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Abstract

Given a set U with n elements and a family of subsets
S ⊆ 2U we show how to count the number of k-partitions
S1 ∪ · · · ∪ Sk = U into subsets Si ∈ S in time 2nnO(1). The
only assumption on S is that it can be enumerated in time
2nnO(1).

In effect we get exact algorithms in time 2nnO(1) for
several well-studied partition problems including Domatic
Number, Chromatic Number, Bounded Component Span-
ning Forest, Partition into Hamiltonian Subgraphs, and Bin
Packing.

If only polynomial space is available, our algorithms run
in time 3nnO(1) if membership in S can be decided in poly-
nomial time. For Chromatic Number, we present a version
that runs in time O(2.2461n) and polynomial space. For
Domatic Number, we present a version that runs in time
O(2.8718n).

Finally, we present a family of polynomial space approx-
imation algorithms that find a number between χ(G) and
�(1 + ε)χ(G)� in time O(1.2209n + 2.2461e−εn).

1. Introduction

We can view graph colouring as a set covering problem:
A graph has chromatic number ≤ k if and only if its ver-
tices can be covered with k stable sets. Replacing ‘stable
sets’ with any family S of subsets we arrive at the following
general problem: Given a set U of n elements and a fam-
ily S of subsets of U , decide if U can be partitioned into k
disjoint subsets S1 ∪ S2 ∪ · · · ∪ Sk = U, Si ∈ S.

Typically, S is defined implicitly by a polynomial time
computable predicate. Besides graph colouring, another ex-
ample is to let S be the dominating sets of a graph, i.e., the
sets S such that every vertex has distance at most one to S.
Finding the largest k such that the graph can be partitioned

∗A preliminary version of this paper appeared as Inclusion-Exclusion
Based Algorithms for Graph Colouring, ECCC report TR06-044, March
28, 2006.

Time O(cn) Problem Reference

c =2.4423 Find χ Lawler [23]
2.4151 Find χ Eppstein [11]
2.4023 Find χ Byskov [7]
2.3236 Find χ Björklund and Husfeldt [5]
2.2590 Decide χ ≤ 5 Beigel and Eppstein [3]
2.1592 Decide χ ≤ 5 Byskov [7]
2.1020 Decide χ ≤ 5 Byskov and Eppstein [9]
2.1809 Decide χ ≤ 6 ibid.
2.9416 Decide δ ≥ 3 Riege and Rothe [27]
2.8718 Find δ Fomin et al. [15]
2.6949 Decide δ ≥ 3 Riege et al. [28]

Table 1. Previous algorithms for Chromatic
Number χ and Domatic Number δ.

into k sets from S is the Domatic Number problem. Table
2 shows some other graph problems included in this frame-
work.

A way to solve this problem that goes back at least to
Lawler [23], is to use dynamic programming over the sub-
sets of U : Build a table T (X, m) with entries for every
X ⊆ U and m ≤ k. Iterate over the subsets in order of in-
creasing size and use T (X, m) = ∑

S∈S T (X − S, m − 1),
to check for each m ≤ k whether X can be covered by
m of the subsets. Clearly, the algorithm’s running time is
bounded by |S|2nnO(1), and it is never worse than within a
polynomial factor of

∑
S∈S 2n−|S| ≤ ∑n

i=0

(n
i

)
2i = 3n . In-

genious ways to enumerate and bound the size of the fam-
ily S (corresponding to minimal dominating sets in the case
of Domatic Number or to maximal stable sets in the case
of Chromatic Number) have resulted in the time bounds
O(2.8718n) for Domatic Number [15] and O(2.4022n) for
Chromatic Number [7]. Reducing these constants towards
two has been a perpetual algorithmic challenge (see Ta-
ble 1), and the possibility of ever arriving within a polyno-
mial factor of time 2n , for example for Chromatic Number,
has been a well-known open problem [33].



1.1 Main result

We punctuate this history of successive improvements
by solving the general problem in time 2nnO(1) using no
properties of S at all, other than being enumerable within
that time bound. The algorithm and its analysis are short,
self-contained and elementary.

The idea is to express the the number of k-covers as an
inclusion–exclusion formula over the subsets of U . In its
simplest form, it says that U can be covered with k sets
from S if ∑

X⊆U

(−1)|X |s[X ]k (1)

is nonzero, where s[X ] denotes the number of sets in S not
intersecting X . To evaluate the summands quickly we show
how to first build a table containing s[X ] for all X ⊆ U in
time 2nnO(1).

In fact, our algorithm counts the number of such covers.
We have results both for the case where the covers are dis-
joint and where they are overlapping. As a consequence we
can compute the chromatic polynomial in time 2nnO(1).

1.2. Applications

Perhaps the simplest application of our result is [SR1]
Bin Packing, where we are given a weight w(u) for each
u ∈ U and S consists of the subsets S ⊆ U satisfying∑

u∈S w(u) ≤ B. But we may consider much more con-
strained partitions. Most notably the theorem applies to
some well-known NP-complete problems on (hyper)graphs
that ask for the optimum number of parts in a vertex parti-
tion where every part satisfies a given property.

Table 2 shows some examples. These properties are all
polynomial time checkable, except for [GT13], which is
NP-hard. However, we can enumerate all subsets S ⊆ U
such that G[S] is Hamiltonian in time 2nnO(1) [20], which
suffices for our purposes.

The most obvious problem is of course [SP5] Minimum
Set Cover and its many variants, but this may be a mislead-
ing example. In those problems, the set S is given explicitly
as part of the input, and is often small compared to n; for
example the clauses of a monotone satisfiability problem or
the edges of a sparse (hyper)graph. Our algorithms apply
to this problem as well, and become interesting when S is
large compared to n.

We also solve the colouring problem Chromatic Sum in
the same time bound.

1.3. Further results

We note that (1) immediately yields an |S|2nnO(1) time,
polynomial space algorithm for our problem. Until very re-
cently [5, 6], no polynomial space algorithm for e.g. Chro-

matic Number running in time O(cn) for any positive con-
stant c was known, an open problem observed in [8, 24, 34].
For the case where S is given as a polynomial time com-
putable predicate, the running time becomes 3nnO(1), in
polynomial space.

We take a closer look at polynomial space algorithms
for Chromatic and Domatic Number. Using the fastest cur-
rently known algorithm in the literature for counting stable
sets [16] to compute s[X ], the total running time to evaluate
(1) becomes O(2.2461n). For Domatic Number, we need a
more complicated argument that can be seen as an extension
of our main result, together with a recent algorithm to count
the number of minimal dominating sets [15] and arrive at
total time O(2.8718n). Both of these algorithms are the
fastest polynomial space algorithms known for these prob-
lems, in fact they are faster than the best exponential space
algorithms known prior to this paper.

Finally, we derive a family of exponential-time approxi-
mation algorithms based on first removing large stable sets
and then applying our ideas on the remaining graph. For in-
stance, we can approximate χ(G) within a factor 2 in time
O(1.3467n) and polynomial space. The approximability of
the chromatic number is very well studied; the best known
polynomial time algorithm guarantees only an approxima-
tion ratio of O(n log−3 n log log2 n) [19], and χ(G) is NP-
hard to approximate within n1−o(1) [35].

Our inclusion–exclusion formulas themselves provide
characterizations of well-studied graph numbers. For ex-
ample, for the chromatic polynomial we arrive at

P(G; k) =
k∑

r=1

(
k

r

)( ∑
X⊆V

(−1)|X |ar (X)

)
, (2)

where ar (X) denotes the number of ways to choose r stable
sets S1, . . . , Sr ⊆ V − X , such that |S1|+· · ·+|Sr | = n. To
the best knowledge of the authors, these characterizations
are new and might be of independent combinatorial interest;
in any case, their proofs are elementary.

1.4. Previous work and discussion

The first non-trivial algorithm for finding the chromatic
number, by Christofides [10] in 1971, runs in time n!nO(1)

and can be seen to require only polynomial space. Then,
a series of exponential time and space algorithms began in
1976 with Lawler’s algorithm [23], see Table 1, all of which
are based on finding maximal stable sets and owing their
running time ultimately to the fact that there are only 3n/3

maximal stable sets in a graph [25].
Our algorithms beat the running time of previous algo-

rithms that decide k-colourability for small values of k. The
exceptions are 3- and 4-colourability, which can be decided
in time O(1.3289n) [3] and O(1.7504n) [7], respectively,
well beyond the reach of our constructions.
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Name [17] Property of S ∈ S

GT3, Domatic Number S is a dominating set in G
GT5, Chromatic Number S is a stable set in G
GT13, Partition into Hamiltonian Subgraphs G[S] is Hamiltonian
GT14, Partition into Forests G[S] is a forest
GT16, Partition into Perfect Matchings G[S] has a perfect matching
ND10, Bounded Component Spanning Forest G[S] connected,

∑
v∈S w(v) ≤ B

Table 2. Some exact partition problems on graphs G = (U, E)
.

For polynomial space, Feder and Motwani [12] gave
a randomised linear space algorithm with running time
O

(
(χ/e)n

)
, improving Christofides’ result for small values

of χ . The running time of an algorithm by Angelsmark and
Thapper [1] can be given as O

(
(2 + log χ)n

)
, an asymp-

totic improvement over Christofides’ result for all values of
χ . Very recently, running times of the form O(cn) have
appeared; Bodlaender and Kratsch [6] achieve O(5.283n)
and in a precursor to the present paper [5], the authors ar-
rived at O(8.3203n) and O(2.4423n). The bound given in
the present paper, O(2.2416n) will improve whenever the
running time for counting stable sets is improved, but there
is little hope that this approach will ever reach 2nnO(1) in
polynomial space, since counting stable sets is #P-complete
[31, 18]. The existence of such an algorithm remains open.

For Domatic Number, exponential space algorithms that
are faster than 3nnO(1) have appeared only recently. [15]
shows an O(2.8718n) time algorithm for deciding the do-
matic number. [28] recently presented an O(2.6949n) time
polynomial space algorithm for deciding if the domatic
number is at least three. No prior polynomial space algo-
rithm for the general problem is known to the authors.

Anthony [2] surveys and compares previous methods for
computing the chromatic polynomial, see also [4, 32]. The
Whitney expansion,

P(G; k) =
∑
H⊆E

(−1)|H |kn−r〈H〉, (3)

where r〈H〉 is the rank of the subgraph induced by the edge
set H , requires time 2m . On some instances, a faster way is
the deletion–contraction method, based on the recurrence

P(G; k) = P(G − e, k) + P(G/e, k),

where G − e and G/e are constructed by deleting or con-
tracting edge e, which runs within a polynomial factor of( 1

2 (1 + √
5)

)n+m = O(1.6180n+m). Finally, the relation
between P and the Tutte polynomial

∑
ti j x i y j ,

P(G; k) = (−1)n−1k
n−1∑
i=1

ti0(1 − k)i

leads to an algorithm that runs within a polynomial factor of( m
n−1

)
. All these algorithms can be seen to run in polynomial

space.
The principle of inclusion–exclusion has been used be-

fore to solve combinatorial problems on graphs. For in-
stance the most effective way known to date to count the
number of matchings in a bipartite graph exactly is to ap-
ply the Ryser formula for the permanent [29]. A concise
paper by Karp [21] counts the number of Hamiltonian cir-
cuits in a graph in polynomial space and time 2nnO(1) us-
ing the principle. Both examples count covers of the ver-
tices by graph edges. The contribution of the present paper
is to observe that the technique can be almost as powerful
when counting covers assembled from an exponential num-
ber of larger subsets of the vertex set. An earlier paper by
the authors [5] already tentatively explores this idea, pre-
senting an inclusion–exclusion formula for graph colouring,
but the constructions there are still based on maximal stable
sets, much slower, and more complicated. Independently,
Koivisto [22] uses inclusion–exclusion in a more general
framework that subsumes our results for exponential space.

2. Results

Notation. In this section, U is a set of size n and S is a
family of subsets of U , enumerable in time 2nnO(1). We
write S[X ] = {S ∈ S : S ∩ X = ∅ }, the subfamily avoiding
X , and let s[X ] denote the cardinality of S[X ]. We write
S(i) = {S ∈ S : |S| = i } for the subfamily of i-sets. Finally
s(i)[X ] is the cardinality of S(i)[X ], the number of i-sets
avoiding X .

We present two versions of our main result. One counts
the number of covers, possibly overlapping, and the other
counts the number of partitions. The first result is somewhat
simpler and suffices for many of our applications.

2.1. Covers

For a positive integer k ≤ n let ck = ck(S) denote the
number of (possibly overlapping) k-covers, that is the num-
ber of ways to choose S1, . . . , Sk ∈ S with replacement such
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that
S1 ∪ S2 ∪ · · · ∪ Sk = U. (4)

Theorem 1 The number of k-covers ck can be computed in
time and space 2nnO(1).

We establish the theorem in the rest of this subsection.
First, we present an inclusion–exclusion formula for ck :

Lemma 1
ck =

∑
X⊆U

(−1)|X |s[X ]k . (5)

Proof. For any X , the term s[X ]k counts the number of
ways to pick k sets S1, . . . , Sk ∈ S[X ] with replacement.
There are two cases.

If S1 ∪ · · · ∪ Sk = U , they especially cover X , so when
X is nonempty, at least one Si must intersect X . Since all
Si were chosen from S[X ] this means that X is empty. In
other words, every cover S1, . . . , Sk contributes only to the
term (−1)0s[∅]k .

If S1 ∪· · ·∪ Sk = V = U then the Si might all have been
chosen from S[U−V ], meaning that they contribute (among
others) to the term corresponding to X = U − V . In fact,
they contribute to every subset of U − V as well, including
the empty set, so the total contribution of S1, · · · , Sk is

∑
X⊆U−V

(−1)|X | = 0.

The sum vanishes because every nonempty set has as many
even-sized subsets as odd ones.

In summary, the only contribution to ck is from the
choices satisfying (4).

It remains to build a table with 2n entries containing s[X ]
for all X ⊆ U , after which we evaluate (5) in time 2nnO(1).
Such a table can be built in several ways. For instance, for
every subset W ⊆ U disjoint from X let sW [X ] denote the
number of sets S ∈ S such that W ⊆ S and S ∩ X = ∅. We
seek s[X ] = s∅[X ]. Since

sW [X ] = sW [X ∪ {v}] + sW∪{v}[X ]

holds for all mutually disjoint X , W , and v , we can calculate
s∅[X ] recursively in time O(2nn2) and space O(2nn) by
peeling off the elements one by one. The factor n reflects
the fact that the table entries sW [X ] are O(n)-bit numbers.
This completes the proof of Thm. 1.

2.2. Partitions

For a positive integer k ≤ n let pk = pk(S) denote the
number of k-partitions, that is the number of ways to choose
S1, . . . , Sk ∈ S with replacement such that

S1 ∪ S2 ∪ · · · ∪ Sk = U, Si ∩ S j = ∅ (i = j). (6)

Note that the partitions Si ∪ S j and S j ∪ Si for i = j are
here considered different.

Theorem 2 The number of k-partitions pk can be com-
puted in time and space 2nnO(1).

The proof follows the same melody as that for ck .

Lemma 2
pk =

∑
X⊆U

(−1)|X |ak(X), (7)

where ak(X) denotes the number of ways to choose k sets
S1, . . . , Sk ∈ S[X ], possibly overlapping, such that

|S1| + · · · + |Sk | = n. (8)

Proof. A collection S1, . . . , Sk that satisfies (6) will also
satisfy (8). As before, such an exact cover will avoid no
vertices, so if all sets are chosen from S[X ] then X must
be empty. Hence, this collection is counted in (−1)0ak(∅),
and only there.

On the other hand, a collection S1, . . . , Sk that fails to
satisfy (6) contributes nothing to the sum, by exactly the
same argument as in the previous proof.

It remains to compute ak(X). For this we need tables
for s(i)[X ] instead of just s[X ]. Letting s(i)

W [X ] denote the
number of i-set S ∈ S(i) with W ⊆ S and S ∩ X = ∅, we
again observe

s(i)
W [X ] = s(i)

W [X ∪ {v}] + s(i)
W∪{v}[X ],

whenever X , W , and {v} are disjoint. Thus we can compute
s(i)[X ] = s(i)

∅
[X ] as before, in time O(2nn2) and space

O(2nn). We need tables for every i = 1, . . . , n, filling
space O(2nn2) in total.

To obtain ak(X) from these, we build yet another table,
although this time of polynomial size, using dynamic pro-
gramming. Let A(l, m, X) denote the number of ways to
choose l sets S1, . . . , Sl ∈ S[X ] with replacement such
that |S1| + · · · + |Sl | = m. Then ak(X) = A(k, n, X).
To compute A(l, m, X) we use dynamic programming for
l = 1, . . . , k, observing A(1, m, X) = s(m)[X ] and

A(l, m, X) =
m−1∑
i=1

s(m−i)[X ]A(l − 1, i, X).

Finally, we sum the ak(X) according to (7). This com-
pletes the proof of Thm. 2.

2.3. Polynomial space

Provided that S itself can be enumerated in polynomial
space, algorithms for ck and pk in polynomial space and
time cn for some c ≤ 4 are immediate from our inclusion–
exclusion formulas. The precise value depends on how fast
we can decide membership in S:
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Theorem 3 The number of k-covers ck and k-partitions pk

can be computed in polynomial space and

1. time 2n|S|nO(1) if S can be enumerated in polynomial
space with polynomial delay,

2. time 3nnO(1) if membership in S can be decided in
polynomial time,

3. time
∑n

i=0

(n
i

)
TS(i), where TS(i) is the time to count

the number of elements from S in an arbitrary i-subset
of U in polynomial space.

Proof. We give the proof for ck . To evaluate (5) we iterate
over all X , adding the value of (−1)|X |s[X ]k to a running
total. The difficulty is to compute s[X ] fast, the number of
S ∈ S not intersecting X . For the first part of the theorem,
we enumerate all of S, checking X ∩ S for every S ∈ S. For
the second part, we test all 2n−|X | sets in the complement
of X for membership in S. This amounts to total running
time

∑n
i=0

(n
i

)
2i nO(1) = 3nnO(1). Finally, if there actually

exists a faster polynomial space algorithm to compute s[X ]
we use that instead.

2.4. Extensions

The fact that ‘unwanted’ combinations of S1, . . . , Sk

cancel in our inclusion–exclusion formulas means that we
could put further constraints on these collections, other than
just being a cover. In Sec. 3.1 below, we give a concrete ex-
ample involving their weighted sum |S1| + 2|S2| + 3|S3| +
· · · . In the interest of generality, one can give a formu-
lation of our main result that abstracts such constructions
using certain predicates Q(S1, . . . , Sk), but we will be con-
tent with the example in Sect. 3.1 to illustrate the idea. Such
a general and elegant formulation was recently given by
Koivisto [22].

Another extension is given as Thm. 4, which we need for
Domatic Number.

Furthermore, a family of polynomial time approxima-
tion algorithms follows from Thm. 3 for certain S. We
present this for the most interesting and well-studied ex-
ample, graph colouring, in Sect. 3.2, and then explain under
which circumstances it applies to the general case.

3. Graph colouring

The chromatic number χ(G) of a graph G = (V, E),
|V | = n is the smallest integer k ≤ n such that there is
a mapping V → {1, . . . , k} (a ‘k-colouring’) that gives dif-
ferent values (‘colours’) to neighbouring vertices. The chro-
matic polynomial is defined by letting P(G; k) denote the
number of valid k-colourings of G.

In this section we choose for S the family of stable (in-
dependent) sets of a graph G on vertices V . Notation is
simplified by deciding that ∅ is not stable.

Lemma 3 χ(G) = min{k : ck(S) > 0 }.

Proof. A legal k-colouring is a covering with k stable
sets, so if it exists, ck(S) > 0. On the other hand, if
S1, . . . , Sk cover V (possibly non-distinct and non-disjoint)
then C(v) = min{r : v ∈ Sr } is a legal colouring of size at
most k.

Proposition 1 The chromatic number can be found in time
2nnO(1) and space 2nn.

Proof. To find the least k for which ck is nonzero we per-
form a binary search among the ck , each of which is found
using Thm. 1.

For a fast polynomial space algorithm we can turn to a
rich literature about counting stable sets. Very recently, con-
tinuing a line of improvements, [16] showed that the stable
sets in a n-vertex graph can be counted in time bounded by
T (n) = O(1.2461n). This fits into Thm. 3:

Proposition 2 The chromatic number can be found in time∑n
i=0

(n
i

)
T (i) = O(2.2461n) and polynomial space.

We turn to the chromatic polynomial.

Proposition 3 The number P(G; k) of k-colourings of an
n-vertex graph G can be found in time and space 2nnO(1).

Proof. Every partition into r non-empty stable sets corre-
sponds to (k)r = k(k − 1)(k − 2) · · · (k − r + 1) different
k-colourings, so

P(G; k) =
k∑

r=1

k!

(k − r)!

pr (S)

r !
=

k∑
r=1

(
k

r

)
pr (S),

which can be computed using Thm. 2.

Since P(G; ·) is known to be a degree n polynomial
we can recover its coefficients by computing P(G; k) at
k = 0, 1, 2, . . . , n and interpolating the unique polynomial
through these points. This representation then allows us to
evaluate the chromatic polynomial at other points, such as
computing P(G; −1), the number of acyclic orientations of
G [30].
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3.1. Chromatic Sum

The Chromatic Sum problem (also called Minimum
Colour Sum) is to find a colouring C : V → {1, . . . , n}
that minimises

∑
v∈V C(v). An algorithm for Chromatic

Sum is not a direct consequence of our main theorems, but
we can still solve it with the same techniques:

Proposition 4 The chromatic sum of a graph can be deter-
mined in time and space 2nnO(1).

Proof. We count the number of solutions qk,l having chro-
matic sum at most k using l colours; for each l ∈ [1 . . . n]
we do a binary search over the range of possible chromatic
sums k ∈ [1 . . . l2].

To compute qk,l we need another inclusion–exclusion
formula:

qk,l =
∑
X⊆V

(−1)|X |bk,l(X), (9)

where bk,l(X) is the number of ways to choose l stable sets
S1, . . . , Sl ∈ S[X ], such that

|S1| + 2|S2| + · · · + l|Sl | ≤ k.

The proof of (9) is similar to that of Lemma 1. Again,
bk,l(X) can be found in polynomial time by dynamic pro-
gramming.

3.2. Approximating the chromatic number

Combining our exact algorithm with the well-known
technique of successively removing the largest stable sets
we arrive at a fast approximation algorithm for the chro-
matic number.

Proposition 5 For every ε > 0, the chromatic number χ
of a graph on n vertices can be approximated by a value
χ̄ obeying χ ≤ χ̄ ≤ �(1 + ε)χ� which can be found in
polynomial space and time O(1.2209n + 2.2461e−εn).

Proof. Fix some ε > 0. We will perform the following
operation a number of times:

Find the largest stable set and remove it from the graph.
Repeat until the graph has at most e−εn vertices. Let s be
the number of thus removed stable sets. We run the exact
algorithm in Prop. 2 for the resulting graph to find its chro-
matic number χ0. Our approximation is χ̄ = χ0 + s.

We need to argue χ̄ is not far from the actual chromacity.
First note that χ̄ ≥ χ since the subgraph obtained after
removing a stable set has chromacity at least χ −1. Second,
χ0 ≤ χ since a subgraph cannot have larger chromacity
than its host graph. We note that s ≤ t for integer t obeying

(1 − 1/χ)t ≤ e−ε

since every graph with chromacity χ has stable set consist-
ing of at least a fraction 1/χ of its vertex set. Furthermore,
(1 − 1/χ)t ≤ e−t/χ and thus s ≤ �εχ�.

Turning to the running time, we note that the fastest
known polynomial space algorithm finding a largest stable
set in a graph runs in time O(1.2209n) [14].

Discussion. The above approximation idea translates to the
general case of finding a minimal covering provided S has
the following properties:

1. there is a fast algorithm to find the largest S ∈ S.

2. S is hereditary, that is S ⊂ T ∈ S implies S ∈ S.

An example of an interesting family of sets that is not hered-
itary is given by the induced trees of a graph. On the other
hand, the induced forests are a hereditary family. In fact,
some recent algorithms [26, 13] find a maximum induced
forest in time O(1.7548n), satisfying also the first require-
ment. Thus our constructions give a good approximation
algorithm for finding a small partition into induced forests.

3.3. Finding an optimal colouring

Because our algorithms are based on evaluating a for-
mula, they return the chromatic number without ever con-
structing a corresponding colouring. Of course, we can
iteratively contract certain vertex pairs, computing χ(G)
at each step to guide our search, and recover an optimal
colouring within the same time bounds. This is standard
and included only for completeness.

Pick a vertex v ∈ V and enumerate the vertices u1, . . . ,
uk not incident to v . For 1 ≤ i ≤ k, consider the graphs Gi

formed by adding the missing edges,

V (Gi ) = V (G), E(Gi ) = E(G) ∪ {vu1, . . . , vui }.
Observe that the sequence of chromatic numbers χ(G) =
χ(G0), χ(G1), . . . , χ(Gk) cannot decrease, and increases
by at most one at each step. If χ(G) = χ(Gk) then there
is an χ(G)-colouring of G in which v has a different colour
than the rest of the vertices; we can remove it and its in-
cident edges from G and look for a (χ(G) − 1)-colouring
in the resulting graph. If χ(G) < χ(Gk) we can find the
smallest i such that χ(Gi ) = χ(G)+1 using binary search.
We infer from this that in some optimal colourings of Gi−1
(and G), the vertices v and ui received the same colour.
Hence we can contract vui in Gi and continue in the result-
ing graph.

Each iteration removes a vertex and incurs O(log n)
computations of χ . Let Tχ (n) denote the running time of
our chromatic number algorithm, then the total running time
is O

(
(Tχ (n) + Tχ (n − 1) + Tχ (n − 2) + · · · + 1) log n

) =
O

(
Tχ (n) log n

)
, since our algorithm is exponential.
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4. Domatic Number

The domatic number δ(G) of a graph G = (V, E),
|V | = n is the largest integer k such that there is a parti-
tion V1 ∪ V2 ∪ · · · ∪ Vk = V into pairwise disjoint subsets
Vi that dominate G. A vertex set S ⊆ V dominates the
graph if each vertex in V has distance at most one to a ver-
tex in S. Note that for maximization partition problems, the
simpler ck cannot be used. We need to use pk :

Proposition 6 The domatic number can be found in time
and space 2nnO(1).

Proof. To find the largest k for which pk is nonzero we
perform a binary search among the pk , each of which is
found using Thm. 2, with S being the dominating sets of G.

A polynomial space algorithm for domatic number time
3nnO(1) is immediate from Thm. 3. We can do better by
considering a sparser family of sets S that can be quickly
counted.

Proposition 7 The domatic number can be found in time
O(2.8718n) and polynomial space.

The result is established in the remainder of this section.
A dominating set W is minimal if removing any of its

vertices destroys the dominance property. Fomin et al. [15]
observed that enumerating all minimal dominating sets in
a graph can be done much faster than 2n (They derive the
upper bound 1.7170n). This suggests an approach to get a
faster algorithm since δ ≥ k if and only if there are k pair-
wise disjoint minimal dominating sets W1, · · · , Wk . Unfor-
tunately, their union need not exhaust all of V , so Lem. 2
does not apply directly. We need the more general result
below. As before, U is an n-element set and S is a family of
subsets of U .

For positive numbers k, m ≤ n, let lk,m = lk,m(S) denote
the number of ways to choose S1, . . . , Sk ∈ S such that

|S1| + |S2| + · · · + |Sk | = n − m,

Si ∩ S j = ∅ (i = j).
(10)

Theorem 4 The number lk,m of partitions satisfying (10)
can be computed in time

nO(1)
n∑

i=0

(
n

i

) n∑
j=0

TS(i, j)

and polynomial space, where TS(i, j) is the time to count
the number of sets from S of size j in an arbitrary i-subset
of U.

The proof is a bit different from the previous cases of
k-covers and k-partitions in that the solution is not given
by an inclusion–exclusion formula, but as another weighted
sum. Rather than giving the formula explicitly, we describe
it implicitly through a linear equation system:

Let bk,m, j be the number of ways to choose subsets
S1, · · · , Sk ∈ S with replacement such that |⋃i Si | = n − j
and

∑
i |Si | = n − m. Let

dk,m, j =
∑

X⊆U,|X |= j

ak,m(X),

where ak,m(X) is the number of ways to choose k subsets
S1, · · · , Sk ∈ S[X ] such that

∑
i |Si | = n − m.

Lemma 4 The two (n +1)×1 column vectors b̂ = (bk,m,·)
and d̂ = (dk,m,·) fulfil the linear equation system Ab̂ = d̂,
where A is a (n + 1) × (n + 1)-matrix of full rank over the
reals.

Proof. We need some additional notation. Let C be the
family of candidate k-subsets C = {S1, · · · , Sk} ⊆ S,
obeying

∑
i |Si | = n − m. For each candidate C ∈ C we

define its remainder, denoted R(C), as
∣∣U − (⋃

S∈C S
)∣∣,

i.e. the number of elements not covered by any S ∈ C .
We can partition the candidates C in equivalence classes ac-
cording to there remainder as C = C0 ∪ C1 ∪ · · · ∪ Cn−1
where Ci = {C : C ∈ C, R(C) = i } and we observe that
bk,m, j = |C j |. Next note that every C ∈ Ci is counted

(i
j

)
times each in dk,m, j . Thus the matrix element at row i and
column j is Ai, j = (i

j

)
. In particular, Ai,i = 1 whereas

for i < j , Ai, j = 0. Consequently, A is lower triangular
with non-zero elements on the diagonal and hence it has full
rank.

The previous lemma tells us how to compute all of the
numbers lk,m = bk,m,m in polynomial time by solving the
linear equation system once the numbers dk,m, j are known.
The latter numbers can be computed by dynamic program-
ming in polynomial time as in the case of k-partitions from
the numbers s(i)[X ]. Calculating these in their turn requires
time

∑n
i=0

(n
i

)∑n
j=0 TS(i, j). This finishes the proof of

Thm. 4.
Turning back to the domatic number, we note that s(i)[X ]

for a subset X ⊆ V refers to the number of minimal domi-
nating sets of size i of G contained in the vertex set V − X .
Counting all of these takes time at most λn+α4(n−|X |) for
λ < 1.1487 and α4 = 2.9248 using the enumeration algo-
rithm and notation from [15, proof of Thm. 5.1] (However,
as the authors point out, it is unclear exactly how close this
bound is from the true running time of their branching algo-
rithm). By using their bound in theorem 4 we finally arrive
at Prop. 7.
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