
The Use of Encrypted Functions for Mobile Agent Security∗

Hyungjick Lee†

Connectivity Lab., Digital Media R&D Center
Samsung Electronics Co., Ltd

416, Maetan-3Dong, Paldal-Gu,
Suwon City, Gyeonggi-Do, South Korea
hyungjick.lee@samsung.com

Jim Alves-Foss and Scott Harrison
Center for Secure and Dependable Systems

University of Idaho
Moscow, ID 83484

{jimaf, harrison}@cs.uidaho.edu

Abstract

Mobile agent technology is a new paradigm of dis-
tributed computing that can replace the conventional client-
server model. However, it has not become popular due to
some problems such as security. The fact that computers
have complete control over all the programs makes it very
hard to protect mobile agents from untrusted hosts. In this
paper we propose a security approach for mobile agents,
which protects mobile agents from malicious hosts. Our
new approach prevents privacy attacks and integrity attacks
to mobile agents from malicious hosts. This approach is an
extension of mobile cryptography, as proposed by Sander
and Tschudin, and it removes many problems found in the
original idea of mobile cryptography while preserving most
of the benefits. Although the original idea of mobile cryp-
tography allowed direct computations without decryptions
on encrypted mobile agents, it did not provide any practical
ways of implementation due to the fact that no homomor-
phic encryption schemes are found for their approach. Our
approach provides a practical idea for implementing mo-
bile cryptography by suggesting a hybrid method that mixes
a function composition technique and a homomorphic en-
cryption scheme that we have found. Like the original mo-
bile cryptography, our approach will encrypt both code and
data including state information in a way that enables di-
rect computation on encrypted data without decryption.

1 Introduction

An agent-based computer system is a distributed com-
puting environment in which mobile autonomous processes
called mobile agents operate on behalf of users. The au-
tonomous agent concept has been proposed for a variety

∗This work was partially supported by DARPA contract MDA972-00-
1-0001 and Air Force Research Laboratory contract F30602-02-1-0178.

†This work was conducted while this author was a PhD student at the
University of Idaho.

of applications on large, heterogeneous, distributed systems
(e.g., the Internet) [9]. These applications include a spe-
cialized search of a large free-text database [7], middleware
services such as an active mail system, electronic malls for
shopping, and updated networking devices. Mobile agent
systems are purported to have many advantages over tra-
ditional distributed computing environments. They require
less network bandwidth, increase asynchrony among clients
and servers, dynamically update server interfaces and intro-
duce concurrency [8].

Mobile agents have existed for some time, but problems
with security have limited their popularity. Mobile agents
are composed of code, data, and state. Agents migrate
from one host to another taking the code, data and state
with them. The state information allows the agent to con-
tinue execution from the point where it was before it left
in the previous host. For example, a mobile agent could
be dispatched from the home site with the task of buying
an airplane ticket for its owner. The agent would visit all
the known hosts of airline companies, one after another, to
search for the most reasonably priced ticket, and then pur-
chase one for its owner. Each time the agent hops to the
next host, it summarizes the current state, execution pointer
on the current state, etc., so that it can start searching for
reasonable tickets on the next host. The state of the agent
will contain a set of possible tickets to be considered for
purchase. When the agent has finished its search, it may
return to the host where it found the cheapest or best ticket
and purchase it.

While agents roam around the Internet, they are exposed
to many threats and may also be a source of threat to others.
Sander and Tschudin present two types of security problems
that must be solved [16]. The first is host protection against
hostile agents. The second is agent protection against hos-
tile hosts. Many techniques have been developed for the
first kind of problem, such as access control, password pro-
tections, and sand boxes, but the second problem appears
to be difficult to solve. It is generally believed that the ex-

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1

ecution environment (host) has full control over executing
programs; thus, protecting a mobile agent from malicious
hosts is difficult to achieve unless some tamper-proof hard-
ware is used. For example, Yee proposed an approach that
uses a secure coprocessor that executes critical computa-
tions and stores critical information in secure registers [18].
In this paper, we propose a security approach to protect mo-
bile agents from untrusted hosts.

In this paper, we focus on extending the mobile cryptog-
raphy approach, proposed by Sander and Tschudin [14, 16,
15], in terms of privacy and integrity, and explore its use-
fulness and effectiveness in protecting mobile agents (We
discuss the mobile cryptography in Section 2). To extend
mobile cryptography, we will consider composite functions
and additive-multiplicative homomorphism to encrypt mo-
bile agents. As the contribution of this research, the en-
crypted mobile agent will be able to run on any host without
decryption. The encrypted mobile agent will generate en-
crypted results, which will be decrypted by the agent owner.
This will improve the overall security of the mobile agents.

In the remainder of this paper, we expand the idea of
mobile cryptography. In Section 2 we provide an overview
of some related works. In Section 3 we introduce the idea
of homomorphic encryption scheme and function compo-
sition. In Section 4 our new approach for mobile agent
security is discussed. In Section 5 we discuss the details
of mobile cryptography, followed by a detailed discussion
of our cryptosystem to implement mobile cryptography in
Section 6. In Sections 7 we briefly give conclusion and
some future works for our approach.

2 Related Work

Mobile agent protection is difficult due to a host’s com-
plete control over executing programs. While many ap-
proaches have been proposed to defend mobile agents from
untrusted hosts, none adequately addresses every aspect
of security. We survey four proposed approaches for the
problem of mobile agent protection. The four approaches
are chosen because each approach is very uniquely imple-
mented and has strengths that other approaches do not have;
we choose social control approach because it mimics our
real society where badly behaved merchants are forced to go
out of business. Partial result authentication code approach
is chosen due to the fact that it can protect results from mo-
bile agents. Environmental key generation approaches are
chosen because it uses cryptographic support for privacy at-
tack prevention. Mobile cryptography approaches is chosen
because it tries to scramble code and data together.

2.1 Partial Result Authentication Codes (PRAC)

Yee proposed an approach, Partial Result Authentication
Codes (PRAC), which protects partial result with a Message
Authentication Code (MAC) computed on partial results by
using a secret key [19]. The agent originator (owner) and
mobile agent are given a secret key for each host to be vis-
ited. The current secret key used to encrypt the partial re-
sult is destroyed before the agent migrates to the next host.
Destroying secret keys before agent migration ensures that
the previous partial results are secure and intact. Since the
agent originator maintains the secret keys, the partial results
can be verified on the originator’s home site.

PRACs also provide a reasonable protection to mobile
agent systems by focusing primarily on integrity issues in
the mobile agent system. PRACs have several positive as-
pects. First, PRACs improve the integrity of partial results,
because the secret key(s) used to create PRACs are de-
stroyed before an agent’s migration. Second, unless secret
keys are compromised, the agent originator can pinpoint
which malicious host attempted an attack through compar-
ing the PRAC generated by the malicious host to the PRAC
generated by the correct secret key stored in the agent orig-
inator. The third advantage of the PRAC approach is that it
guarantees forward integrity, which states that even though
the current host is malicious, all the previous partial results
are safe, because the secret key for each previous host is
destroyed before an agent’s migration.

There are negative aspects to the PRAC approach also.
First, it provides protection to partial results for mobile
agents, but not to agent code and other aspects of the agent.
Second, if the secret keys are compromised by malicious
hosts, then those malicious hosts can read and modify any
partial results. Third, although secret keys are destroyed
before agent migration, it does not ensure that future results
are secure, if a host is ever revisited by an agent.

2.2 Environmental Key Generation

The next approach, Environmental Key Generation pro-
posed by Riordan and Schneier, generates the decryption
key for an agent’s encrypted code and data by searching
through the execution environment [12]. The agent origi-
nator sends a cipher-text message (i.e., encrypted data and
instructions) and a method for searching the environment
for the data that is required to generate the decryption key.
If the proper environmental data is found through the given
data channel, then the key is generated to decrypt the en-
crypted mobile agent.

Environmental key generation has many strengths over
other approaches. First, environmental key generation im-
proves the integrity and privacy for agent code and data,
which are both encrypted by the agent. Second, the decryp-

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2

tion key is kept secure. The programmer can choose any
kind of data channel that best suits the application such as a
file system, Internet newsgroup, or e-mail. Even though the
attacker may know which data channel the agent is search-
ing, he or she must know which data portion of the data
channel is required for the key generation.

The environmental key generation can protect the code
and data from integrity and privacy attacks, but this ap-
proach also has weaknesses. First, the environmental key
generation approach is vulnerable to group conspiracy at-
tack. Second, data channel protection is another security is-
sue. Third, although this approach can improve the integrity
and the privacy for its code and data, it does not provide any
protection for results. Fourth, once the code and data are de-
crypted, they can be attacked by a malicious host who can
insert his or her own decrypting routine and data channel
for new hosts.

3 Evaluating Encrypted Functions

Our approach is built on the bases of three-address code,
homomorphic encryption scheme (HES), and function com-
position (FnC) technique. In this section, we describe three-
address code, function composition (FnC) and homomor-
phic encryption scheme (HES) to prepare for our new ap-
proach.

3.1 Three-Address code

Many computer languages use compilers to translate
source code into executable target code. Compilers go
through several phases; after the lexical, syntax and seman-
tic analysis, some compilers, though not all, generate an
explicit intermediate representation, before generating tar-
get code [1]. The three-address code is one of the forms of
intermediate representations.

Three-address code is a sequence of the statements of the
form x := y op z, where x, y, and z are names, constants
or compiler-generated temporaries; op stands for any oper-
ator, such as a fixed- or floating-point arithmetic operator,
or a logical operator on boolean-valued data. Thus a source
language expression like x + y ∗ z might be translated into
a sequence:

t1 := y ∗ z
t2 := x + t1

where t1 and t2 are compiler generated temporary
names [1]. In general, three-address code contains three
addresses, where there are two addresses for the operands
and one for the result.

3.2 Homomorphic Encryption Scheme (HES)

Rivest, Adleman and Dertouzos pointed out that the lim-
itation of an encryption system is that an information sys-
tem can only store and retrieve encrypted data for users.
Further operations on data require decryption, and once
the data is decrypted, it is not secure any more. Thus,
the researchers proposed a new idea of cryptosystem that
enables direct computation on encrypted data without de-
cryption, which they called privacy homomorphism [13].
Later, Sander and Tschudin defined additive-multiplicative
homomorphism, which is a kind of privacy homomor-
phism [16, 15]. Additive-Multiplicative homomorphism en-
sures that the computation result on two encrypted values is
exactly the same as the encrypted result of the same com-
putation on two unencrypted values. Sander and Tschudin’s
mobile cryptography uses HES for its implementation, but
there are some drawbacks. First, no single cryptosystem
is found to be additively, multiplicatively and mixed mul-
tiplicatively homomorphic. Second, only some limited
classes of functions (polynomial and rational functions) are
proved to be compatible with the HES [16, 15]. Here, we
describe the properties of homomorphic encryption scheme
that we need for securing mobile agents from the work of
Sander and Tschudin [16, 15]:

Let R and S be rings. We call an (encryption)
function E : R → S

• additively homomorphic if there is an effi-
cient algorithm PLUS to compute E(x+ y)
from E(x) and E(y) that does not reveal x
and y,

• multiplicatively homomorphic if there is
an efficient algorithm MULT to compute
E(xy) from E(x) and E(y) that does not
reveal x and y,

• mixed-multiplicatively homomorphic if
there is an efficient algorithm MIXED-
MULT to compute E(xy) from E(x) and
y that does not reveal x.

The homomorphic encryption scheme that meets the three
properties allow only two types of operators: addition and
multiplication. One thing to note is that there is one-to-
many relationship, which implies that a single plaintext
message, x, can have multiple ciphertext messages of E(x)
(i.e., although E1(x) �= E2(x), D(E1(x)) = D(E2(x))
is true for a plaintext message x). Another point to note
is that there should be only a few elements (only one el-
ement is desirable) that satisfies the last property (mixed-
multiplicativity), otherwise the last property and the sec-
ond property yield an anomaly, y = E(y). Thus, in in-
tegers, only one integer (a multiplicative identity, x = 1)

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3

should satisfy the last property, E(xy) = E(x)y, to avoid
the anomaly.

3.3 Function Composition(FnC)

Sander and Tschudin argue that evaluating encrypted
functions (EEF) can be accomplished, not only by an ad-
ditive and multiplicative homomorphism, but also by math-
ematical analogues such as composite functions [14]:

Assume Alice wants to evaluate a linear map A at
Bob’s input x on Bob’s computer. She does not
want to reveal A to Bob, so she picks at random
an invertible matrix S, computes B := SA and
sends B to Bob. Bob computes y := Bx and
sends y back to Alice. Alice computes S−1y and
obtains the result Ax without having disclosed A
to Bob.

We define f(x) as a resultant composite function, if it is
derived by taking the output of a function, h(x), and using
as the input to another function, g(x). Mathematically, this
is represented by f(x) = g ◦ h or f(x) = g(h(x)), where
the function, h(x), is a hidden (original) function. The func-
tion (agent) owner must choose an invertible function, g(x),
to create a composite function f(x). The function, f(x), is
a different function (encrypted functions) from h(x); thus,
privacy and integrity requirements are preserved. The re-
sult of this composite function, f(x), is also encrypted; ma-
licious hosts do not know the result. The function (agent)
owner retrieves the result from the encrypted result by using
the inverse function of g(x).

In Figure 1, Alice is the agent (function) owner and
has a function, h(x), that she wants to evaluate on Bob’s
computer with Bob’s input x, but she does not want to re-
veal anything about her function. Alice chooses an invert-
ible function, g(x), creates a composite function, f(x), and
sends it to Bob. Bob does the computation with his input,
x, and sends the result back to Alice. Bob cannot determine
the function, h(x), because what he sees is only the com-
posite function f(x). Only Alice can retrieve the real result
of h(x) from the result of f(x) by plugging f(x) into the
inverse function of g(x)(i.e., h(x) = g−1(f(x))).

4 New Approach

Ours is a hybrid approach which combines HES and
FnC. A special program called Mobile Agent Encryption
(MAE) will intercept the three-address code from compil-
ers, and apply HES to encrypt the operands of three-address
code and FnC to encrypt codes. In other words, MAE
will encrypt the sensitive data, such as credit card number
and personal information, stored in the operands of three-
address code, and scramble the code of the mobile agent

to confuse untrusted hosts. Our approach inherits most
of the strengths of mobile cryptography; ours encrypt mo-
bile agents, and the encrypted mobile agents are executable
without decryption. The partial result is also protected by
our approach. Furthermore, our approach removes some
critical problems found in the original idea of mobile cryp-
tography by Sander and Tschudin (this is discussed in anal-
ysis section). Implementing our approach requires assump-
tions and there are some limitation stemming from the as-
sumption. Before, we present our approach, we state the
assumptions and the goals of our approach.

4.1 Goals of Our Approach

The first goal of our approach is to enhance the privacy
so that malicious hosts are not be able to read the contents
of important data. The next goal is to enhance the integrity
of the agent. Generally, hosts running programs have com-
plete control over the programs; thus malicious hosts can
read the mobile agent’s code, analyze the flow of control,
and modify the mobile agent. Because this will disrupt the
normal execution of the mobile agent, the integrity of the
result generated by the agent cannot be guaranteed. An-
other goal is encrypting the mobile agent carefully using an
additive-multiplicative homomorphic encryption scheme so
that the encrypted mobile agent is executable without de-
cryption. Another goal is to protect the result generated
from the encrypted mobile agent. The results also suffer
from the same security problems as the mobile agent. With-
out the protection of the result, malicious hosts can read and
modify the result for their own benefits. The last goal is that
no one except the agent owner must be able to decrypt the
agent and result.

4.2 Assumptions for New Approach

Our approach offers broader protection to mobile agents
than other approaches reviewed in Section 2. Implement-
ing our approach requires some assumptions like the orig-
inal mobile cryptography. The first assumption we need
is that the HES is based on ring theory; thus we assume
that the transformation (encryption/decryption) of elements
from one set into the other set is additively and multiplica-
tively homomorphic. The second assumption is that we use
only integers, due to the the fact our HES is based on ring
theory. The third assumption is that only addition and mul-
tiplication are used in the agent code. Again, this is because
we are using an additive-multiplicative homomorphic en-
cryption scheme. The fourth assumption is that the control
structures of the agent code will not be encrypted by the
composite function technique, because the control struc-
tures such as if-statements have logical expressions with
other types of operators such as logical operators, boolean

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4

Alice Bob

f=g °hh

P(f)

g-1(x)h(x)

P(f)(x)

�
�

�

�

�

Figure 1. Composite Function

operator and equality operators.

4.3 Encryption

Our new approach extends Sander and Tschudin’s idea
of mobile cryptography and overcomes the problems of
their approach by proposing a practical way of implement-
ing mobile cryptography. The new approach encrypts the
data from the agent, then encrypts the three-address code
representation of the agent by using the composite func-
tion technique. This implies that the mobile agent is dou-
bly encrypted, by first encrypting the data and state infor-
mation found in the three-address code with the additive-
multiplicative homomorphic encryption scheme, and then
by encrypting the three-address code (i.e., the code portion
of the mobile agent) with the composite function technique.
The overall workflow of the approach is a multi-step pro-
cess as below:

• Step 1 The operands of the three-address code are
encrypted by using an additive-multiplicative homo-
morphic encryption scheme.

• Step 2 The operand dependency problem (data en-
crypted by HES should not be encrypted again) caused
by the additive-multiplicative homomorphic encryp-
tion scheme is removed.

• Step 3 Three-address code statement is encrypted
by using the function composition technique.

• Step 4 The three-address code dependency prob-
lem caused by the function composition technique is
resolved.

During encryption MAE grabs the plaintext three-
address code from the compiler and analyzes the code for
the encryption of sensitive data and state information of the
mobile agent by using HES. After the first encryption, MAE
encrypts the three-address code by using the function com-
position technique. While performing the first and second
encryptions, MAE encounters the double encryption prob-
lem for the operands and the codes (statements). This will
lead to the incorrect encryption of the mobile agents, thus
MAE carefully looks for all the operands and statements for
the double encryption, removing the double encryption, if
any. The double encryption problem for each component
(HES and FnC) is addressed in [10]. MAE will generate
the encrypted three-address code, which performs the same
task as the plaintext three-address code, and makes it diffi-
cult for malicious hosts to read and modify the mobile agent
code, data and state information.

4.4 Decryption

The process of decryption is exactly the reverse of the
encryption process. The agent owner does not need to de-
crypt the whole mobile agent; instead only the encrypted
result is decrypted. The result of the computation of any
encrypted mobile agent is automatically encrypted, and ma-
licious hosts cannot read and understand the encrypted re-
sult. The decryption done by the agent owner’s MAE is a
two-pass process, in which the first pass will use the func-
tion composition technique to decrypt the result and the sec-
ond pass will use the additive-multiplicative homomorphic
encryption scheme to fully recover the actual result. The
first pass will simply use the inverse of the function used to
create the composite function during the encryption. The

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5

second pass uses the secret decryption keys of the additive-
multiplicative homomorphic encryption scheme to obtain
the actual result.

4.5 Overall Idea

Figure 2 depicts the overall process of encryption and
decryption. During the encryption, HES is used to encrypt
data, and a simple secret function, g(x) = x3 + 1, is used
for function composition. The encrypted mobile agent is
released on the Internet, and returns with completed task
(result) to the agent owner. In the decryption the inverse
function, g−1(x) = 3

√
x + 1, is used first, and HES is used

to retrieve the actual result.

5 Details Behind Mobile Cryptography

Two decades after the discovery of privacy homo-
morphisms, only a few privacy homomorphic encryption
schemes exist today (see [2, 3, 4, 5, 6, 11]). Rivest, Adle-
man and Dertouzos originally proposed the idea of privacy
homomorphism [13], in which direct computation on en-
crypted data is possible without any decryption, while nor-
mal cryptosystems require the encrypted data be decrypted
first. In normal cryptosystems, once the data is decrypted
for some computation, its content is vulnerable to misuse
by malicious users, software or hosts.

As mentioned previously, Sander and Tschudin pro-
posed the idea of mobile cryptography (EEF-Evaluating En-
crypted Functions) [16]. They argued that some classes of
functions can be encrypted via an additive-multiplicative
homomorphic encryption scheme. The encrypted function
can then be transmitted to a remote host where the func-
tion can be computed without prior decryption [16]. Con-
sidering the fact that an additive-multiplicative homomor-
phism allows addition and multiplication on encrypted data
without decryption, it is a form of privacy homomorphism.
Sander and Tschudin also proposed the idea of mixed-
multiplicative homomorphism [16], in which there exists an
efficient algorithm MIXED-MULT such that we can com-
puter E(xy) from E(x) and y without revealing x, where E
is the encryption algorithm. This implies that if x = 1, then
we can efficiently calculate E(xy) = E(y); from E(1) and
y. Therefore a remote host can encrypt the value y with-
out seeing the encryption key, only the efficient function
MIXED-MULT. Of course such a simple use of this type
of encryption is vulnerable to chosen plaintext attacks, since
an eavesdropper can intercept the original E(1) and try a
large number of y values to find a chosen E(y). Expanding
the form of the encrypted field to y ∗ 2k + r, where r is a
large k-bit random number will reduce the effectiveness of
such an attack; but may affect the homomorphic properties
of the crypto system.

5.1 Privacy Homomorphism and Additive-
Multiplicative Homomorphism

An additive-multiplicative homomorphism is a subset of
privacy homomorphisms. Encryption using an additive-
multiplicative homomorphism preserves addition and mul-
tiplication operators, such that E(x + y) and E(xy) can be
efficiently computed from E(x) and E(y); while encryp-
tion with a privacy homomorphism can preserve additional
operators.

The concept behind privacy homomorphism is to im-
prove security by allowing direct computation on encrypted
data without decryption. Rivest, Adleman and Dertouzos
define privacy homomorphism as follows [13].

We define U as denoting the plaintext objects
with data types S, operators fi, predicates pi and
distinguished constants si and similarly for C de-
noting the ciphertext objects where f ′

i is the en-
crypted version of fi. The decryption function
is φ : S′ → S, while the encryption function is
φ−1 : S → S′.

U: < S; f1, · · · , fk; p1, · · · , pl; s1, · · · , sm >

C: < S′; f ′
1, · · · , f ′

k; p′1, · · · , p′l; s
′
1, · · · , s′m >

According to Rivest, Adleman and Dertouzos, the oper-
ation of privacy homomorphism is as follows [13]:

To make the direct computation on the encrypted
data, the decrypting function φ should be homo-
morphic from C to U , which means that

∀i(a, b, c, . . .). [f ′
i(a, b, · · ·) = c ⇒

fi(φ(a), φ(b), · · ·) = φ(c))],
∀i(a, b, c, . . .). p′(a, b, · · ·) ≡

p(φ(a), φ(b), · · ·),
and
φ(s′i) = si

If the user wants to know the value of
f1(d1, d2), the user asks the computer to com-
pute f ′

1(φ
−1(d1), φ−1(d2)). Since φ is a homo-

morphism,

φ(f ′
1(φ

−1(d1), φ−1(d2))) = f1(d1, d2)

so that the computer can generate the encrypted
form of the answer [13].

5.1.1 Additive-Multiplicative Homomorphism

Additive-multiplicative homomorphisms are a subset of the
privacy homomorphism, and they are defined formally by
Sander and Tschudin as follows [16]:

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6

… ..
y=a+b
… ..

g(x)=x3+1

g-1(x)=

y=E(a)3+3E(a)2E(b)+3E(a)E(b)2+E(b)3+1

result

3 1−x

… ..
y=E(a)+E(b)

… ..

HES

HES

Decrypt

Encrypt

E(result)

Figure 2. Overall Scheme

Let R and S be rings. We call an (encryption)
function E : R → S

• additively homomorphic if there is an effi-
cient algorithm PLUS to compute E(x + y)
from E(x) and E(y) that does not reveal x
and y,

• multiplicatively homomorphic if there is an
efficient algorithm MULT to compute E(xy)
from E(x) and E(y) that does not reveal x
and y.

The additive homomorphism and multiplicative homo-
morphism preserve the addition and multiplication, re-
spectively. Both, privacy homomorphism and additive-
multiplicative homomorphism, allow secure computing on
encrypted data without decryption.

5.2 Mixed-Multiplicative Homomorphisms

Both privacy homomorphisms and additive-
multiplicative homomorphisms are very useful due to
their unique property that enable direct computation on
the encrypted data. Another very useful homomorphism
is a mixed-multiplicative homomorphism, which was first
proposed by Sander and Tschudin [15, 16, 17]:

Let R and S be rings and E be a function (en-
cryption) between them: E : R → S. E is called
mixed-multiplicative homomorphic if:

• there is an efficient algorithm
MIXED-MULT to compute E(xy) from
E(x) and y that does not reveal x.

The definition implies that we can encrypt a plaintext, y,
without any knowledge of the cryptosystem by simply using
the efficient function MIXED-MULT on y and E(1).

5.2.1 Meaning and Applications

As briefly stated, a mixed-multiplicative homomorphism al-
lows encryption of a plaintext message (value) without any
knowledge of the cryptosystem including the keys and en-
cryption algorithm. To encrypt a plaintext message, y, users
need only a single encrypted message, E(1); this is a large
benefit of this approach. An advantage of this approach is
that the encryption can be done in real-time, because the
encryption of plaintext data, y, requires only a single invo-
cation of MIXED-MULT. An advantage of this approach
is that it improves security by avoiding the decryption of
encrypted data to generate a new encrypted value from new
data and a previously encrypted value. This permits us to
transmit the original data, in encrypted form, to remote
hosts that can perform the necessary computation, while
maintaining the privacy of not only the encrypted data, as
in privacy homomorphisms, but the privacy of the keys as
well.

There are many possible applications for a mixed-
multiplicative homomorphic encryption scheme. One pos-
sible application is multi-party computation, where each
participant does not want to reveal its data to the other par-
ticipants. A mixed-multiplicative homomorphic encryption
scheme will allow each participant to encrypt inputs to a
program, and perform the direct computation on the en-
crypted data.

Another application can be found in mobile cryptogra-
phy. Sander and Tschudin first proposed the idea of mobile
cryptography, in which a function is encrypted by using an
additive, multiplicative and mixed-multiplicative homomor-
phic encryption scheme to create an executable encrypted

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7

function [17]. The result generated from the encrypted
function is already encrypted, and requires decryption to
retrieve the actual result. Sander and Tschudin argued that
there is no known homomorphic encryption scheme that is
additively, multiplicatively and mixed-multiplicatively ho-
momorphic to encrypt functions [15, 16, 17]. The clos-
est encryption scheme to implement Sander and Tschudin’s
mobile cryptography was Domingo-Ferrer’s cryptosystem,
which was additive and multiplicative, but not mixed-
multiplicative [5, 16].

The last example application for a mixed-multiplicative
homomorphism is an electronic voting scheme, where the
vote is electronically cast, encrypted and tallied. Each voter
receives ballots electronically signed by some official, and
verifies if the ballot is the right one. If the ballot is valid,
the voter can use mixed-multiplicative homomorphism to
encrypt the decision 1, if the corresponding choice on the
ballot would have been punched; otherwise the decision 0
will be encrypted. In practice the voter will submit a ran-
dom even number, r, to which the vote will be added. This
prevents eavesdroppers from using a chosen plaintext attack
to determine the encrypted value. Although the voter does
not need to know the encryption algorithm and keys, the
voter can multiply the transmitted ballot by r + v, where v
represents the choice. The voter then digitally signs the bal-
lot, to protect against fraud and transmits it to the electronic
ballot box. The balloting agency verifies the signature and
then discards it before decrypting the vote.

6 MMH Cryptosystem

In this section, we present our simple mixed-
multiplicatively homomorphic cryptosystem, MMH. We
believe this is the first such published algorithm, and al-
though it has not undergone extensive cryptoanalysis, we
believe it to be strong against ciphertext only attacks.

Our system is a modified version of the cryptosys-
tem originally proposed by Domingo-Ferrer and Herrera-
Joancomartı́, who argue that their cryptosystem is only ad-
ditively and multiplicatively homomorphic [6]. As noted
earlier, Sander and Tschudin proposed the idea of mixed-
multiplicative homomorphism based on ring theory, which
is essential to fully implement mobile cryptography, and in-
sisted that there is no published cryptosystem that is ad-
ditively, multiplicatively and mixed-multiplicatively homo-
morphic based on ring theory. In this section, we discuss the
simple modified version of Domingo-Ferrer and Herrera-
Joancomartı́’s cryptosystem; with the biggest possible ap-
plication, mobile cryptography, in mind.

6.1 Our New Cryptosystem (MMH)

The modified cryptosystem is similar to the preceding
cryptosystem, except that it is easier to implement and just
as secure. The modified version uses a large number, n,
such that n = p × q, where p and q are large prime num-
bers. Let Zp = {x | x ≤ p} be the set of original plaintext
messages, Zn = {x|x < n} be the set of ciphertext mes-
sage and Qp = {a | a /∈ Zp} be a set of encryption clues.
The types of operations defined are addition and multiplica-
tion on Zp. The encryption and decryption algorithms are
as follows:

Encryption Given x ∈ Zp, pick a random number a in Qp

such that x = a mod p. Compute the encrypted value
y = Ep(x) = a mod n. (This can be accomplished by
picking a random r and creating a = x + rp.)

Decryption Given y = Ep(x) ∈ Zn, use the key p to
recover x = Dp(y) = y mod p.

The modified cryptosystem is additively, multiplica-
tively, and mixed-multiplicatively homomorphic. Also, our
cryptosystem encrypts one plaintext message, x, into many
ciphertext messages. Thus, even though E1(x) �= E2(x),
D(E1(x)) = D(E2(x)). It is easy to prove that the mod-
ified cryptosystem works correctly in an approach simi-
lar to Domingo-Ferrer and Herrera-Joancomartı́’s original
proof [6].

Theorem 1 (Correctness). For all x ∈ Zp, Dp(Ep(x)) =
x holds true.

Proof. Let y = Ep(x) and a be the random number used to
encrypt the message. Then it is true that

a mod n = y (1)

Since p divides n, equation 1 implies that

y mod p = (a mod n) mod p = x (2)

The MMH cryptosystem can be used as in the following
example:

Example (Multiplication) Let p = 11, q = 7, n = 77 =
p × q and the values, x1 = 5 where E(5) = 38. and
x2 = 2 where E(2) = 13.

(38 × 13) mod 77 = 32

Decrypting 32 yields,

10 = 32 mod 11

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8

The above example shows how to perform multiplication
on encrypted values. Addition in accomplished in a similar
manner. As in other privacy homomorphic encryptions with
modulo n, our cryptosystem performs arithmetic modulo n,
which is not shown in our examples to simplify the presen-
tation.

The modified version is mixed-multiplicatively homo-
morphic as shown in the following:

Theorem 2 (Mixed-Multiplicativity). For all s and t in
Zp, D(E(s)t) = D(E(st)).

Proof. We will first evaluate the terms E(s)t and E(st)

• E(s)t: To encrypt s we first choose an a1 such that s =
a1 mod p, in otherwords we know that a1 = k1p + s

Encrypting, we get y1 = a1 mod n which tells us that
a1 = k2n+y1, therefore k1p+s = k2n+y1. Solving
for y1 we get

y1 = k1p − k2n + s = (k1 − k2q)p + s (3)

Since E(s) = y1, and E(s)t = y1t we have:

y1t = (tk1 − tk2q)p + ts.

Decryption will then give us:

D(E(s)t) = D(y1t) = y1t mod p = st. (4)

• E(st): To encrypt st we first choose an a2 such that
st = a2 mod p where a2 = k3p + st. Using this we
encrypt st as y2 = a2 mod n which implies that a2 =
k4n+y2. Solving for y2 we get y2 = (k3−k4q)p+st.

Decrypting will then give us:

D(E(st)) = D(y2)y2 mod p = st. (5)

• D(E(s)t) = D(E(t)): From equations 4 and 5,

y1t mod p = st = y2 mod p

This implies that D(E(s)t) = D(E(t)) using the
modulus p.

The properties of additivity and multiplicativity can be
proven in a similar manner.

6.2 Automatic Encryption of Remote Inputs

By the definition of the mixed-multiplicative homomor-
phism, the computing partner’s input, t, will be automat-
ically encrypted by multiplying t by E(1) (i.e., E(1) ×
t). The following example demonstrates this property of
mixed-multiplicative homomorphism of the modified cryp-
tosystem:

Example Assume p = 101, q = 71, and n = pq = 7171.
Also assume the agent owner provides E(1) = 203.
The malicious host wishes to encrypt the input, 8.
Then, the malicious host multiplies E(1) by 8, which
yields the ciphertext, E(8) = 1624. To verify this,
choose A = 15966, 15966 mod 7171 = 1624 (Re-
member A ∈ Qn = {A| (A /∈ Zn) ∩ (A ≥ n)}).
Again 1624 mod 101 = 8.
�

6.3 Security of MH

Domingo-Ferrer and Herrera-Joancomartı́ discussed the
security of their cryptosystem in [6]. Recall that encryp-
tion of a value x in their system involved finding an a and b
such that x = ab−1 mod p and then creating the encrypted
value y = ab−1modn. For decryption of y, you need to
choose values A and B such that y = AB−1 mod n and
then calculate AB−1 mod p. However, an adversary does
not have to work this hard. Note that if y = AB−1 mod n
then AB−1 = mn + y = mpq + y, and therefore
AB−1 mod p = y mod p. As with our approach, we can
decrypt by calculating x = y mod p. As for encryption,

Since our modified version is a simplified version and
still shares all the properties with the original version, we
can use their arguments on the security for our modified
cryptosystem with small modifications.

• Ciphertext-Only Attack. The cryptanalyst does not
need p to find a number A ∈ Qn corresponding to a
ciphertext y ∈ Zq. However, p is needed to compute
a mod p = x. But, if the cryptanalyst sees only ci-
phertext, then finding the secret p from the public n
is as difficult as factoring n [6]. Therefore, with only
ciphertext, finding the original value is difficult.

• Known-Plaintext Attack. If the cryptanalyst knows
a plaintext-ciphertext pair (x, y), then the cryptana-
lyst can generate a set of t numbers, Ai ∈ Qn for
i = 1, · · · , t such that Ai = y mod n. Then, the crypt-
analyst knows that Ai = x mod p for each i, so that p |
(Ai − x). With high probability p = gcdt

i=1(Ai − x).

• Integrity Attack. Since all of the decryption is per-
formed modulo p, any unencrypted number x < p will
b e deciphered as itself. Therefore an adversary can re-
place any encrypted value with a chose value and claim
it is encrypted.

7 Conclusion

Mixed-multiplicative homomorphism provides a novel
way of encrypting data without using any keys and en-
cryption algorithms. We emphasized the importance of

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 9

this property in this paper. It can be used in many use-
ful applications including multi-party computation, elec-
tronic voting, and mobile cryptography [16]. Sander and
Tschudin argue that they have found no published additive,
multiplicative and mixed-multiplicative homomorphic en-
cryption schemes to implement their mobile mobile cryp-
tography (i.e., evaluating encrypted functions). It is true
that there is no sophisticated cryptosystem that is additively,
multiplicatively and mixed-multiplicatively homomorphic.
However, we have found a simple cryptosystem that is ad-
ditively, multiplicatively and mixed-multiplicatively homo-
morphic and modified it so that it can be employed in mo-
bile cryptography. The modified cryptosystem example is
very simple and suggestive, although it may not be very
practical. More research is required to find more examples
or usable cryptosystems based on the example given in this
paper.

In this paper we proposed a hybrid approach, which is
a combination of HES and FnC, and argued that ours can
provide broader range of protection to mobile agents. How-
ever, there are some limitations and assumptions in our ap-
proach, which restrict the application of our approach and
require further study. We discuss some of the future works
that must be given considerations for the improvement of
our approach as follows:

• Our modified encryption scheme is additive, multi-
plicative and mixed-multiplicative homomorphic en-
cryption scheme. It is a simple cryptosystem, and re-
quires extra work to develop more sophisticated en-
cryption schemes with complete security analysis.

• Due to the assumption of ring theory, the possible
operators are restricted to addition and multiplication
only. If we can move up to field, we can add two more
operators such as subtraction and division.

• The number sets that we are dealing with in our ap-
proach is integers, because of the assumption of ring
theory. The number sets should be extended to some
other types of numbering systems such as real num-
bers.

• The types of function calls within an encrypted func-
tion or mobile agent is limited to some primitive ones
such as basic input and output. More study is required
to find a way of calling user-defined and system func-
tions within an encrypted mobile agent.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers, Principles,
Techniques, and Tools, pages 462–512. Addison-Wesley,
1988.

[2] J. Benaloh. Dense probabilistic encryption. In Proc. 26th
ACM Symposium on Theory of Computing, pages 120–128,
May 1994.

[3] E. Brickell and Y. Yacobi. On privacy homomorphisms.
In Advances in Cryptology—EUROCRYPT ’87, pages 117–
126, 1987.

[4] D. Catalano, R. Gennaro, N. Howgrave-Graham, and
P. Nguyen. Paillier’s cryptosystem revisited. In Proc. 8th
ACM conference on Computer and Communications Secu-
rity, pages 206–214. ACM Press, 2001.

[5] J. Domingo-Ferrer. A new privacy homomorphism and
applications. Information Processing Letters, 60:277–282,
1996.

[6] J. Domingo-Ferrer and J. Herrera-Joancomatı́. A privacy
homomorphism allowing field operations on encrypted data.
Jornades de Matematica Discreta i Algorsmica, 1998.

[7] J. Guttman and V. Swarup. Authentication for mobile
agents. In LNCS, pages 114–136. Springer, 1998.

[8] N. Karnik. Security in Mobile Agent Systems. PhD thesis,
Department of Computer Science and Engineering. Univer-
sity of Minnesota, 1998.

[9] C. Krintz. Security in agent-based computing environments
using existing tools. Technical report, University of Califor-
nia, San Diego, 1998.

[10] H. Lee. Mobile Agent: Evaluating Encrypted Functions.
PhD thesis, Department of Computer Science, University of
Idaho, August 2002.

[11] D. Naccache and J. Stern. A new public-key cryptosys-
tem. In Theory and Application of Cryptographic Tech-
niques, pages 27–36, 1997.

[12] J. Riordan and B. Schneier. Environmental key generation
towards clueless agents. In LNCS, pages 15–24. Springer,
1998.

[13] R. Rivest, L. Adleman, and M. Dertouzos. On data banks
and privacy homomorphisms. In Foundations of Secure
Computation, pages 169–178. Academic Press, 1978.

[14] T. Sander and C. Tschudin. Towards mobile cryptography.
Technical report, International Computer Science Institute,
Berkeley, 1997.

[15] T. Sander and C. Tschudin. On software protection via func-
tion hiding. In Information Hiding, pages 111–123, 1998.

[16] T. Sander and C. Tschudin. Protecting Mobile Agents
Against Malicious Hosts. In G. Vigna, editor, Mobile Agent
Security, pages 44–60. Springer-Verlag: Heidelberg, Ger-
many, 1998.

[17] T. Sander and C. Tschudin. Towards mobile cryptography.
In Proceedings of the IEEE Symposium on Security and Pri-
vacy, Oakland, CA, 1998. IEEE Computer Society Press.

[18] B. Yee. Using Secure Coprocessors. PhD thesis, Carnegie
Mellon University, 1994.

[19] B. Yee. A sanctuary for mobile agents. DARPA Workshop
on Foundations for Secure Mobile Code Workshop, March
1997.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 10

