and the force can be viewed as acting con-
tinuously since the times between the impulses are infinitesimal. We can note
here the geometrical representation of time since making the triangles infinites-
imal effectively makes the time intervals also infinitely close to zero. The result
that the area described is proportional to the time still holds for the evanescent
triangles and hence also holds for the infinitely close curvilinear areas.

6 Related Work and Final Comments

The combination of concepts used in this approach relates it to work that has
already been done in the field of NSA and GTP.



6.1 Nonstandard Analysis Theorem Proving

The theorem proving community does not seem to have shown much interest
in NSA even though its importance has grown in many fields such as physics,
analysis and economics, where it has successfully been applied. Ballantyne and
Bledsoe [1] implemented a prover using nonstandard techniques in the late sev-
enties. Their work basically involved substituting any theorem in the reals IR by
its analogous in the extended reals IR∗ and proving it in this new setting. Even
though the prover had many limitations and the work was just a preliminary
investigation, the authors argued that through the use of nonstandard analysis
they had brought some new and powerful mathematical techniques to bear on
the problem.

Despite this rather promising work, there does not seem to have been much
done over the last two decades. Suppes and Chuaqui [13] have proposed a frame-
work for doing proofs in NSA and Bedrax has implemented a prototype for a
simplified version of Suppes-Chuaqui system called Infmal [2]. Infmal is imple-
mented in Common Lisp and contains the various axioms (logical, algebraic
and infinitesimal) required by the deduction system and extensions to the usual
arithmetic operations. Unfortunately, Infmal is a simple experiment and though
interactive is rather limited in the proofs it can carry out.

The parts of this work relating to NSA have used the definitions provided in
Sect. 3.1 and have proved most of the facts about NSA built in Ballantyne and
Bledsoe’s prover. There are proofs involving standard parts and infinite numbers,
for example, that have not been described in this paper.

6.2 Automated Geometry Theorem Proving

As mentioned already, the geometric methods based on signed areas and full-
angles have been useful to the development of the geometry theory in Isabelle.
The work of Chou et al. is intended to produce short and readable proofs of
difficult geometry theorems. This represents a return to the original and more
traditional ways of geometry theorem proving that had been superseded by the
more powerful algebraic methods based mainly on Wu’s characteristic set method
[16] and the Gröbner basis method [7]. Unfortunately there are several drawbacks
associated with the use of these algebraic techniques: they are computationally
intensive and produce long proofs that do not have clear geometric meaning since
they are manipulations of polynomials obtained by coordinatisation of points in
the diagrams.

The recent work improves on various previous attempts to use geometrically
meaningful properties for theorem proving through the use of geometric invari-
ants, that is, areas, full-angles etc. In our work, techniques such as those of
similar and congruent triangles that are needed for the proofs are also added as
traditionally these have also been used in proofs of geometry. Though Chou et
al. [4] note that they have limitations, our proofs are not affected since we are
not concerned with completely automatic proofs. The resulting geometry theory
of Isabelle is powerful and able to prove most of the results that the signed area



and full-angles methods can tackle. Moreover, many of the lemmas from Chou
et al. [4, 5] obtained through the combination of various rules and used to help
the automatic search have been verified in Isabelle.

Other methods that provide short and readable proofs, without introducing
coordinates, include bracket and Clifford algebras. These two algebraic tech-
niques, however, seem less relevant to the present work since they do not match
closely the geometric concepts and infinitesimal nature of Newton’s proofs. Ex-
cellent overviews of the bracket and Clifford algebras, of the methods used in
this work, and of several other approaches to GTP can be obtained from the
survey paper by Wang [14].

6.3 Problem Solving in Mechanics

There has been some interest in the past in problem solving in mechanics in the
GTP community where, interestingly, Wu [17] algebraically proved Newton’s
Laws of Gravitation and even, with somewhat more difficulty, automatically de-
rived them from Kepler’s Laws (which Newton actually proved in the Principia).

There is also Novak, who implemented several systems to do problem solving
in classical physics with the help of diagrams [10]. Though his work falls into
the field of diagrammatic reasoning rather that GTP it does require the implicit
applications of geometry theorems to derive relations between various physical
quantities represented geometrically in the diagrams. This work also shows that
it is possible to closely relate physical and geometric principles through diagrams.

6.4 Conclusions and Future Work

Reading the Principia and making sense of the reasoning of Newton is a difficult
but rewarding task. As is common with proofs using geometric tools, once the
hard task of constructing the diagram and proof is done, the result that follows
usually looks simple and intuitive. We have shown that, though Newton does
not provide a set of rules for carrying out his proofs, the reasoning is formal and
can be mechanised. We can effectively give formal definitions and proofs of some
of the ultimate properties Newton is trying to prove. We have tried to bridge
the gap between intuition and formality.

Furthermore, the introduction of infinitesimal elements in the geometry is
an exciting aspect that can lead to the discovery of interesting properties that
cannot be seen ordinarily. We have scope for more work in the field of NSA,
whose foundations in Isabelle we plan to investigate in more depth in the near
future. Infinitesimals are always tricky and can lead to paradoxes if not used
carefully.

We plan to mechanise other interesting propositions from the Principia and,
since these are actually proofs in classical mechanics, it would be interesting
to see how these techniques can be applied to problem solving in the field.
Physics textbooks commonly use infinitesimals in informal reasoning, because it
is intuitive. This material could also be mechanised.
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