
A Comparative Introduction to
CSP, CCS and LOTOS

Colin Fidge
Software Verification Research Centre

Department of Computer Science
The University of Queensland
Queensland 4072, Australia

January 1994

Abstract
The language features and formal definitions of the three most popular pro-
cess algebras, csp, ccs and lotos, are introduced and compared.

Categories and Subject Descriptors: D.2.1 [Software Engineering]:
Requirements/Specifications—languages, methodologies; F.4.3 [Mathemati-
cal Logic and Formal Languages]: Formal Languages—algebraic language
theory

Additional Key Words and Phrases: Concurrency, formal specification, for-
mal description techniques, process algebras, Communicating Sequential Pro-
cesses, csp, ccs, lotos

Contents

1 Introduction 2

2 Background 2
2.1 History . 3
2.2 Applicability . 4

3 The languages 5
3.1 Terminology . 5
3.2 Basic concepts . 7
3.3 Value-passing . 18
3.4 Other derived operators . 25
3.5 Specification styles . 26

1

4 Formal definitions 27
4.1 Operational semantics . 27
4.2 Internal actions . 31
4.3 Nondeterminism . 31
4.4 Equivalence . 36
4.5 Algebraic laws . 36
4.6 Value-passing . 38
4.7 Creating operators . 40
4.8 Verification . 42

5 Current research 45

6 Conclusion 47

1 Introduction

The specification languages collectively known as the process algebras are, at first
glance, very similar. They all begin with notions of processes composed from atomic
actions, have operational semantics, and include many operators in common. Un-
derlying these similarities, however, are some subtle differences. Some syntactically
identical operators have very different semantics. Conversely, some semantic re-
quirements are expressed differently from one language to the next. The purpose
of this article is to alert the reader to these and other differences between the alge-
bras and thus allow an informed selection to be made among them for a particular
application.

2 Background

The term process algebra refers to a family of specification techniques particularly
well-suited to describing systems of concurrent, communicating components. More
than mere documentation methods, however, they also incorporate equivalence the-
ories that define algebraic laws, i.e., formal reasoning systems with variables rep-
resenting processes. (Most recently, non-algebraic methods such as modal logic
have been used as well, suggesting that a better name may be process calculus
[Milner 1989, p.4].)

Many such languages, and dialects, currently exist. For the purposes of this
study we consider the basic forms of the three most well-known languages:

• Communicating Sequential Processes (csp) [Hoare 1985],

• the Calculus of Communicating Systems (ccs) [Milner 1989], and

• the Language of Temporal Ordering Specification (lotos) [Iso 1989].

2

No slight is intended on the technical merits of other established process algebras
such as the Algebra of Communicating Processes (acp) [Bergstra & Klop 1984], the
Raise Specification Language (rsl) [Raise 1992] or the π-caclulus [Milner 1991].
Our restriction to the three languages above is based purely on the need to keep
the study manageable and on a perception that newcomers to the field will be more
likely to have heard of these three. The categories used herein for comparing the
languages should be applicable to any process algebra and readers familiar with
other methods are encouraged to see how their language fits in.

2.1 History

Figure 1 summarises major events in the evolution of the languages of interest here.
Hoare’s csp first came to prominence in 1978. At that stage it was not a

fully-fledged process algebra, but a programming language fragment inspired by
Dijkstra’s guarded command language and Pascal. Due to the revolutionary em-
phasis placed on a minimal form of interprocess communication it became highly
influential as a language for reasoning about concurrent and distributed systems.
In the following years the concepts were refined and the language became more ori-
ented towards specification, rather than implementation, culminating in its defini-
tive process-algebraic form published in 1985 [Hoare 1985].

Milner’s ccs has had a less obvious evolution, with most changes occurring
in the underlying semantics. An initial version was published in 1980 but im-
provements to the semantic model used for defining equivalence continued to be
made, inspired by the work of David Park, until the definitive form appeared in
1989 [Milner 1989]. (Milner now prefers the term “process calculus”, but we will
continue to use “ccs” due to its familiarity.) Csp and ccs influenced one another
throughout their development.

Both of the developments above were academic projects. Lotos, on the other
hand, was developed in response to a practical need. The telecommunications
industry has long used precise notations, with varying degrees of formality, for
describing protocols. The International Standardisation Organisation (iso) recog-
nised a need to develop a new Formal Description Technique (fdt) in the late
1970’s [Logrippo et al. 1992]. The name “lotos” was coined in 1983 to describe a
language based on early versions of ccs and csp. It was subsequently refined and
became an international standard in 1989 [Iso 1989].

In comparing the languages it is important to understand the different mo-
tivations that underly them. Csp strives to have a simple semantic model in
which it is easy to define new operators as they are needed [Hoare 1985, p.247].
Ccs was designed to have a minimal set of operators with communication as the
central concept [Milner 1989, p.1–2]. Both languages are intended to be flexible
and to encourage experimentation. Lotos was created as a standardised fdt for
open distributed systems. Unlike csp and ccs it did not aim to be extensible
[Bolognesi & Brinksma 1987, p.25].

3

82

83

84

85

86

87

88

89

1990

91

92

93

occam 2

occam 3

“csp”

occam

process

81

calculus
lotos

“lotos”

ccs

csp

78

79

1980

Figure 1: History.

The programming language occam also features in figure 1. Although not a
process algebra per se it is significant because it is closely based on (early versions
of) csp. It embodies many of the concepts found in csp and thus potentially
benefits from the theory surrounding csp [Roscoe & Hoare 1986].

2.2 Applicability

To date the process algebras have proven valuable in the specification and de-
sign of distributed systems [Logrippo et al. 1992, §6, p.341], for formal reason-
ing [Milner 1989], and for rapid prototyping [Loureiro et al. 1992].

There are, of course, many rivals to the process algebras. Below we indicate
some of the advantages of process algebras in their particular domain.

• Specification languages such as Z and vdm allow specifications to be expressed
non-constructively, often at a much higher level of abstraction than is possi-
ble with the process algebras. However they have no notations for expressing

4

concurrency or communication. In those situations where a problem is nat-
urally, and unavoidably, described as a set of communicating processes (e.g.,
in a geographically-separated network) the process algebras provide a much
more direct model.

• Petri nets can model concurrent behaviour. Moreover they have true con-
currency semantics and can model causality, concepts lacking in the process
algebras. Nevertheless there is no satisfactory algebraic theory for them, and
they offer a more primitive notation than the process algebras [Milner 1989,
pp.3-4].

• Regular expressions and finite-state automata are simple and familiar con-
cepts; at first glance process algebras have much in common with them.
However equivalence models for the process algebras include extensive consid-
eration of nondeterministic choices [Milner 1989, §2.3, p.42, §4.1], a feature
not normally found in, e.g., regular expressions.

3 The languages

This section describes the process algebras from their user’s viewpoint. Section 4
describes the underlying formal models.

Language features have been grouped by function. To assist with a direct com-
parison of the languages a tabular format has been adopted; semantically equivalent
concepts from each language are grouped together in the same table. Different con-
cepts appear in separate tables (even when they are syntactically identical).

3.1 Terminology

All of the process algebras have the same fundamental basis. They start from a
set of atomic actions from which processes may be constructed. Processes may, in
turn, be composed using special operators to create more complex behaviours. The
operators themselves obey algebraic laws which can be used for formal reasoning.

Despite these shared beginnings, an immediate source of confusion is the incon-
sistent use of terminology among the algebras. Table 1 summarises some of the
more important synonyms.

All of the languages begin with a notion of atomic actions. These are known
as “events” in csp, “actions” in ccs, and “actions” or “gates” in lotos. (Strictly,
actions and gates are equivalent in the basic form of lotos only but we will consis-
tently use the latter for distinctness from ccs.) Nothing is known of these actions
other than their identity. Their behaviour cannot be examined and they cannot be
broken up into smaller actions. No assumptions are made about their granularity.
They are chosen freely by the specifier to embody significant indivisible actions that

5

csp ccs lotos

events (e, e1, . . .) actions (a, a1, . . .) actions or gates (g, g1, . . .)

processes (P, P1, . . .) agents (A,A1, . . .) behaviour expressions (B, B1, . . .)

[Hoare 1985, chs.1-3] basic calculus basic lotos

[Hoare 1985, chs.4-6] value-passing calculus full lotos

alphabet (αP) sort (L(A)) “events” or “actions”

channels (c, c1, . . .) ports (p, p1, . . .) gates (g, g1, . . .)

symbols labels “gates”

“domains” value sets sorts (t, t1, . . .)

Table 1: Terminology.

the system is expected to perform. The full set of actions that a system may per-
form is called the “alphabet” in csp or the “sort” in ccs(to add to our confusion,
lotos uses the word “sort” to denote data types).

These actions are then used as the basis for creating more complex, structured
behaviours defined as csp “processes”, ccs “agents” or lotos “behaviour expres-
sions”. (We ignore a minor distinction between “agents” and “agent expressions”
in ccs [Milner 1989, §2.4, pp.43–44].) All agents exist in the context of their “en-
vironment”. The environment, which is itself an agent, shares in the performance
of each visible action.

All three languages have a simple form, lacking data values, and then build the
complete language on this. Both ccs and lotos call their fundamental language
the “basic” form. This language is not given a specific name in csp, but is embodied
in chapters 1 to 3 of the csp text. The “full” language in lotos is equivalent to
the “value-passing” calculus in ccs and chapters 4 to 6 of the csp book.

The borderline between these basic and full algebras is unclear, however. Several
basic lotos constructs are not “basic” in csp or ccs. Also, csp and ccs are
extensible and many operators are introduced in their textbooks merely to illustrate
particular examples; it is unclear which operators should be treated as canonical.

Another prominent feature of the full algebras is the ability of interactions be-
tween agents to carry data values. Such interactions take place through “channels”
in csp, “ports” in ccs, and “gates” in lotos.

In this presentation we use the terms defined for the particular language when
discussing specific language features. In general discussion we favour ccs terminol-

6

csp: prefix
[Hoare 1985, §1.1.1]

e → P

ccs: prefix
[Milner 1989, §1.3, p.27]

a.A

lotos: action prefix
[Bolognesi & Brinksma 1987, §2.2]

g; B

Table 2: Prefixing actions.

ogy because it avoids overloaded or unnecessarily evocative words. For instance, it
uses “agent” instead of “process”; the word “process” suggests concurrency even
though the concept has other interpretations, as explained in section 3.5.

3.2 Basic concepts

In this section we introduce the language features found in the basic process alge-
bras.

3.2.1 Prefixing

All of the algebras have a prefixing operator that is used to construct agents from
atomic actions. This is the only way in which a new action can be introduced.

The csp expression in table 2, for instance, defines a process that first performs
some event named e and subsequently behaves like process P . Similarly, the ccs
agent performs action a and then behaves like agent A, and the lotos behaviour
expression participates in gate action g and then behaves like behaviour expression
B. Despite the differences in syntax, all three operators express the same concept.

The actions in table 2 can proceed only in environments also willing to partici-
pate in the named action, otherwise the agents are blocked. Also see sections 3.2.4
and 3.2.5.

3.2.2 Choice

The operators available for expressing choices can be grouped according to the way
they handle determinism.

Deterministic. The most fundamental form of choice operator allows the envi-
ronment to choose between distinct events. Only csp has a special operator to
express this concept.

7

csp: choice
[Hoare 1985, §1.1.3]

(e1 → P1 | e2 → P2)

Table 3: Deterministic choice.

csp: nondeterministic or
[Hoare 1985, §3.2]

P1 u P2

Table 4: Nondeterministic choice.

In the process in table 3 the two initial events e1 and e2 must be uniquely
identifiable by the environment of the process. Which of the two is actually chosen
is under the control of the environment. (There is, however, no concept of causality
[Hoare 1985, p.24]. We cannot say whether the process or its environment “caused”
the event.)

Although this operator is not available in ccs or lotos the same effect can
be achieved by using the general choice operator (see below) with distinct initial
actions. For example, in ccs it can be expressed as (a.A1 + b.A2) because a and
b are distinct actions. The “choice” operator in csp is therefore not fundamental.
Non-essential operators are often introduced in csp to aid clarity; ccs studiously
avoids any unnecessary operators.

Nondeterministic. A purely nondeterministic choice behaves like one of its ar-
guments, selected at random. Again, only csp has a distinct operator for expressing
this concept (table 4).

Such a choice cannot be influenced, or even observed, by the environment. It
is impossible to tell when the choice is made; the decision may have been fixed in
advance, or made only when the process is executed. There is no fairness assump-
tion; in table 4 P1 may always be chosen, no matter how many times the process
is executed.

This form of choice is sometimes called “demonic” because it represents the
least controllable form of decision. It is included in csp mainly to give an explicit
model of a situation we want to avoid! It does have a legitimate use, however, when
specifying two alternative, equally valid, implementations of a particular behaviour.

The concept can be indirectly modelled in ccs or lotos by making a general
choice between internal actions (see below). For example, in ccs a random choice
between two agents can be expressed as (τ .A1 + τ .A2) [Hoare 1985, §7.4.1]. Again,
this operator is not fundamental.

8

csp: general choice
[Hoare 1985, §3.3]

P1 ¤ P2

ccs: summation
[Milner 1989, §1.3, p.29]

A1 + A2

lotos: choice
[Bolognesi & Brinksma 1987, §2.2]

B1 [] B2

Table 5: General choice.

csp: choice of
[Hoare 1985, §1.1.3, p.32]

(x: B → P (x))

lotos: generalised choice
[Bolognesi & Brinksma 1987, §5.3]

choice x in [g1, . . . , gn] [] N [x](. . .)

Table 6: Choice from a set of actions.

General. The generalised choice operator allows the environment to select be-
tween distinct alternatives, but if there is more than one available instance of the
chosen action the choice becomes nondeterministic.

For instance, in table 5, if lotos behaviour expressions B1 and B2 offer disjoint
sets of gates as their possible initial events then the environment can choose between
the two behaviour expressions. However if there is a gate g which is a possible
initial event of both B1 and B2 then it is impossible to predict which of these two
behaviours will be performed if g is selected.

Indexed. When we want to specify a choice among a large number of possible
initial actions it is often inconvenient to enumerate them all. Choices may therefore
be expressed over indexing sets.

In csp, a deterministic choice can be made of an event from set B, and the
subsequent behaviour is determined by the chosen event. (In table 6 P is a process-
valued function.)

Ccs provides a more general form of indexed choice via its summation operator.
In table 7 I is an indexing set whose values (which need not be limited to actions)
can be used to distinguish instances of a parameterised agent A. Infinite summa-
tions are allowed when the size of the indexing set I is not bounded [Milner 1989,
§2.4, p.44].

Lotos offers two distinct forms of indexed choice. In the first case (table 6)

9

ccs: summation
[Milner 1989, §2.4]

∑
x∈I

Ax

Table 7: Indexed general choice.

lotos: generalised choice
[Bolognesi & Brinksma 1987, §5.3]

choice x: t [] B(x)

Table 8: Choice based on data value.

a gate x is selected from a list of possible gates g1, . . . , gn and used to choose
the subsequent behaviour of a parameterised behaviour expression named N (see
section 3.2.8). In the second form (table 8) the index consists of a data value x of
type t. Note that choice is a full, not basic, lotos operator.

For convenience other operators in the algebras may be similarly indexed,
e.g., nondeterminism in csp [Hoare 1985, §3.2.1, p.104] and composition in ccs
[Milner 1989, §5.5, p.118]. We will not describe these shorthands any further here.

3.2.3 Composition

In this section we describe the most prominent feature of the process algebras, their
support for composition of agents. Although these operators are usually thought
of as defining “concurrency”, we use the ccs terminology instead to emphasise the
fact that these operators may used for other purposes (see section 3.5).

Independent. In the simplest case the composed agents are entirely independent.
They do not interact with each other, even when performing the same action. For
instance, in table 9, csp processes P1 and P2 perform their events separately. If
they can both perform the same event e then two separate such events take place.

csp: interleaving
[Hoare 1985, §3.6]

P1 ||| P2

lotos: pure interleaving
[Bolognesi & Brinksma 1987, §2.4, p.34]

B1 |||B2

Table 9: Composition of independent agents.

10

csp: interaction
[Hoare 1985, §2.2]

P1 || P2

lotos: full synchronisation
[Bolognesi & Brinksma 1987, §2.4, p.34]

B1 ||B2

Table 10: Fully dependent agent composition.

“Interleaving” is an unfortunate misnomer; it reflects the operational seman-
tics usually used to define the operators, not their purpose. These operators are
intended to model concurrent processes that do not communicate.

In ccs, composed agents may interact whenever one agent is prepared to perform
some action a and the other is prepared to perform a complementary action, denoted
a. Therefore the effect of independent composition can be achieved in ccs by using
the general form of agent composition, i.e., (A1 | A2) (see below), as long as the
sorts of the two agents have no “co-names” in common, i.e., L(A1) ∩ L(A2) = {}
(see section 3.2.4).

Fully dependent. At the other extreme, agents composed with full dependency
must interact on the occurrence of every action (table 10). Actions can be success-
fully performed only if they simultaneously occur in all argument agents.

The csp operator in table 10 is, in fact, the same as the general csp concurrency
operator described below. When intended to denote fully dependent composition
however we are obliged to ensure that the argument processes share the same set of
possible events, i.e., their alphabets must be identical, αP1 = αP2 (see section 3.2.4).

The effect of these csp and lotos operators is difficult to achieve in ccs due to
the way ccs conceals interactions (see below). For instance, when lotos behaviour
expressions B1 and B2 in table 10 participate in some shared gate action g, the
interaction is visible to the environment. Thus several behaviour expressions can
participate in an occurrence of g. In ccs, however, interactions between two agents
are immediately hidden from the environment. (Although lotos is primarily based
on ccs, it takes its communication model from csp.)

General case. The general form of composition allows agents to interact on only
a subset of their actions. Other actions are performed independently. The way in
which the subset of interacting actions is specified is different in all three algebras.

In csp, two processes P1 and P2 must synchronise on any events that both
are potentially capable of performing, i.e., those in the intersection of their two
alphabets, αP1 ∩ αP2. If, for instance, P1 in table 11 is prepared to perform some
event e that P2 is capable of performing, but not yet ready to undertake, then
e cannot occur. Events that appear in the alphabet of only one process can be

11

csp: concurrency
[Hoare 1985, §2.3]

P1 || P2

Table 11: General composition: shared actions interact.

ccs: composition
[Milner 1989, §2.5, p.46]

A1 | A2

Table 12: General composition: complementary actions interact.

performed by that process alone. Whenever any event e is performed by such a
composition of processes (whether shared or not) it is also visible to, and requires
the participation of, the environment.

In ccs, agents may interact on two complementary actions a and a. Only two
agents may participate in each interaction. If interaction takes place it is hidden
(see section 3.2.5) and cannot be seen by the environment. However, the agents
may nondeterministically choose not to interact, even when interaction is possible,
and perform a and a separately (table 12).

This model is difficult to replicate in csp or lotos because they have no concept
of such optional interaction. On the other hand, the csp approach is not available
in ccs, but can be defined [Milner 1989, §9.2, p.194].

The lotos operator (table 13) is similar to that of csp except that an explicit
list of gates g1, . . . , gn on which interaction must take place is given. These events
may occur only when both B1 and B2 can perform them. All other gates may be
performed by the argument behaviour expressions separately, even when both B1

and B2 are capable of performing the same gate event.
Note that “parallelism” is a misnomer; none of the process algebras support

“true” concurrency, only interleaving.

3.2.4 Interaction

The previous section described the different forms of agent composition available
and their influence on interaction. This section summarises the main differences.

lotos: general parallelism
[Bolognesi & Brinksma 1987, §2.4]

B1 |[g1, . . . , gn]|B2

Table 13: General composition: listed actions interact.

12

Interaction points:

• Csp and lotos processes can synchronise on identically named actions
[Hoare 1985, §2.3.1] [Bolognesi & Brinksma 1987, §2.4, p.33].

• Ccs agents synchronise only on actions with complementary names, e.g., a
and a [Milner 1989, §2.2, p.39].

Ways of specifying interaction points:

• In csp and ccs the actions on which processes may interact are implicit in
the process alphabets [Hoare 1985, §2.3].

• In lotos the gates on which behaviour expressions may interact are explicitly
listed [Bolognesi & Brinksma 1987, §2.4].

• In all three cases interaction takes place through named “channels”. Process
names are not used [Logrippo et al. 1992, p.328].

Number of participants:

• Csp and lotos support multi-party synchronisation. Any number of
processes may interact on a single, shared action [Hoare 1985, §2.3.1]
[Bolognesi & Brinksma 1987, §2.4, p.33].

• Ccs supports bi-party interaction only [Milner 1989, §2.2, p.39].

Visibility of interactions:

• In csp and lotos each interaction is visible to the environment [Hoare 1985,
§2.3.1] [Bolognesi & Brinksma 1987, §2.4, p.33]. (This is necessary to support
multi-way interaction.)

• In ccs interactions are always concealed from the environment [Milner 1989,
§2.2, p.39]. If two agents interact this shared action can never be seen by any
other agents. (Multi-way interactions are thus awkward to express in ccs.)

3.2.5 Concealment

Concealment operators are intended to prevent the environment from participating
in, or observing, actions. Two different models are used.

The concealment operators in csp and lotos allow the user to explicitly list
those events that may occur invisibly, without the participation of the environment.
If P in table 14 is ready to perform some event e in the list of concealed events then
it may do so immediately, without the need to interact any other process. Thus,

13

csp: concealment
[Hoare 1985, §3.5]

P\{e1, . . . , en}

lotos: hiding
[Bolognesi & Brinksma 1987, §2.5]

hide g1, . . . , gn in B

Table 14: Concealing actions.

ccs: restriction
[Milner 1989, p.40]

A\{a1, . . . , an}

Table 15: Restricting possible actions.

in csp the concealment operator is used to prevent interaction between process P
and its environment.

The corresponding operator in ccs is used to restrict the actions that may occur.
If A in table 15 is ready to perform some restricted action a then that action cannot
occur at all (the complementary action a is also restricted).

For example, if A was prepared to perform an action a and the environment is
ready to perform the complementary action a then two things may normally occur,
either

1. the two agents interact, without the knowledge of the environment, or

2. they visibly perform a and a independently.

If, however, a (or a) is restricted, then that action cannot visibly occur at all; only
the interaction between the two agents can take place. Thus, although syntactically
identical to the csp concealment operator, the ccs restriction operator is instead
used to force interaction between agent A and its environment.

3.2.6 Internal action

We have already seen that internal actions, i.e., actions that occur without the
knowledge of the environment, can result from

• agent interaction in ccs [Milner 1989, p.40], and

• explicit concealment in csp and lotos [Hoare 1985, §3.5, p.112]
[Bolognesi & Brinksma 1987, §2.5].

Ccs and lotos have special notations for such anonymous actions and these
may be explicitly used in prefixes to denote some “local” behaviour (table 16).

14

ccs: silent action
[Milner 1989, p.39]

τ .A

lotos: unobservable action prefix
[Bolognesi & Brinksma 1987, §2.2]

i; B

Table 16: Internal actions.

csp: change of symbol
[Hoare 1985, §2.6]

f(P)

ccs: relabelling
[Milner 1989, p.32]

A[f]

Table 17: Renaming of actions.

Special actions τ and i are never seen by the environment and cannot be used as
interaction points (even when appearing in an argument to the lotos full synchro-
nisation operator).

3.2.7 Renaming

Having specified an agent that defines some useful behaviour we often want to reuse
that specification but replace one or more of the actions with different action names.
In table 17 f is a one-to-one function on action names. Wherever ccs agent A can
perform some action a, agent A[f] can perform action f(a).

For convenience csp also offers a notation for adding a prefix to all events
performed by a process. Wherever process P in table 18 could perform some event
e, process l: P can perform an event with compound name l.e.

In lotos the effect of instantiating a given behaviour expression with different
gate names is achieved by using parameterised process definitions (see section 3.2.8).

csp: process labelling
[Hoare 1985, §2.6.2]

l: P

Table 18: Systematically renaming actions.

15

csp: equations
[Hoare 1985, §1.1.2]

N = P

ccs: defining equations
[Milner 1989, §2.4, p.44]

N
def
= A

lotos: process definitions
[Bolognesi & Brinksma 1987, §2.1]

process N [g1, . . . , gn] :=
B endproc

Table 19: Agent definitions.

csp: recursive expressions
[Hoare 1985, §1.1.2]

µX.P

ccs: recursive expressions
[Milner 1989, §2.9]

fix(X = A)

Table 20: Recursive expressions.

3.2.8 Definitions

All of the algebras have a way of associating a name N with a specified behaviour
(table 19). These definitions may be recursive.

The basic lotos method of defining a “process” N from a behaviour expression
B optionally allows gates as parameters. Csp processes can be similarly parame-
terised, as already seen in section 3.2.2, via process-valued expressions P (e), with
parameter e consisting of an event name [Hoare 1985, p.32]. All three full algebras
allow agents to be parameterised with data values (see section 3.3.1).

3.2.9 Recursive expressions

As well as allowing recursive definitions, csp and ccs allow recursive agents to be
formally defined as fixpoint expressions. For instance, in table 20, X may appear
where a process is expected in csp process P . To be meaningful such recursion
must be properly guarded [Hoare 1985, p.28] [Milner 1989, p.65].

Note. At this point we have covered all of the basic ccs operators. The ccs op-
erators in sections 3.2.10 through to 3.2.13 can be defined in terms of the operators
above.

16

csp: stop
[Hoare 1985, p.25]

STOP

ccs: inactive agent
[Milner 1989, §2.4]

0

lotos: inaction
[Bolognesi & Brinksma 1987, §2.2]

stop

Table 21: Inaction.

csp: successful termination
[Hoare 1985, §5.1]

SKIP

lotos: successful termination
[Bolognesi & Brinksma 1987, p.36]

exit

Table 22: Successful termination.

3.2.10 Inaction

All algebras have a notation for an agent that cannot do anything (table 21). This
is often used to denote an agent that is deadlocked or in some other way “broken”.
An inactive agent never terminates.

Although considered to be fundamental in csp and lotos, the inactive agent
is not in ccs. It is defined as a choice from an empty set of alternatives, i.e.,

0
def
=

∑
i∈{}

Ai .

3.2.11 Successful termination

The inaction operators indicate a failure to terminate. By constrast the operators
in table 22 terminate immediately and denote successful completion of some task.
An agent consisting of several composed agents can itself successfully terminate
only when all of its component agents have successfully terminated.

The concept of successful termination is not normally found in ccs but can be
modelled [Milner 1989, pp.172–173].

Lotos allows its successful termination operator to be used as an alternative in a
choice. For instance, (exit []B) is a behaviour expression that can choose to behave
like B or successfully terminate [Logrippo et al. 1992, p.335]. Csp, however, insists
on “well-termination”; successful termination may not be offerred as an alternative
and (SKIP ¤ P) is therefore invalid [Hoare 1985, §5.1, p.171] [Milner 1989, p.173].

17

csp: sequential composition
[Hoare 1985, §5.1]

P1;P2

lotos: sequential composition
[Bolognesi & Brinksma 1987, p.36]

B1 À B2

Table 23: Sequential composition.

Note. At this point we have also covered all of the basic csp operators.

3.2.12 Sequential composition

The ability of an agent to successfully terminate makes it possible to sequentially
compose agents (table 23). The second agent begins execution only when, and if,
the first terminates.

The csp operator in table 23 and the lotos prefixing operator (table 2) should
not be confused; prefixing introduces new actions, sequential composition orders
entire agents.

Again this concept is not normally found in ccs but can be modelled as a special
case of general composition [Milner 1989, p.173].

3.2.13 Pre-emption

In some applications we often wish to model the situation where an agent is pre-
vented from completing its specified behaviour due to some external influence. The
operators in table 24 represent a special case of sequential composition in which
the second agent may begin before the first terminates. For instance, if an initial
event e of process P2 becomes possible while P1 is executing, the environment can
select e and the system subsequently continues to behave like P2. Execution of P1

is never continued; “interrupt” is thus a misleading name.
Lotos behaviour expression B1 [>B2 terminates, without performing B2, if B1

successfully terminates. This is not possible in csp because the first argument to
the interrupt operator is not allowed to be one which may successfully terminate
[Hoare 1985, p.180].

Again the concept can be defined in ccs [Milner 1989, §9.2, p.192].

Note. At this point we have also completed the basic lotos operators.

3.3 Value-passing

So far the algebras have consisted of atomic actions and agents composed of actions.
Data values have been conspicuously absent. They appear only in the “full” algebras

18

csp: interrupt
[Hoare 1985, §5.4]

P1
∧ P2

lotos: disabling
[Bolognesi & Brinksma 1987, §2.8]

B1 [> B2

Table 24: Pre-emption of agents.

csp: equations
[Hoare 1985]

N(v1, . . . , vn) = P

ccs: parameterised constant
[Milner 1989, §2.8]

N(v1, . . . , vn)
def
= A

lotos: parametric processes
[Bolognesi & Brinksma 1987, §5.4]

process N [. . .] (v1: t1, . . . , vn: tn): f :=
B endproc

Table 25: Value-parameterised agent definitions.

because, as explained in section 4.6, the algebras with value-passing can be defined
entirely in terms of the basic algebras above.

3.3.1 Value-parameterised agent definitions

All three algebras allow the definition of an agent named N to accept data values
v1, . . . , vn as parameters (table 25). Data types are treated informally in csp and
ccs, typically being restricted to simple types such as integers or characters. Types
are defined more rigorously in lotos using the iso standardised data description
language act one [Bolognesi & Brinksma 1987, §4].

(The csp textbook [Hoare 1985] is inconsistent in its use of this mechanism and
frequently uses the subscripted form Nv1,...,vn where N(v1, . . . , vn) is appropriate.)

The lotos parametric process definition includes a functionality parameter f .
This may take one of three forms:

• noexit indicates that the process never successfully terminates,

• exit indicates that the process is capable of successfully terminating, and

• exit(t1, . . . , tx) indicates that the process is capable of terminating and “of-
fering” data values of type t1, . . . , tx (also see section 3.3.3).

19

csp: –
[Hoare 1985]

N(e1, . . . , en)

ccs: –
[Milner 1989, pp.17–18]

N(e1, . . . , en)

lotos: process instantiation
[Bolognesi & Brinksma 1987, §5.4]

N [. . .](e1, . . . , en)

Table 26: Instantiating value-parameterised agents.

lotos: let
[Bolognesi & Brinksma 1987, §5.4]

let x1: t1 = e1, . . . , xn: tn = en

in N(x1, . . . , xn)

Table 27: Let.

3.3.2 Instantiating value-parameterised agents

Having declared an agent N , parameterised by data values, all three algebras allow
familar notations for instantiating N with the values of expressions e1, . . . , en as
arguments (table 26).

Lotos also has a more verbose alternative syntax (table 27).

3.3.3 Value-passing during sequential composition

In section 3.2.12 we saw how agents can be sequentially composed. Data values,
however, have a lifetime equal to that of the agent in which they appear and hence
are normally lost when the first agent successfully terminates. To overcome this
lotos allows values to be explicitly passed from a behaviour expression B1 to its
sequential successor B2.

To achieve this B1 must end with a form of exit expression parameterised by
one or more data expressions (table 28).

Behaviour expressions B1 and B2 are then composed using a special form of
sequential composition operator with the number and types of parameters matching

lotos: value offers
[Bolognesi & Brinksma 1987, §5.5.1]

exit(e1, . . . , en)

Table 28: Value offers at termination.

20

lotos: accepting values
[Bolognesi & Brinksma 1987, §5.5.2]

B1 À accept x1: t1, . . . , xn: tn in B2

Table 29: Accepting offered values.

csp: channel output
[Hoare 1985, §4.2]

c!e → P

ccs: port output
[Milner 1989, p.17]

p(e).A

lotos: output gate
[Bolognesi & Brinksma 1987, §5.1.3]

g!e; B

Table 30: Output actions.

the exit in B1 (table 29). Values x1, . . . , xn can then be used in B2.
Similar operators can be defined in ccs [Milner 1989, §8.2, p.174].

3.3.4 Output

The basic algebras allowed agents to synchronise by interacting on shared actions.
In the full algebras data values can also be transferred during interaction. The
value of an expression e can be sent as shown in table 30.

3.3.5 Input

A data value can be received during an interaction, into variable v, as shown in
table 31. In each case the (optional) argument to the agents following the input
represents the ability of input to change the local state.

Csp [Hoare 1985, §4.2, p.134] and ccs [Milner 1989, p.15] assume that value-
passing interactions take place between only two agents. Lotos allows any
number of behaviour expressions to participate in a value-passing interaction
[Logrippo et al. 1992, §3.2], as long as all participants agree on the type of the
data value. All the participating input gate actions will receive the value sent. All
the participating output gate actions must be attempting to send the same value,
otherwise interaction cannot take place.

Thus, where csp and ccs allow a single output to interact with a single input
only, lotos allows three forms of communication.

21

csp: channel input
[Hoare 1985, §4.2]

c?v → P (v)

ccs: input port
[Milner 1989, p.17]

p(v).A(v)

lotos: input gate
[Bolognesi & Brinksma 1987, §5.1.3]

g?v: t; B(v)

Table 31: Input actions.

lotos: actions
[Logrippo et al. 1992, §3.1]

g c1 . . . cn; B

Table 32: Multi-value message-passing.

• Value passing: an output expression !e (of type t) is matched with an input
variable ?v: t. Variable v is assigned the value of expression e.

• Value matching: one output expression !e1 matches with another !e2. Both
expressions must return the same value (and be of the same type), otherwise
interaction is not possible.

• Value generation: an input variable ?v1: t matches with another input variable
?v2: t. In this case both v1 and v2 will receive the same value. If there is no
corresponding output event then the value is created nondeterministically.

3.3.6 Multi-value message-passing

In a full lotos action a gate name g may be followed by a list c1 . . . cn of offer (!e)
and accept (?v: t) events. Thus, when matched with one or more other gate events,
with lists of the right length and type, data values can be transferred in two or
more directions during the one atomic action (table 32)

Csp and ccs allow only one data value to be transferred per interaction.

3.3.7 Conditional value-passing

In lotos a predicate p can be used to restrict the range of values that may be sent
or received during communication (table 33).

Input variables may appear in the predicate. In other words, the predicate may
examine the values of incoming data in order to decide whether to actually receive

22

lotos: selection predicate
[Logrippo et al. 1992, §5.2.1]

g . . . [p]; B

Table 33: Conditional value-passing.

it or not. This capability is not available in csp or ccs.

3.3.8 Communication

Sections 3.3.4 to 3.3.7 described the operators available for value-passing commu-
nication in the algebras. Here we summarise the main features.

Message-passing:

• Value-passing is synchronous in all three process algebras, i.e., a receiver
blocks until a compatible agent is ready to send. There are no message buffers
linking communicating agents.

• Asynchronous, bufferred communication can be modelled by introducing ex-
plicit buffer agents between the communicating entities [Hoare 1985, p.138]
[Milner 1989, §1.2].

Number of participants:

• Csp and ccs allow bi-party communication only [Hoare 1985, §4.2, p.134]
[Milner 1989, p.15].

• Lotos allows multi-party communication [Logrippo et al. 1992, §3.2].

Direction of data transfer:

• Value-passing is uni-directional in csp and ccs [Hoare 1985, §4.2, p.134]
[Milner 1989, §1.1].

• Value-passing may be multi-directional in lotos [Logrippo et al. 1992, §3.1]
[Bolognesi & Brinksma 1987, §5.1.3].

Conditional communication:

• Communication may be conditional in lotos [Logrippo et al. 1992, §3.1]
[Bolognesi & Brinksma 1987, §5.2.1].

• Communication is unconditional in csp and ccs. (The 1978 csp language
included a conditional form of “input guard”, as does the occam programming
language, but this was removed from the 1985 version.)

23

ccs: condition
[Milner 1989, §2.8, p.55]

if b then A

lotos: guarded expressions
[Bolognesi & Brinksma 1987, §5.2.2]

[b] → B

Table 34: Guarded commands.

lotos: process definition
[Bolognesi & Brinksma 1987, §5, pp.47-48]

process . . . := . . .
where . . . endproc

Table 35: Structured process definition.

3.3.9 Guarded commands

Dijkstra’s influential guarded command notation is approximated in the process al-
gebras as shown in table 34. It allows an agent to occur only if a boolean expression
b is true. In ccs it takes the form of a “one-armed” conditional statement (which
is equivalent to inaction if the expression is false).

Guarded commands are not directly available in the 1985 definition of csp,
although the effect can be achieved indirectly using a conditional expression, e.g.,
P <| b >| STOP [Hoare 1985, §5.5, p.186]. (As noted above, the 1978 version of csp
included a guarded command notation, as does occam.)

Note. At this point we have covered all of the value-passing calculus operators of
ccs.

3.3.10 Modularisation

A significant weakness of the process algebras is their failure to provide support
for large-scale specifications. Only lotos offers any features for this and even this
support is minimal.

The constructs in tables 35 and 36 allow us to group “processes” (i.e., named
behaviour expressions) together in a hierarchical structure.

lotos: specification
[Bolognesi & Brinksma 1987, §5, pp.47-48]

specification . . . behaviour . . .
where . . . endspec

Table 36: Structured system specification.

24

csp: assignment
[Hoare 1985, §5.5, p.185]

v := e

ccs: assignment
[Milner 1989, ch.8, p.174,177]

v := e

Table 37: Assignment.

csp: if then
[Hoare 1985, §5.5, p.186,188]

P1 <| b >| P2

ccs: condition
[Milner 1989, §2.8, p.55]

if b then A1 else A2

Table 38: Conditional statements.

Note. At this point we have covered all of lotos.

3.4 Other derived operators

As extensible languages, both csp and ccs offer the ability to define new operators.
Here we list some of the more prominent ones appearing in the literature.

3.4.1 Programming language constructs

As demonstrations of their expressive power, csp and ccs have been used to model
conventional programming language constructs (tables 37, 38 and 39). However, it
should be noted that these operators are not essential, and many authorities would
argue that they have no place in abstract specifications.

Although the csp text uses unfamiliar notations for conditional and iterative
statements, the semantics conform with our usual notions.

csp: while loop
[Hoare 1985, §5.5, p.186]

b ∗ P

ccs: iteration
[Milner 1989, ch.8, p.175,177]

while b do A

Table 39: Iteration.

25

3.4.2 Further operators

Many other less familiar, but powerful, operators can be defined. Among those
included in the csp text are

• unix-like pipes [Hoare 1985, §4.4],

• subordinate processes [Hoare 1985, §4.5],

• restart after catastrophe [Hoare 1985, §5.4.2],

• checkpointing [Hoare 1985, §5.4.4],

• multiple checkpointing [Hoare 1985, §5.4.5], and

• alternating processes [Hoare 1985, §5.4.3].

The checkpointing operators use extraordinarily simple definitions for concepts that
are very difficult to implement in distributed systems. (Possible primarily because
the csp semantic model allows global knowledge of a set of processes to be obtained
easily.)

Ccs examples include

• user-controlled iteration [Milner 1989, §9.1, p.187],

• for-loop style iteration [Milner 1989, §9.1, p.187],

• restart after catastrophe [Milner 1989, §9.2, p.193], and

• checkpointing [Milner 1989, §9.2, p.193].

These new operators are defined using the methods described in section 4.7
below.

3.5 Specification styles

So far we have presented the operators made available by the algebras but have said
little about how they are used. (Detailed examples are beyond the scope of this
paper—numerous examples can be found in the introductory literature [Hoare 1985,
Milner 1989, Logrippo et al. 1992].)

Lotos users have noted four distinct specification styles in practice
[Faci et al. 1991]. They are described below in increasing order of abstraction.

Monolithic. Here all action sequences are listed. This is very verbose, but has
applications when testing and debugging because it makes the sequences of actions
performed explicit.

26

State-oriented. In this style all possible system states are modelled as distinct
agents. Such a specification has the advantage of being directly implementable as
a state automata, but the method is practical only for systems with few internal
states.

Resource-oriented. Here each resource in the system being described is repre-
sented as a distinct agent. This can be seen as an advantage when implementing
the system because the specification partitioning matches the implementation par-
titioning. This is also a disadvantage because the specification structure constrains
possible implementations.

Constraint-oriented. This is the most abstract, implementation-independent
style. Here behavioural constraints are each represented by an agent. The agent
composition operators are then used to impose constraints on other agents via their
interaction points. We can now see why ccs nomenclature has been favoured herein;
“processes” may be thought of as merely defining behavioural restrictions, rather
than the traditional notion of concurrent threads, and the “concurrency” operators
may be thought of as ways of constraining behaviours, rather than the usual notion
of simultaneous execution of such threads. Lotos is the only process algebra that
can take full advantage of this powerful specification style; the multi-party gate
interaction mechanism was added to the emerging lotos standard specifically to
support this [Logrippo et al. 1992, p.327]. Although constraint-oriented specifica-
tions can be written in csp and ccs, their restriction (by convention) to bi-party
interaction makes this clumsy.

4 Formal definitions

This section describes the formal definitions underlying the operators presented
above. In section 3 we saw that lotos borrows features from both csp and ccs.
In its formal definition, however, lotos generally uses the same model as ccs.
Therefore the remainder of this section will describe just the csp and ccs models,
with the latter applying to lotos unless otherwise noted.

4.1 Operational semantics

The algebras all have operational semantics; agents can be identified with system
states [Milner 1989, §2.2, p.37] and “concurrent” actions are interleaved arbitrarily
[Milner 1989, §3.3] [Hoare 1985, §2.3.3].

27

[Hoare 1985, §1.8.1] traces(STOP) = {〈〉}
[Hoare 1985, §1.8.1] traces(e → P) = {〈〉} ∪ {〈e〉∧t|t ∈ traces(P)}
[Hoare 1985, §3.3.3] traces(P1 ¤ P2) = traces(P1) ∪ traces(P2)

Figure 2: Some csp trace semantics definitions.

4.1.1 Traces

The observable behaviour of a csp process is defined by the set of all traces it may
perform. A trace [Hoare 1985, §1.5] is a finite sequence of event symbols, recording
the events performed up to some arbitrary moment in time. Only events visible to
the environment of a process appear in its traces.

The (possibly infinite) set of all traces which are possible for a process are given
by the traces function [Hoare 1985, §1.8]. (Just because a trace is possible for a
process, does not mean that the trace will ever occur in a particular environment,
however.) For instance, the rules in figure 2 define the set of traces possible for
the stop process and the prefix and choice operators. The stop process can never
undertake any event, so it can exhibit only the empty trace. The prefixing operator
can additionally perform any trace that begins with the prefixed event e, followed
by any trace of the subsequent process P . The choice operator can perform any of
the traces possible for either of its arguments.

For example, these three rules are sufficient for us to determine the following
set of traces.

traces(a→ STOP ¤ b→ c→ STOP) = {〈〉, 〈a〉, 〈b〉, 〈b, c〉}

There are two principal behaviours: if the first choice is selected trace 〈a〉 is possible;
if the second choice is selected trace 〈b, c〉 is possible. All prefixes of these two traces
are also potential behaviours of this process (because the environment may decline
to offer sufficient events for the process to proceed).

4.1.2 Derivation trees

In the ccs approach the behaviour of an agent is expressed as a property of its
derivation tree. Each agent has an associated set of transitions [Milner 1989, §2.3,
p.38]. These represent the ability of the agent to perform an action; notation
A

a→ A′ says that agent A can perform action a and subsequently become agent
A′. Action a may be the special internal action τ .

As shown in figure 3, the meaning of operators is defined by transition rules
[Milner 1989, p.46]. The first rule, for action prefix, tells us that agent a.A can
perform action a and then behaves like agent A. The first of the two rules for
summation tells us that if agent A1 can perform action a1 and subsequently behave

28

Act
a.A

a→ A

Sum
A1

a1→ A′
1

A1 + A2
a1→ A′

1

A2
a2→ A′

2

A1 + A2
a2→ A′

2

Figure 3: Some ccs transition rule semantics definitions.

a.0 + b.c.0

ba

0

0

c.0

c

Figure 4: Derivation tree for summation.

like A′
1, then agent A1 + A2 is capable of the same transition. Similarly for the

second summation rule. (There is no explicit rule for the inactive agent because it
cannot undertake any transitions.)

A derivation tree [Milner 1989, §2.2, p.40] collects together all possible agent
derivatives. Such a tree may be infinite, with incomplete trees called “partial”.

For example, figure 4 show the derivation tree defining all of the possible be-
haviours for the agent expression at the root. Each node is an agent (representing
the system state at that point). Each arc is labelled by the action undertaken in
changing from one agent to the next.

Comparing this with the equivalent example for csp (section 4.1.1) we can see
that although the csp approach is intuitively simpler and easier to learn, the ccs
model has the advantage of making the points at which choices were made explicit
through branching. (Finding choice points in a set of linear traces involves searching
for all traces with identical prefixes up to the point of interest.)

4.1.3 Choice vs. concurrency

It was noted above that the semantic models of the process algebras make it possible
to determine where choices between alternative behaviours were made. However
concurrency in the algebras is defined via an arbitrary interleaving of actions. The

29

bc

cb

(b.0 | c.0)

a

a.(b.0 | c.0)

c.0 b.0

0 0 0 0

(0 | c.0) (b.0 | 0)

a.(b.c.0 + c.b.0)

(b.c.0 + c.b.0)

bc

b
c

a

Figure 5: Equivalent derivation trees for choice and concurrency.

semantic models make no distinction between explicit choices made using one of
the operators from section 3.2.2, or those due to “concurrent” behaviours.

In the csp model, for instance, a process which first performs event a and
then explicitly chooses between performing events b or c in either order defines the
following set of traces.

traces(a→ (b→ c→ STOP ¤ c→ b→ STOP))

= {〈〉, 〈a〉, 〈a, b〉, 〈a, c〉, 〈a, b, c〉, 〈a, c, b〉}

However, the following process, defined using the interleaving operator, exhibits the
same set of traces [Hoare 1985, p.120] and is therefore semantically equivalent.

traces(a→ (b→ STOP ||| c→ STOP))

= {〈〉, 〈a〉, 〈a, b〉, 〈a, c〉, 〈a, b, c〉, 〈a, c, b〉}

Merely examining the set of traces gives no indication as to the origin of alterna-
tive behaviours. Indeed, the csp laws specifically equate concurrency with choice
[Hoare 1985, p.71,p.120].

Similarly, ccs derivation trees do not distinguish choices due to summation from
composition [Milner 1989, p.69]. Figure 5 shows two identical trees derived from
different agent expressions, using the summation and composition operators, respec-
tively. This equivalence is enshrined in ccs as the “expansion law” [Milner 1989,
p.69], which allows any agent using the composition operator to be re-expressed
without it.

30

c

τ

a

a.τ .c.0

c.0

τ .c.0

0

Figure 6: Derivation tree showing internal action.

In summary, interleaving semantics means that the concurrency operators are
not fundamental in the process algebras; their effect can always be achieved using
other operators.

4.2 Internal actions

In csp hidden actions never appear in traces [Hoare 1985, §3.5.3]. For example,
the following traces define the observable behaviour of a sequence of three actions
in which the second is hidden.

traces((a→ b→ c→ STOP)\{b}) = {〈〉, 〈a〉, 〈a, c〉}

By constrast, internal actions in ccs appear in derivation trees as τ [Milner 1989,
p.40]. (Similarly for “i” actions in lotos [Bolognesi & Brinksma 1987, p.35].) For
example, figure 6 shows the derivation tree for three consecutive ccs actions, where
the second is internal. As explained in section 4.3.2 below, however, such actions
are typically ignored when defining agent equivalence.

4.3 Nondeterminism

A major distinguishing feature of the models underlying the process algebras is
their mechanism for handling nondeterminism.

31

4.3.1 Refusals

On their own csp traces do not capture nondeterminism [Hoare 1985, §3.4]. For
instance, the following two processes have identical sets of possible traces, but the
first makes the choice arbitrarily, whereas the second allows the environment to
decide which event to perform.

traces((a→ STOP) u (b→ STOP)) = {〈〉, 〈a〉, 〈b〉}
traces((a→ STOP) ¤ (b→ STOP)) = {〈〉, 〈a〉, 〈b〉}

To overcome this, csp processes therefore also define sets of refusals . For each
operator its refusals set records sets of events that may lead to deadlock when offered
by the environment [Hoare 1985, §3.4]. The definitions for the nondeterministic and
general choice operators are as follows.

[Hoare 1985, §3.4.1] refusals(P1 u P2) = refusals(P1) ∪ refusals(P2)

[Hoare 1985, §3.4.1] refusals(P1 ¤ P2) = refusals(P1) ∩ refusals(P2)

A nondeterministic choice may arbitrarily refuse to perform any of the events offered
by either of its operands. By contrast, a general choice always accepts offerred
events when it can, and therefore can refuse only those events that can be refused
by both operands. For example, assuming αP1 = αP2 = {a, b},

refusals((a→ STOP) u (b→ STOP)) = {{}, {a}, {b}}
refusals((a→ STOP) ¤ (b→ STOP)) = {{}} .

The first process may refuse to perform a, if the random choice has already se-
lected the second alternative. The second process will never refuse any event in its
alphabet.

Interestingly, the refusals function allows a precise definition of what we mean
by “determinism”. A deterministic process is one that never refuses any event it is
capable of performing at the next step [Hoare 1985, §3.4].

An extension of the refusals concept is that of failures . This is a relation between
traces and sets of events that cause a refusal after that trace has been performed
[Hoare 1985, §3.9]. For instance,

failures(a→ b→ STOP) =

{(〈〉, {}), (〈〉, {b}), (〈a〉, {}), (〈a〉, {a}), (〈a, b〉, {}),
(〈a, b〉, {a}), (〈a, b〉, {b}), (〈a, b〉, {a, b})}

tells us that, for instance, after performing trace 〈a〉 this process will refuse to
perform event a again. The failures function thus encompasses both the traces and
refusals functions.

32

The extreme form of nondeterminism is the process that may perform any event
or refuse to perform any event. Such chaotic behaviour is rarely useful in a specifica-
tion other than as a description of undesirable behaviour! It is defined as the result
of unguarded recursion in csp (because any process satisfies such a specification)
[Hoare 1985, §3.8].

CHAOS = µX.X

To help with reasoning about such undesirable situations the divergences function
returns the set of traces (if any) that a process may perform after which it behaves
like CHAOS [Hoare 1985, §3.8.2]

4.3.2 Bisimulations

We noted above that ccs retains internal actions in derivation trees, with the
intention of ignoring them where possible. However, in certain contexts, internal
actions cannot be ignored because their presence influences nondeterminism and
thus affects observable behaviour [Milner 1989, §2.3]. An internal action as the first
action offerred by a summation has an observable influence on behaviour because
it may spontaneously be performed, without the participation of the environment,
and thus unexpectedly “decide” the choice, i.e.,

A1 + τ .A2 6= A1 + A2 .

As in csp, ccs includes the effects of nondeterminism in its semantic model.
Whereas standard automata theory would equate the two agents below, because
they define the same “strings” of actions, ccs does not.

a.(A1 + A2) 6= a.A1 + a.A2

The distributive law is invalid here because the right-hand agent makes an initial
nondeterministic choice whereas the left-hand one does not [Milner 1989, §4.1].

In keeping with its aim to be a framework for exploring different semantic mod-
els, ccs offers three quite distinct ways of assessing the equivalence of agents from
their derivation trees.

Strong equivalence In this case the internal action τ is not treated as special
[Milner 1989, p.84]. Thus, for two agents to be strongly equivalent, they must
be capable of performing exactly the same sequences of actions, including internal
ones.

Formally, this is defined through the concept of bisimilarity. A strong bisimu-
lation is a binary relation S over agents. Two agents are strongly bisimilar, i.e.,
(A1, A2) ∈ S, if we can find a relation such that

• whenever A1
a→ A′

1 then, for some A′
2, A2

a→ A′
2 and (A′

1, A
′
2) ∈ S, and

33

b.0 + b.0

000

b.0

a.(b.0 + b.0)a.b.0

b
b

a

b

a

Figure 7: A strong bisimulation.

• vice versa [Milner 1989, §4.2, p.88].

In other words, whenever A1 can perform some action a (which may be τ), then
A2 can perform the same action, and the two resulting agents are also strongly
bisimilar; and similarly for any actions A2 can perform.

For example, figure 7 represents a strong bisimulation of two agents a.b.0 and
a.(b.0 + b.0). The dotted lines link strongly equivalent agent expressions. The
existence of this relation, representable as the following set of pairs,

{(a.b.0, a.(b.0 + b.0)), (b.0, b.0 + b.0), (0,0)}
allows us to conclude that these two agents are strongly bisimilar, written as A1 ∼
A2 [Milner 1989, §4.2, p.90].

Observation equivalence The form of equivalence defined above does not con-
form with our intuitive notion that internal actions should not be significant in
defining equivalence from the environment’s viewpoint. Observation equivalence,
also called weak equivalence or just bisimilarity, therefore seeks to ignore τ actions
[Milner 1989, p.106].

To achieve this it defines a new transition system, with transitions denoted

A
t̂⇒ A′, where t̂ is a sequence of actions with all occurrences of τ removed (t̂ may

thus be the empty sequence) [Milner 1989, §5.1].
A (weak) bisimulation, (A1, A2) ∈ S, thus exists if

• whenever A1
a→ A′

1 then, for some A′
2, A2

â⇒ A′
2 and (A′

1, A
′
2) ∈ S, and

• vice versa [Milner 1989, §5.1, p.108].

In other words, whenever A1 can perform some action a, then A2 can perform the
same action, possibly preceded and succeeded by some internal actions which we

34

τ .b.0

b.0

00

b.0

a.τ .b.0a.b.0

b

τ

a
a

b

Figure 8: A weak bisimulation.

ignore, and the two resulting agents are also bisimilar; and similarly for any actions
A2 can perform. If action a is τ then the other agent must be able to make a
transition without performing any visible actions.

For example, figure 8 represents a weak bisimulation of two agents, a.b.0 and
a.τ .b.0. The existence of this relation, representable as

{(a.b.0, a.τ .b.0), (b.0, τ .b.0), (b.0, b.0), (0,0)}

allows us to conclude that these two agents are observationally equivalent, denoted
A1 ≈ A2 [Milner 1989, §4.2, p.109].

Equality In many situations strong bisimilarity is a satisfactory relation for rea-
soning about the equivalence of agents. Unfortunately, however, there is a special
case that prevents us from adopting strong bisimilarity as a definition of agent
equality . Although some agent A is strongly equivalent to agent τ .A, these two
agents are not equal because they cannot be substituted for one another as the
argument to a summation [Milner 1989, §5.3]. Agent τ .A may nondeterministically
make the choice “internally”, whereas A may not.

Therefore, to complete the notion of agent equality, also called observation con-

gruence, we define yet another transition system, using transitions denoted A
t⇒ A′.

For this to be valid transition A(
τ→)∗

t→ (
τ→)∗A′ must be possible, i.e., A must per-

form at least the actions in t, possibly with additional internal actions [Milner 1989,
p.107].

Given this we can say that two agents are equal in all contexts, i.e., A1 = A2, if

• whenever A1
a→ A′

1 then, for some A′
2, A2

a⇒ A′
2 and A′

1 ≈ A′
2, and

• vice versa [Milner 1989, §7.2].

Thus if a is τ then the other agent must be able to perform at least one τ as well.

35

Others relations Other equivalence relations can be defined, of course, although
those above are the most common. It is worth noting, however, the notion of testing
equivalence in lotos which equates behaviour expressions that cannot be distin-
guished through experimentation by the environment [Bolognesi & Brinksma 1987,
p.43].

4.4 Equivalence

We have seen that the way nondeterminism is modelled has a profound influence on
the way the process algebras define equivalence of agents. We can now summarise
the two major approaches.

In csp a process P is uniquely defined by the triple consisting of its alphabet,
those traces leading to particular set of refusals, and those traces leading to chaotic
behaviour [Hoare 1985, p.130], i.e.,

(αP, failures(P), divergences(P)) .

The use of explicit refusals sets in csp has the advantage of avoiding the need to
distinguish observational equivalence from congruence [Hoare 1985, p.248-9].

In ccs (and lotos) there are many possible ways of defining agent equivalence,
depending on whether internal actions are seen as significant or not. There are
three principal views of agent equivalence, strong, weak and equality, which have
the following relationship for two agents A1 and A2 [Milner 1989, p.154]:

(A1 ∼ A2) ⇒ (A1 = A2) ⇒ (A1 ≈ A2) .

For instance, two agents that are equal are also weakly equivalent, but not neces-
sarily strongly so. Although seemingly complex, the ccs model has the advantage
of being able to distinguish between nondeterministic agents that are equivalent in
csp [Hoare 1985, §7.4.1].

4.5 Algebraic laws

As their name suggests, the process algebras obey algebraic laws which define agent
equivalence [Hoare 1985, §1.3] [Milner 1989, ch.3] and allow us to undertake trans-
formations for verification and program derivation [Hoare 1985, p.37]. Based on
the above concepts of agent equality, these laws can be stated straightforwardly.
We make use of the example laws given below in section 4.8.1.

4.5.1 Algebraic laws

Figure 9 shows some typical laws for csp processes. For instance, law L2 tells us
that hiding a set of events B and then hiding another set C is equivalent to hiding
the union of the two sets. Law L5 tells us that a concealed action occurs invisibly,

36

L1 [Hoare 1985, §3.3.1] P ¤ P = P

L2 [Hoare 1985, §3.5.1] (P\B)\C = P\(B ∪ C)

L3 [Hoare 1985, §3.3.1] P1 ¤ (P2 ¤ P3) = (P1 ¤ P2) ¤ P3

L4 [Hoare 1985, §3.3.1] P ¤ STOP = P

L5 [Hoare 1985, §3.5.1] (e → P)\C = e → (P\C) if e 6∈ C

P\C if e ∈ C

L10 [Hoare 1985, §3.5.1] (x: B → P (x))\C
= Q u (Q ¤ (x: (B − C) → P (x)))

(if C ∩B 6= {} and

Q =ux:B∩CP (x)\C)

Figure 9: Some csp algebraic laws

as if it was never present, but other actions are unaffected by the concealment
operator. Law L10 is one of the most complex algebraic laws in csp. It states the
interaction between the concealment and deterministic choice operators. Concealed
behaviours, embodied by Q, may or may not happen spontaneously. Thus there
is the possibility of nondeterministically choosing to behave like Q, or to offer the
environment the ability to choose one of the observable events (from set B − C).
In the latter case, however, it is not possible for the environment to distinguish
between an observable event from the original set B, or a different occurrence of
the same event that is offerred by Q after it has performed a concealed event, hence
the general choice on the right-hand side.

An exciting possibility suggested by the existence of these laws is to apply them
to the programming language occam, itself closely modelled on csp. Some work
has been undertaken in this area but with restrictions to exclude iteration and the
requirement that programs are expressed in a normal form [Roscoe & Hoare 1986].
This work merits further research.

4.5.2 Equational laws

The “equational” laws are divided into three groups in ccs [Milner 1989, p.61].

• The dynamic laws, for the prefix and summation operators, are so-named
because after their application the operator does not appear in the subsequent
agent expression.

• The static laws, for composition, restriction, and relabelling, are so-named
because the operators persist after each transition.

37

1(3) [Milner 1989, p.62] A + A = A

9(2) [Milner 1989, p.80] A\K\L = A\(K ∪ L)

1(2) [Milner 1989, p.62] A1 + (A2 + A3) = (A1 + A2) + A3

1(4) [Milner 1989, p.62] A + 0 = A

7(1) [Milner 1989, p.70] (a.A)\L =

{
a.(A\L) if a 6∈ L ∪ L
0 otherwise

2(2) [Milner 1989, p.62] A + τ .A = τ .A

Figure 10: Some ccs equational laws.

• The expansion law links the two groups above. As mentioned earlier, it is of
particular significance because it allows the behaviour of agent composition
to be expressed in terms of dynamic laws only.

Figure 10 shows some representative examples of ccs laws. Law 7(1) tells
us that restricted actions cannot occur at all, hence an agent is equivalent to the
inactive agent if prefixed by such an action. Law 2(2) is valid because the internal
action has no observable effect in the situation where either choice leads to the same
agent, even though it is the first action in a summation.

Milner has shown completeness for finite agent axioms [Milner 1989, §7.4-5].

4.6 Value-passing

So far we have discussed the semantics of the basic algebras only. Extension to the
value-passing algebras is straightforward, however, and is based on representing
parameterised entities by (possibly infinite) sets of basic ones [Milner 1989, §2.8]
[Hoare 1985, §4.1]. Indeed, ccs has an elegant and concise set of rules for translating
between the basic and value-passing calculi [Milner 1989, p.56].

4.6.1 Message passing

To model sending the value of some expression e, the process algebras simply make
the corresponding value part of the channel or port name. In csp an output action
on channel c is equivalent to performing an action with a unique, compound name
c.e [Hoare 1985, §4.2], i.e.,

(c!e → P) = (c.e → P) .

The approach is the same in ccs except that a subscripted notation is used
[Milner 1989, p.54], i.e.,

(p(e).A) = (pe.A) .

38

To model reception of some value v ∈ V , the interaction is again modelled using
a compound action name. (Thus, to interact correctly, the sender and receiver
must agree on the channel name and the data value to be “transmitted”.) Since a
received value can affect subsequent behaviour, the next agent is parameterised by
the value. Thus, in ccs, there is a choice between possible behaviours decided by
the value “received” [Milner 1989, p.54],

p(v).A(v) =
∑

v∈V
pv.Av .

Similarly, in csp, the same effect is achieved using two functions to extract the
channel name and message component from a compound action name [Hoare 1985,
§4.2],

(c?v → P (v)) = (y: {y|channel(y) = c} → P (message(y))) .

Lotos uses the same approach but, due to its ability to perform multi-value,
multi-way communications, it associates a tuple of data values 〈v1, . . . , vn〉 with
the gate name. The gate identifier and the entire tuple form a structured name
[Logrippo et al. 1992, §3.2]. Thus, letting xi represent those values used in B, and
vi a particular instantiation of them,

(g c1 . . . cn; B(xi)) = (g〈v1, . . . , vn〉; B(vi)) [] (g〈. . .〉; B(. . .)) []

4.6.2 Parameter passing

Parameterised agent names are represented in much the same way, modelling an
agent parameterised by a data value by a family of agents for each possible value.
In ccs, agent A(v) is equivalent to a family of agents Av for each v [Milner 1989,
p.54]. In csp, notation P (v) represents a process-valued function but we can also
use unique indexed names Pv [Hoare 1985, pp.32-3].

4.6.3 Conditional behaviour

Decisions based on the current value of data are represented by rules that return
agents depending on the (static) data values in each agent instance from the family
of agents (one for every possible state!).

The one-armed conditional statement in ccs is defined as [Milner 1989, p.56],

if b then A =

{
A if b = true
0 otherwise .

The unusual if-then-else notation in csp is defined as [Hoare 1985, p.188],

P1 <| true >| P2 = P1

P1 <| false >| P2 = P2 .

39

Done
def
= done.0

A1 Before A2
def
= (A1[b/done] | b.A2)\{b}

Figure 11: Sequential composition defined using ccs equations.

4.7 Creating operators

The operators used in the process algebras are defined through simple formal defi-
nitions. Csp and ccs are extensible, and thus encourage their users to define new
operators, either through further formal definitions or through equations using ex-
isting operators. In this section we look at both ways of defining operators, using
sequential composition as a common example.

4.7.1 Equations

The simplest way of defining new operators is to make use of the standard mecha-
nism for creating agents (see section 3.2.8) and to build them from existing ones.

For example, although sequential composition is not primitive in ccs, it can be
defined easily using existing features [Milner 1989, §8.2].

As shown in figure 11 we firstly define an agent for denoting successful termi-
nation. The name done is reserved for denoting “success”. Sequential composition
itself is then defined elegantly as a special case of general agent composition. On
the right a new name b is introduced; this action is used to co-ordinate the two
“concurrent” agents. Through relabelling of done, b is the last action performed by
A1. Via prefixing it is also the first to be performed by the second argument to the
composition operator. Thus A2 cannnot begin execution until A1 has performed
agent Done. Lastly, the synchronising action b is restricted so that it is not seen
by the environment.

The accept operator in lotos can be defined similarly with a value tu-
ple associated with a special action δ used to denote successful termination
[Bolognesi & Brinksma 1987, pp.54-5].

4.7.2 Formal definitions

We have seen in section 4.3 that the behaviour of operators can be defined in terms
of traces in csp and transitions in ccs and lotos. This mechanism is also available
to csp and ccs users who want a powerful way of defining their own operators. In
this section we illustrate the two styles of definition, using the formal definitions of
the standard csp and lotos sequential composition features.

To define sequential composition in csp we firstly define the possible traces
[Hoare 1985, §5.3.1]. In figure 12 SKIP can perform only a special event “X”, used

40

traces(SKIP) = {〈〉, 〈X〉}
traces(P1;P2) = {s|s ∈ traces(P1) ∧ ¬〈X〉 in s} ∪

{s∧t|s∧〈X〉 ∈ traces(P1) ∧ t ∈ traces(P2)}

Figure 12: Sequential composition (partly) defined using csp traces.

exit
δ→ stop

B1
g→ B′

1

B1 À B2
g→ B′

1 À B2

B1
δ→ B′

1

B1 À B2
i→ B2

Figure 13: Sequential composition defined using lotos derivation rules.

to denote successful termination. The sequential composition operator can perform
any trace possible for its first argument and any trace in which the first process
successfully terminates, following by a trace of the second process. The X event
itself is not intended to be seen by the environment, so care is taken to exclude
it from the traces of P1. Definitions in a like style are then given for the refusals
sets and divergences of the two operators to complete the description of sequential
composition [Hoare 1985, p.179].

Like ccs, lotos defines operators through their derivation rules. The rules
for successful termination and sequential composition are shown in figure 13
[Bolognesi & Brinksma 1987, §2.7].

The exit behaviour expression can perform only the special gate action δ, which
serves the same purpose as X and done above. The first of the two rules defining
the sequential composition operator states that if the first expression is capable of
performing g, then the entire composition is also capable of this action. The second
rule says that if the first expression is capable of performing δ, i.e., it can successfully
terminate, then the composition starts behaving like B2. Notice, however, that the
special δ action is represented in the composition as an internal action so that it
is not seen by the environment. If an expression performs exit in another context
then the δ action will be visible. This makes it possible to easily define the meaning
of a group of parallel, successfully terminating processes. They must all synchronise
on the δ gate before the entire parallel composition can itself successfully terminate
(and visibly perform δ for use in its own environment).

41

A1 + τ .(A1 + A2)

= A1 + (A1 + A2) + τ .(A1 + A2) 2(2)

= (A1 + A2) + A2 + τ .(A1 + A2) 1(2)

= (A1 + A2) + τ .(A1 + A2) 1(3)

= τ .(A1 + A2) 2(2)

Figure 14: Proof in ccs using equational laws.

4.8 Verification

Apart from specification, the process algebras offer the ability to reason about
systems. In general there are two approaches.

4.8.1 Verification using algebraic laws

Algebraic laws, such as those in sections 4.5.1 and 4.5.2, can be used to prove simple
theorems [Hoare 1985, p.37].

In ccs, for instance, Milner asks whether the following (somewhat counter-
intuitive) equality is true [Milner 1989, p.63].

A1 + τ .(A1 + A2) = τ .(A1 + A2)

As shown in figure 14, we can confirm that it is indeed valid by rewriting the
left-hand side to match the right-hand side using the laws given in section 4.5.2.

Similarly, in csp, Hoare presents the counter-example in figure 15 to prove that
concealment does not distribute backwards through general choice [Hoare 1985,
p.114]. An attempt to show that

(e1 → STOP ¤ e2 → STOP)\{e1}
= ((e1 → STOP)\{e1}) ¤ ((e2 → STOP)\{e1})

using the laws in section 4.5.1 cannot succeed because the left-hand process can
autonomously decide to become inactive, whereas the right-hand process always
offers the environment event e2.

Such proof methods have obvious advantages in terms of simplicity and their
potential for automation [Roscoe & Hoare 1986, p.70].

4.8.2 General verification methods

Although the algebraic laws offer a straightforward means of verification through
re-writing, many desirable features of a system are expressed more naturally as
semantic properties. The algebras thus have related logics which form the basis for

42

(e1 → STOP ¤ e2 → STOP)\{e1}
= STOP u (STOP ¤ (e2 → STOP)) L10

= STOP u (e2 → STOP) L4

6= e2 → STOP

= STOP ¤ (e2 → STOP) L4

= ((e1 → STOP)\{e1}) ¤ ((e2 → STOP)\{e1}) L5

Figure 15: Proof in csp using algebraic laws.

L2B if P sat S(tr)

then (e → P) sat ((tr = 〈〉 ∧ e 6∈ ref) ∨
(tr 0 = e ∧ S(tr ′))

L5 if P1 sat S1

and P2 sat S2

then (P1 ¤ P2) sat (if tr = 〈〉 then S1 ∧ S2

else S1 ∨ S2)

Figure 16: Some csp proof rules.

more powerful techniques of formal verification [Hoare 1985, §1.10] [Milner 1989,
ch.10].

In csp, a specification S is a predicate on traces and refusals [Hoare 1985, §1.10].
The variable name tr is used to represent an arbitrary trace, and ref an arbitrary
refusal set. Numerous operators on traces are also provided [Hoare 1985, §1.6, §1.9],
for example, tr 0 is the first event in trace tr [Hoare 1985, §1.6.3], and tr ′ is the tail
of tr [Hoare 1985, §1.6.3].

Formal proofs then aim to show that a csp process P satisfies such a specification
S, denoted P sat S [Hoare 1985, §1.10.1]. The trace definitions for csp operators
are used to determine which events are possible for P , and satisfaction rules are
provided for each operator. Two such rules are shown in figure 16 [Hoare 1985,
§3.7.1].

Rule L2B tells us that if process P satisfies some specification S on a trace
tr, then process e → P has the property that when it has not yet performed any
events it will never refuse to perform event e. However, if event e has already been
performed, then the remainder of the trace will satisfy property S. Rule L5 tells
us that before a choice is made the properties of both operands are respected, e.g.,

43

Proof

L2B (tea→ STOP) sat (if tr = 〈〉 then tea 6∈ ref)

L5 (tea→ STOP ¤ coffee→ STOP) sat

(if tr = 〈〉 then tea 6∈ ref)

L2B VM sat NICE

qed

Figure 17: A formal proof in csp.

both sets of refusals are valid, but after a particular path has been taken only the
properties of that alternative are guaranteed.

As an example we will use these laws to prove a desirable property of a beverage
vending machine, namely that “I can get tea if I pay”. The vending machine is
defined by the following process:

VM = (coin→ (tea→ STOP ¤ coffee→ STOP))

After accepting a coin it offers a choice between dispensing tea or coffee. The
desirable property is specified as follows:

NICE = (if tr = 〈coin〉 then tea 6∈ ref)

After a coin has been accepted we have stated that the machine must not refuse to
dispense tea.

The proof, shown in figure 17, proceeds by firstly showing that a process prefixed
by tea cannot refuse this event, using the first disjunct in law L2B. This result is
then used, via law L5, to show that a general choice in which the “tea process” is
an alternative also has this property. Finally, law L2B is invoked again, using the
second disjunct this time, to show that VM has the same property after the coin
has been inserted.

Csp proofs are typically built up from components in this way [Hoare 1985,
p.247].

The proof methods proposed for ccs are quite different. A modal logic is de-
fined whose formulae F express properties of derivation trees [Milner 1989, §10.2].
Among the many operators available for constructing formulae, two commonly-used
modal operators are

• [a]F , which states that if action a can be performed then F must hold after-
wards, and

• 〈a〉F , which asserts that it is possible to do a and reach a state satisfying F .

44

i) A |= 〈a〉F if, for some A′, A
a→ A′ and A′ |= F .

ii) A |= [a]F if, for all A′ such that A
a→ A′, A′ |= F .

Figure 18: Some ccs proof rules.

Proof

VM |= NICE

ii) iff (tea.0 + coffee.0) |= 〈tea〉true

(because (tea.0 + coffee.0) = {A|VM
coin−→ A})

i) iff 0 |= true

(because tea ∈ {a|(tea.0 + coffee.0)
a→ X})

qed

Figure 19: A formal proof in ccs.

Proofs then aim to show that some agent A satisfies some formula F , denoted
A |= F [Milner 1989, p.214]. The derivation rules for ccs operators are used to
determine possible actions for A, and the satisfaction relation is defined by induction
on the structure of formulae [Milner 1989, p.214]. Figure 18 shows the rules for the
two operators above.

To illustrate the proof style we will undertake an example similar to that above.
Here the aim is to prove “I may get tea if I pay”. The vending machine and the
desirable property are expressed as follows.

VM
def
= coin.(tea.0 + coffee.0)

NICE = [coin]〈tea〉true

The proof then proceeds as shown in figure 19. In the first step we immediately
discharge the need to show that action coin can be performed because it is the
only derivative of VM . In the second step we show that because tea is a possible
derivative of the remaining agent expression we reach formula true and the proof is
thus complete. (Proving “I can get tea” is harder in this instance, however. Liveness
properties require an extension from modal to temporal logic [Milner 1989, p.251].)

5 Current research

The process algebras are by no means static. A considerable amount of research is
currently being undertaken to enhance them. We outline some of the major research

45

areas below to highlight current limitations of the languages. (A good starting point
for readers keen on pursuing these topics further is the proceedings of the annual
“forte” conferences, published by North-Holland as the series “Formal Description
Techniques”.)

Timed algebras Although the process algebras can define the relative order in
which actions occur, they say nothing about the absolute time at which events
happen. Numerous proposals have been put forward for ways of adding real time
to the process algebras. In some cases special “tick” actions have been used to
explicitly represent the passage of time; another common approach has been to add
a “delay” operator. In all attempts considerable difficulty has been encountered
in dealing with the way choice operators become time-sensitive and the fact that
interleaving semantics cannot model the temporal overlapping of actions.

True concurrency semantics Although conceptually simple the interleaving se-
mantics used by the process algebras mean that the “concurrency” operators are not
fundamental and hinder the ability to add time to the languages. True concurrency
semantics, in which traces become only partially ordered, have been suggested as a
more accurate model of concurrency. There are two principal methods: multi-set
traces use linear traces with a set of actions listed at each step; causally ordered
transitions maintain pointers denoting causal relationships between events in the
traces.

“Biased” algebras The process algebras make no promises regarding the fairness
of nondeterministic choices. In some contexts, however, it is felt to be necessary
to make statements about the frequency of, for example, good vs. error behaviour.
To this end methods of adding probabilities to alternatives, or priorities to actions,
have been suggested, but good semantic definitions remain elusive.

Decomposable actions Actions in the process algebras are indivisible. Modern
software derivation techniques, however, rely on “refining” high-level specifications
into more concrete, lower-level ones. There has therefore been some interest in
methods for decomposing “atomic” actions into their components, but much work
remains.

Improved verification techniques More verification techniques for process al-
gebras are under investigation.

Tools A major advantage of the process algebras, due to their operational seman-
tics, is that they are very amenable to automated support. Many tools for rapid

46

prototyping, simulation and analysis of process algebra specifications have been de-
veloped. Research continues, although many tools are now sufficiently advanced to
be available as commercial products.

6 Conclusion

This article has summarised the language features and underlying definitions of the
three most widely known process algebraic specification language, csp, ccs and
lotos. We have seen that, despite their superficial similarities, there are many
significant differences between them.

An obvious question at this point is: which is best? There is no simple answer
to this. Each of the languages has advantages and disadvantages in particular
application domains. Csp is easy to learn, offers simple semantics and verification
techniques, and has the important practical advantage of being implemented as
occam. Some questions about the consistency and completeness of its laws remain,
however. Ccs has the advantages of being minimal and elegant. Some users may see
its paucity of operators and bi-party interaction model as disadvantages, however,
and the subtle distinction between observation equivalence and congruence is an
unfortunate complication. Lotos is often criticised due to its verbose syntax. As
an international standard, however, it has attracted a great deal of attention and
has better tool support than csp and ccs combined. Furthermore, its multi-party
interaction mechanism provides exceptional expressive power.

Acknowledgements

This article is based on a tutorial presented to the Fifth International Conference
on Formal Description Techniques. I wish to thank the tutorial attendees for their
encouragement, advice and corrections, especially Luigi Logrippo and Tommaso
Bolognesi. Thanks also to Ed Kazmierczak for his thorough review of this article.

References

[Bolognesi & Brinksma 1987] T. Bolognesi and E. Brinksma. Introduction to the
ISO specification language LOTOS. Computer Networks and ISDN Sys-
tems, 14(1):25–59, 1987.

[Bergstra & Klop 1984] J.A. Bergstra and J.W. Klop. Process algebra for syn-
chronous communication. Information and Control, 60(1–3):109–137,
Jan–Mar 1984.

[Faci et al. 1991] M. Faci, L. Logrippo, and B. Stepien. Formal specification of tele-
phone systems in LOTOS: the constraint-oriented style approach. Com-
puter Networks and ISDN Systems, 21(1):53–67, 1991.

47

[Iso 1989] International Organisation for Standardisation. LOTOS: A formal de-
scription technique based on the temporal ordering of observational be-
haviour, 1989. IS 8807.

[Hoare 1985] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[Loureiro et al. 1992] A. Loureiro, S. Chanson, and S. Vuong. FDT tools for pro-
tocol development. In Tutorial Proceedings: 5th International Conference
on Formal Description Techniques, Perros-Guirec, France, October 1992.

[Logrippo et al. 1992] L. Logrippo, M. Faci, and M. Haj-Hussein. An introduc-
tion to LOTOS: Learning by examples. Computer Networks and ISDN
Systems, 23(5):325–342, February 1992.

[Milner 1989] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Milner 1991] R. Milner. The Polyadic π-Calculus: a Tutorial. Computer Science
Department, University of Edinburgh, October 1991.

[Roscoe & Hoare 1986] A.W. Roscoe and C.A.R. Hoare. The laws of occam pro-
gramming. Technical Report PRG-53, Oxford University Computing Lab-
oratory, February 1986.

[Raise 1992] The RAISE Language Group. The RAISE Specification Language.
Prentice-Hall, 1992.

48

