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Abstract

In this work we present Lithium, apure Javastructured parallel programming environment based on skeletons (common,
reusable and efficient parallelism exploitation patterns). Lithium is implemented as a Java package and represents both the
first skeleton based programming environment in Java and the first complete skeleton based Java environment exploiting
macro-data flow implementation techniques.

Lithium supports a set of user code optimizations which are based on skeleton rewriting techniques. These optimizations
improve both absolute performance and resource usage with respect to original user code. Parallel programs developed using
the library run on any network of workstations provided the workstations support plain JRE. The paper describes the library
implementation, outlines the optimization techniques used and eventually presents the performance results obtained on both
synthetic and real applications.
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Keywords:Java; Parallel programming; Skeletons; Macro-data flow; Optimizations

1. Introduction

The development of efficient parallel programs is
really a hard task. Besides coding all the algorithm
details, the programmer must also take care of the de-
tails involved in parallelism exploitation: concurrent
activity setup (either processes or threads), mapping
and scheduling, communication and synchronization
handling, data allocation, etc. These activities are
usually fully in charge of the programmer and con-
stitute a difficult, error prone programming effort.
The effort required to the programmer vary from
moderate to high, depending on the programming lan-
guage/environment chosen to develop parallel applica-
tions.

∗ Corresponding author.
E-mail address:marcod@di.unipi.it (M. Danelutto).

The Java programming environment includes
features that can be naturally used to address net-
work and distributed computing: JVM and bytecode,
multi-threading, remote method invocation, socket
and security handling and, more recently, JINI, Java
Spaces, Servlets, etc.[1]. Many parallel/distributed
applications have been developed using these features
[2]. Also, many efforts have been performed to make
Java a more suitable programming environment for
parallel computing. In particular, several projects have
been started that aim at providing features that can
be used to develop efficient parallel Java applications
on a range of different parallel architectures[3,4].
Such features are either provided as extensions to the
base language or as class libraries. In the former case,
ad hoc compilers and/or runtime environments have
been developed and implemented. As an example
extensions of the JVM have been designed that allow
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plain Java threads to be run in a seamless way on the
different processors of a single SMP machine[5,6].
In the latter, libraries are supplied to the program-
mer that simply uses them within his parallel code
[7,8].

In this work we discuss a new Java parallel pro-
gramming environment, Lithium, which differs from
the environments cited above and which is meant to
be a further step in the direction of the design of
user friendly, efficient, parallel programming envi-
ronments based on Java. Lithium is a Java library
that supportsstructuredparallel programming. It is
based on thealgorithmical skeletonconcept. Skele-
tons have been originally conceived by Cole[9] and
then used by different research groups to design
high performance structured parallel programming
environments[10–12]. A skeleton is basically an ab-
straction modeling a common, reusable parallelism
exploitation pattern. Skeletons can be provided to
the programmer either as language constructs[10,11]
or as libraries[13–15]. They can be nested to struc-
ture complex parallel applications. The compiling
tools of the skeleton language or the skeleton li-
braries take care of automatically deriving/executing
actual, efficient parallel code out of the skeleton ap-
plication without any direct programmer intervention
[14,16].

In order to write a working parallel application using
a skeleton based parallel programming environment,
the programmer must usually perform the following
steps:

• first, the programmer must express theparallel
structure of the application by using a proper
skeleton nesting;

• then, the programmer must write theapplication
specific sequential portions of codeused as skeleton
parameters;

• eventually the programmer must simplycompile
and link the resulting code to obtain running, par-
allel object code.

Lithium provides the programmer with a full Java,
skeleton based parallel programming environment.
The library supports common skeletons, including
pipelines, task farms, iterative and data parallel skele-
tons. Using Lithium, the programmer can setup a par-
allel application instantiating the skeletons provided,
nesting them, providing tasks to be computed (input

data), asking the parallel computation of the resulting
program on a set of interconnected workstations and
eventually get (and use) the results of such parallel
computation.

As an example, the programmer can express his
parallel application as a pipeline having stages that
are either sequential or exploit data parallelism. Then,
he can prepare the sequential portions of code im-
plementing sequential stages and those implementing
data decomposition, processing and recomposition
relative to the data parallel stages. He can denote
such portions of code as the proper pipeline, data
parallel stages. Eventually he can compile and run
the resulting program. When a working instance
of the application has been obtained and tested,
the programmer can start aperformance refinement
step. During this activity he can tune either the skele-
ton structure or the skeleton parameters in such a way
that performance bottlenecks are removed/mitigated
[16].

The implementation of Lithium fully exploits
Java RMI to distribute computations across different
processing elements of the target architecture. Java
reflection features are also exploited to make the
Lithium API simpler. Last but not least, the clean OO
structure of Lithium code also allows the sequential
execution (emulation, actually) of a parallel program
onto a single machine. This is a very useful feature
during functional application code debugging. Actu-
ally, Lithium represents a consistent refinement and
development of a former work[17]. Main differences
lay in the larger skeleton set implemented ([17] only
handles embarrassingly parallel computations, while
Lithium provides a complete skeleton set) and in the
implementation of a set of optimization rules that may
significantly enhance skeleton program performances.
The optimization rules implemented in Lithium ex-
tend the ones discussed in[18,19]. They have not yet
been used in any other skeleton based programming
environment.

This paper is organized as follows.Section 2de-
scribes the skeletons provided by Lithium,Section 3
describes the optimization strategies implemented by
Lithium (and available on user request),Section 4
outlines the Lithium API.Section 5describes how
the library is implemented exploiting macro-data flow,
Section 6reports the experimental results achieved and
Section 7deals with related work.
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2. Lithium skeletons

Lithium provides both task parallel and data paral-
lel skeletons. All the skeletons work on streams, i.e.
process a stream of input tasks to produce a stream
of results. We denote streams1 by angled braces (e.g.
〈x1, x2, . . . , τ〉) and we use a non-strict stream con-
structor denoted by :: having type (Stream× Stream
→ Stream). Empty streams are denoted by〈 〉.

All the skeletons are assumed to be stateless. No
concept of “global state” is supported by the imple-
mentation, but the ones explicitly programmed by the
user, possibly exploiting plain Java mechanisms (e.g.
RMI servers encapsulating shared data structures,
whose services/methods are invoked by code used to
express computations within skeletons). In particular,
static (class) variables cannot be used in the definition
of Lithium code to share information across different
concurrent/parallel entities.

The Lithium skeletons are fully nestable. Each
skeleton has skeleton type parameters that model the
computations encapsulated in the related parallelism
exploitation pattern.

The skeletons (�) provided by Lithium are defined
as follows:

� ::= seq f |
farm � | pipe �1�2 | comp �1�2 |
map fd � fc | d&c ftc fd � fc |
for i� | while ftc � | if ftc �1�2

f, fc, fd, ftc ::= Sequential Java functions.

and a Lithium program is a skeleton expression:

Lithium prog ::= � : 〈σ〉 → 〈τ〉,
processing a stream of input data〈σ〉 and producing a
stream of output results〈τ〉.

Sequential Java functions2 fc, fd represent families
of functions that enable the splitting of a singleton
stream in tuples of singleton streams and vice versa:
fc : 〈◦〉∗ → 〈◦〉 andfd : 〈◦〉 → 〈◦〉∗, being〈◦〉 the
singleton stream. As an examplefc, fd may be used
to split an array in their rows/columns and join them
back to the original array shape.

1 Both finite and infinite streams, i.e. lists and non-strict lists,
respectively.

2 Namely the run( ) method call of an instance of
JSkeletons class (seeSection 4).

Intuitively, seq skeleton just encapsulates sequen-
tial portions of code in such a way they can be used as
parameters of other skeletons;farm andpipe skeletons
model usual task farm (alias embarrassingly parallel)
computations and computations organized instages;
comp models pipelines with stages executed serially
(on the same processing element);map models data
parallel computations:fd decomposes the input data
into a set of possibly overlapping data subsets, the in-
ner skeleton computes a result out of each subset and
thefc function rebuilds a unique result out of these re-
sults;d&c models divide and conquer computations:
input data is divided into subsets byfd and each sub-
set is computed recursively and concurrently until the
ftc condition does not hold true. At this point results
of subcomputations are conquered via thefc function.
Last but not least,for, while and if skeletons model
finite iteration, indefinite iteration and conditional.

More formally, the operational semantics of the
Lithium skeletons is described inFig. 1 (a full ver-
sion of these semantics appears in[20]. Here curly
braces denote tuples (e.g.{x1, . . . , xk}), α repre-
sents the apply-to-all on tuples (α�{x1, . . . , xk} =
{�x1, . . . , �xk}) and all the functions used are as-
sumed to be strict, but the infix stream constructor
:: which is only strict in his first argument3 and the
apply-to-all functionα.

Actually, in all those cases where a rule such as

Skel . . . 〈x, τ〉�1 → F(〈x〉�2) :: Skel . . . 〈τ〉�3,

holds,4 then two further rules hold, which is not sum-
marized inFig. 1 to avoid clobbering the figure:

Skel . . . 〈x〉�1 → F(〈x〉�2) and Skel . . . 〈 〉 → 〈 〉.
In the computation of a Lithium skeleton program par-
allelism comes from two distinct sources:

• data parallelism: all the computations in theα
apply-to-all may be performed in parallel (inmap
andd&c skeletons);

• task parallelism: each item of a stream (e.g. a (strict)
function application appearing within some :: oper-
ators) may be computed in parallel with any other
function application appearing in the same stream
provided that their labels differ.

3 Therefore :: evaluates arguments left-to-right.
4 Skel ∈ [seq, farm, pipe, comp, map, d&c, for, while, if].
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Fig. 1. Lithium operational semantic.x, y ∈ Value; σ, τ ∈ Value∗; �, �i, . . . , ∈ Label= Strings∪ {⊥}; O : Label × Value → Label.

In fact, in this operational semantics, streams
are labeled and different skeletons behave differ-
ently with respect to labels. The idea here is that
labels are used to distinguish computations that
may be performed in parallel from those that may
not. FunctionO(�, x) simply returns a “fresh”, un-
used label built using information coming from the
previously used label� and from the current data
item x.

Fig. 2. Stream label usage examples.

Therefore, each data item processed by a farm is
given a fresh label, modeling the fact that embarrass-
ingly parallel task farm computations can all possibly
happen concurrently. Pipeline keeps labels in such a
way that first and second stage cannot be computed in
parallel on the same data item.

As an example, consider the computations de-
scribed inFig. 2. The operational semantics rewrites
the farm computation relative to a six item stream by
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an expression involvingseq skeletons (first half of
Fig. 2). All the seq skeletons work on singleton stream
with differentlabels. Therefore all theseqf 〈xi〉lj can
be possibly computed concurrently. When pipelines
are used (second half ofFig. 2) anotherseq based
expression is derived, whose terms happen to have all
the same label. Therefore, at the beginning only one
seq skeleton can be computed, i.e. the rightmost of
those with the⊥ label. From this step on, two expres-
sions happen to have a different label: one relative
to the computation of the first pipeline stage (with
⊥ label) and one relative to the computation of the
second pipeline stage (with one label): these skeleton
expressions can actually be computed in parallel.

Lithium supports most of the skeletons discussed
in previous skeleton/structured parallel programming
works [10–12,16,21], and allows a reasonably large
number of parallel applications to be implemented.
The architectural design of Lithium also allows rela-
tively easy extension of the skeleton set (seeSection 5)
in case it is needed.

3. Skeleton optimizations

We define astream parallel skeleton composition
as a skeleton expression only holdingpipe, farm and
seq skeletons. For such composition we inductively
define thefringe (φ) as follows:

φ(�) =




seq f � = seq f

comp φ(�1) φ(�2) � = pipe �1�2

φ(�w) � = farm �w

In [18] we demonstrated that for any stream parallel
skeleton composition� a normal form�̄ exists (be-
ing �̄ = farm φ(�)) such that it computes the same
program computed by� with a performance equal or
better than the one of the original skeleton composition
� (i.e. Ts(�̄) ≤ Ts(�), beingTs(�) the service time
of the skeleton program�). Equivalence of normal
and non-normal form is derived by using the skeleton
“functional” semantics that can be easily derived from
the operational semantics described inFig. 1. Relation-
ships between performance of normal and non-normal
form are derived using a simple, ideal, logP-like per-
formance model taking into account both sequential
computation time and communication time. As an ex-
ample, the performance model definesTs(farm �) as

the min{max{Ti(�), To(�)}, Ts(�)}. Here,Ti andTo

represent the time spent in delivering a new task and
retrieving the computed result to and from the pro-
cessing element computing the task, respectively. In
other words, the time needed to accept a new input task
in an embarrassingly parallel computation (the state-
lessfarm) is determined by the minimum between the
time spent in communicating data to and from the re-
mote processing elements and the time spent in actu-
ally computing results out of the input tasks.

Starting from these results, while developing
Lithium we also demonstrated two further results
concerning skeleton tree (nesting) optimizations. The
first one extends normal form to data parallel skeleton
nesting with stream parallel only workers:

given a skeleton program� = mapfd�wfc
with �w being a stream parallel skeleton
composition, a normal form exists̄� = map
fd�wfc such thatTs(�̄) ≤ Ts(�).

The second one concerns resources (processing el-
ements) used by normal and non-normal form pro-
grams. In theory, and according to the operational
semantics ofFig. 1, the execution of a skeleton pro-
gram needs, at any time, a set of processing elements
holding a distinct processing element for each con-
current activity.5 The amount of resources needed to
compute a skeleton program is the maximum number
of elements in this set measured during the whole
program execution. We denote such number by #(�).
Under this assumptions:

for any skeleton program� being either a
stream parallel skeleton composition or a
mapfd�wfc with �w a stream parallel
skeleton composition then#(�̄) ≤ #(�).

A full proof of these new results is described in
[22]. The point we want to make here is that these
results guarantee that Lithium can perform effective
optimizations in the execution of skeleton code. Actu-
ally, Lithium performs automatical transformation of
skeleton nestings into normal form, before proceed-
ing to compute the programs. The user may explicitly
ask to avoid such transformations.

5 That is, each one of the function applications labeled with
different labels and each one of the computations happening within
an apply-to-all.
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4. Lithium API

Lithium provides the programmer with a set of
classes implementing the skeletons described in
Section 2. The classes can be used to instantiate ob-
jects that will populate the skeleton nesting modeling
the parallel behavior of the applications. All the skele-
tons are provided as subclasses of aJSkeletons
abstract class. This class defines two abstract methods:
the first one is apublic Object run(Object)
method. It is used to encapsulate a sequential portion
of code (in case of sequential skeleton) or the
code that sequentially emulates the parallel skeleton
behavior (in case of the other, non-sequential skele-
tons). The second method defined is a protectedOb-
ject[ ] getSkeletonInfo( ) method, which
is basically used by Lithium to gather the information
needed to build the application skeleton nesting.

Therefore, a Lithium sequential skeleton is noth-
ing but a subclass of the Lithium abstract class
JSkeletons providing an implementation of the
abstract methodpublic Object run(Object),
while a farm is modeled via theFarm JSkeletons
subclass, the pipe via thePipe one, etc. All the details
relative to skeleton definition in Lithium can be found
in [22] as well as athttp://massivejava.sourceforge.net,
where the whole code is available as open source
(including its Javadoc documentation).

Beside defining skeleton nestings, Lithium API pro-
vides a way to execute such skeleton programs. This is
accomplished through objects of theSke class. This
class provides the object actually taking a skeleton
program, a set of input tasks and providing to compute
the program in parallel. After creating aSke object,
a setProgram(JSkeletons pgm) method can
be invoked to define which skeleton program is to be
executed, anaddHosts(String [ ] hostlist)
method can be called to provide the names of
the machines to be used for parallel execution,
some setupTaskPool(Object task) can be
invoked to provide the task items of the input
stream, aparDo( ) method call can be issued
to start parallel program execution and eventually
Object readTaskPool( ) method can be in-
voked to read the results computed.

In summary, in order to write parallel applications
using Lithium skeletons, the programmer should per-
form the following steps:

1. define the skeleton structure of the application;
2. declare aSke object and define the program (the

skeleton code defined in the previous step) to be
executed by the evaluator as well as the list of hosts
to be used to run the parallel code;

3. setup a task pool hosting the initial tasks;
4. start the parallel computation issuing aparDo( )

method call;
5. retrieve and process the final results.

Fig. 3 outlines the code needed to setup a task
farm parallel application processing a stream of in-
put tasks by computing, on each task, the sequential
code defined in theWorker run method. The ap-
plication runs on three processors (thehosts ones).
The programmer is neither required to write any (re-
mote) process setup code, nor any communication,
synchronization and scheduling code. He issues an
evaluator.parDo( ) call and the library auto-
matically computes theevaluator program in par-
allel by forking suitable remote computations on the
remote nodes. In case the user simply wants to exe-
cute the application sequentially (i.e. to functionally

Fig. 3. Sample Lithium code: parallel application exploiting task
farm parallelism.

http://massivejava.sourceforge.net
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debug the sequential code), he can avoid to issue all
theSke evaluator calls. After the calls needed to build
the JSkeletons program he can issue arun( )
method call on theJSkeletons object. In that case,
the Lithium support performs a completely sequen-
tial computation returning the results that the paral-
lel application would eventually return. We want to
point out that, in case we understand that the compu-
tation performed by the farm workers (Fig. 3) can be
better expressed by a functional composition, we can
arrange things in such a way that farm workers are
two stage pipelines. This can be achieved by substi-
tuting the linesWorker w = new Worker( ); and
Farm f=new Farm(w); with the lines:

Stage1 s1 = new Stage1( );
Stage2 s2 = new Stage2( );
Pipeline p = new Pipeline( );
p.addWorker(s1);
p.addWorker(s2);
Farm f = new Farm(p);

and we get a perfectly running parallel program com-
puting the results according to a farm of pipeline par-
allelism exploitation pattern. Therefore, a very small
effort is needed to change the parallel structure of the
application, provided that the suitable sequential por-
tions of code needed to instantiate the skeletons are
available.

5. Lithium implementation

Lithium exploits a macro-data flow (MDF) im-
plementation schema for skeletons. The skeleton
program is processed to obtain a MDF graph. MDF
instructions (MDFi) in the graph represent sequential
JSkeletons run methods. Data flow (i.e. the arcs
of MDF graph) is derived by looking at the skeleton
nesting structure[23,24]. The resulting MDF graphs
have a single MDFi getting input task (tokens) from
the input stream and a single MDFi delivering data
items (tokens) to the output stream.

The skeleton program is executed in Lithium by set-
ting up a server process on each one of the processing
elements available and a task pool manager on the lo-
cal machine. The remote servers are able to compute
any one of the fireable MDFi in the graph. A MDF

graph can be sent to the servers in such a way that they
get specialized to execute only the MDFi in that graph.
The local task pool manager takes care of providing a
MDFi repository (thetaskpool) hosting fireable MDFi
relative to the MDF graph at hand, and to feed the
remote servers with fireable MDFi to be executed.

Logically, any available input task makes a new
MDF graph to be instantiated and stored into the
taskpool. Then, the input task is transformed into a
data flow “token” and dispatched to the proper in-
struction (the first one) in the new copy of the MDF
graph.6 The instruction becomes fireable and it can
be dispatched to one of the remote servers for exe-
cution. The remote server computes the MDFi and
delivers the result token to one or more MDFi in the
taskpool. Such MDFi may (in turn) become fireable
and the process is repeated until some fireable MDFi
exists in the task pool. Final MDFi (i.e. those dis-
patching final result tokens/data to the external world)
are detected and removed from the taskpool upon
evaluator.readTaskPool( ) calls.

Actually, only fireable MDFi are stored in the
taskpool. The remote servers know the executing
MDF graph and generate fireable complete MDFi to
be stored in the taskpool rather than MDF tokens to
be stored in already existing, non-fireable, MDFi.

Remote servers are implemented as Java RMI
servers. A remote server implements aLithium-
Interface. This interface defines two main me-
thods: a TaskItem[ ] execute(TaskItem[ ]
task) method, actually computing a fireable MDFi,
and avoid setRemoteWorker(Vector Skel-
etonList) method, used to specialize the remote
server with the MDF graph currently being executed.7

RMI implementation has been claimed to demon-
strate poor efficiency in the past[25] but recent
improvements in JDK allowed us to achieve good
efficiency and absolute performance in the execution
of skeleton programs, as shown inSection 6. Remote
RMI servers must be setup either by hand (via some
ssh hostname Java Server & command) or by
using proper Perl scripts provided by the Lithium
environment.

6 Different instances of MDF graph are distinguished by a pro-
gressive task identifier.

7 Therefore allowing the server to be run as daemon, serving the
execution of different programs at different times.
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Fig. 4. Lithium architecture.

Fig. 5. Ideal vs. measured completion time.
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Fig. 6. Normal vs. non-normal form completion times, for two different “synthetic” applications.

In the local task pool manager a thread is forked
for each one of the remote hosts used to compute
the skeleton program. Such thread obtains a local ref-
erence to a remote RMI server, first; then issues a
setRemoteWorker remote method call in order
to communicate to the server the MDF graph cur-
rently being executed, and eventually enters a loop. In
the loop body the thread fetches a fireable instruc-
tion from the taskpool,8 asks the remote server to
compute the MDFi by issuing a remoteexecute
method call and deposits the result in the task pool
(seeFig. 4).

The MDF graph obtained from theJSkeletons
object used in theevaluator. setProgram( )
call can be processed unchanged or a set of opti-
mization rules can be used to transform the MDF
graph (using thesetOptimizations( ) and

8 Using properTaskPool synchronized methods.

resetOptimizations( ) methods of theSke
class). Such optimization rules implement the “nor-
mal form” concept outlined inSection 3.

As the skeleton program is provided by the pro-
grammer as a single (possibly nested)JSkeletons
object, Java reflection features are used to de-
rive the MDF graph out of it. In particular, re-
flection and instanceOf operators are used to
understand the type of the skeleton (as well as
the type of the nested skeletons). Furthermore,
the Object[ ] getSkeletonInfo private
method of theJSkeletons abstract class is used
to gather the skeleton parameters (e.g. its “body”
skeleton). Such method is implemented as a simple
return(null) statement in theJSkeletons ab-
stract class and it is overwritten by each subclass (i.e.
by the classesFarm, Pipeline, etc.) in such a way
that it returns in anObject vector all the relevant
skeleton parameters. These parameters can therefore
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be inspected by the code building the MDF graph.
Without reflection much more info must be supplied
by the programmer when defining skeleton nestings
in the application code[14].

6. Experiments

In order to assess Lithium performance, we per-
formed a set of experiments on a Beowulf class Linux
cluster operated at our department, as well as on a set
of “production” workstations available at our depart-
ment.

The cluster based experiments were aimed at
demonstrating Lithium performance features, mainly.
The cluster used for the experiments hosts 17 nodes:
one node (backus.di.unipi.it) is devoted to
cluster management, code development and user in-
terface. The other 16 nodes (ten 266 MHz Pentium

Fig. 7. Effect of grain on efficiency.

II and six 400 MHz Celeron nodes) are exclusively
devoted to parallel program execution. All the nodes
are interconnected by a (private, dedicated) switched
Fast Ethernet network.backus is a dual hosted node
and provides access to the rest of the cluster node
from Internet hosts. All the experiments have been
performed using Blackdown JDK ports version 1.2.2
and 1.3.

First of all we considered the overhead introduced
by serialization. As data flow tokens are dispatched to
remote executor processes exploiting plain Java seri-
alization, and as we use JavaVector objects to hold
tokens, we measured the size overhead of theVector
class. The experiments showed that serialization does
not add significant amounts of data to the real user
data (<10%) and therefore serialization does not cause
significant additional communication overhead.

Second, we measured the Lithium applications ab-
solute completion time. Typical results are drawn in
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Fig. 8. Medical image segmentation application: screen snapshot.

Fig. 5. The plot shows that Lithium support scales. The
graph actually refers to a skeleton version of a Mandel-
brot benchmark, but we achieved similar results also
with simple numerical applications. The completion
times (ideal and measured) show an additional decre-
ment from 10 nodes onwards, as the 11–16th nodes
are more powerful that the first 10 nodes and there-
fore take a shorter time to execute sequential portions
of Java code.

Third, we measured the impact of normal form
optimizations, exploiting the possibility provided
by Lithium of asking the execution of either the
original program or the (automatically derived)
normal form one.Fig. 6 plots the differences in
the completion time of different applications exe-
cuted using normal and non-normal form. As ex-
pected normal form always performs better that
non-normal form. The good news are that it performs
significantly better andscales better (non-normal
form program stops scaling before normal form
ones).

In addition, we measured the effect of computa-
tional grain of MDFi on efficiency (Fig. 7).9 Computa-
tional grain represents the average computational grain
of MDFi. grain = k means that the time spent in the
computation of MDFi isk times the time spent in de-
livering such instructions to the remote servers plus the
time spent in gathering results of MDFi execution from
the remote servers (via plain Java RMI). Experimen-
tal results showed that efficiency is always more than
90% when grain is higher than 100 (roughly). When
average grain is under 100 efficiency falls under 90%
already when three processing elements are used for
program execution and continues to decrease rapidly
as more and more processing elements are used.

We also performed experiments using a real appli-
cation. We considered a medical application rendering

9 As usual, we define efficiency (ε) asε = Tseq/(nTpar(n)), where
Tseq represents the sequential execution time,n is the parallelism
degree andTpar(n) the time spent in the execution of the parallel
program with parallelism degreen.
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Fig. 9. Results with the medical image segmentation application.

mammography images. Images come from patient
analysis. First, a set of images is taken, each represent-
ing a breast slice, more and more distant from patient
ribs. Then some series of similar images are taken after
the ignition of a contrast liquid. Overall a single, com-
plete examine consists of about 100 images. Each im-
age must be properly segmented in order to evidentiate
the interest zones (i.e. zones where cancer may be dis-
covered).Fig. 8 shows one of such images in a video
snapshot taken from our Java segmentation applica-
tion. The rendering of an image set takes about 10 min
on a 266 MHz Pentium II Linux box.Fig. 9shows the
times achieved using Lithium on our cluster. The ap-
plication perfectly scales10 and efficiency is constantly
over 90% in this case.Fig. 10plots efficiency of seg-
mentation application. Superscalar efficiency in the

10 The data is relative to normal form execution. The application
is a farm with three stage workers.

right part of the plot is due to the fact that sequential
times are taken onto the Pentium processors (proces-
sors from 1 to 10) and processors 11–16 happen to be
faster.

With the medical image (Fig. 11) segmentation code
we also performed experiments on our department pro-
duction workstations, in order to assess the load bal-
ancing policies of the MDF execution mechanism. The
production workstations used range from 233 MHz
Pentium II Linux boxes to dual 450 MHz Pentium
III and 1.6 GHz Pentium IV Linux workstations. All
the machines are interconnected by means of a plain
10 Mb (not switched) Ethernet network that happens
to be very busy all the time.

The first result is that using faster machines Lithium
achieves better completion times. The processing of
100 images took about 1.71 min on our 266 MHz Pen-
tium II cluster on six PEs, while using six faster pro-
duction workstations (three 1.2 GHz Pentium IV, two
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Fig. 10. Efficiency of medical image segmentation application. The efficiency is figured out with respect to the sequential execution time
computed on the slower processors (PE∈ [1, 10]).

450 MHz Pentium III and a single 233 MHz Pentium
II machine) the same processing took only 0.85 min.

The second result concerns load balancing.Fig. 12
shows the number of task executed by each work-
station along with workstation bogomips (the rough
performance measure taken by Linux kernel at boot
time) and load (measured withuptime during the
experiments). It is clear that load balancing has been
achieved in that slower, more loaded workstation par-
ticipated in the computation by computing a smaller
number of tasks with respect to faster, unloaded work-
stations.

7. Related work

Despite the large number of projects aimed at pro-
viding parallel programming environments based on

Java, there is no existing project concerning skeletons
but the CO2P3S one [21,26]. Actually this project
derives from the design pattern experience[27]. The
user is provided with a graphic interface where he can
combine different, predefined parallel computation
patterns in order to design structured parallel appli-
cations that can be run on any parallel/distributed
Java platform. In addition, the graphic interface can
be used to enter the sequential portions of Java code
needed to complete the patterns. The overall environ-
ment is layered in such a way that the user designs
the parallel application using the patterns, then those
patterns are implemented exploiting a layered im-
plementation framework. The framework gradually
exposes features of the implementation code thus al-
lowing the programmer to perform fine performance
tuning of the resulting parallel application. The whole
object adopt a quite different approach with respect
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Fig. 11. Medical image processing application skeleton.

to our one, especially in that it does not use any kind
of MDF technique in the implementation framework.
Instead, parallel patterns are implemented by process
network templates directly coded in the implementa-
tion framework. However, the final result is basically
the same: the user is provided with an high level

Fig. 12. Load balancing on production, heterogeneous processing
elements. First row reports workstation bogomips. Rows 2, 3 and
4, 5 are relative to a six PE and a four PE run (100 tasks),
respectively.

parallel programming environment that can be used
to derive high performance parallel Java code running
on parallel/distributed machines.

MDF implementation techniques have also been
used to implement skeleton based parallel program-
ming environments by Serot in the Skipper project
[12,28]. Skipper is an environment supporting skeleton
based, parallel image processing application develop-
ment. The techniques used to implement Skipper are
derived from the same results we start with to design
Lithium, although used within a different program-
ming environment (the whole Skipper environment
is written using Ocaml, the ML implementation from
INRIA).

8. Conclusions and future work

We described a new Java parallel programming
environment providing the programmer with simple
tools suitable to develop efficient parallel programs
on workstation networks/clusters. Lithium is the first
skeleton based parallel programming environment
written in Java and implementing skeleton parallel
execution by using MDF techniques. We performed
experiments that demonstrate that good scalability and
efficiency figures can be achieved. Lithium has been
released as open source and it is currently available
as open source athttp://massivejava.sourceforge.net.
Our group is currently investigating the possibility to
add two new features to Lithium: on the one hand,
we plan to introduce in Lithium all the security fea-
tures needed to use it on wide area networks (e.g.
the Internet). Workstation clusters represent a sort of

http://massivejava.sourceforge.net


M. Aldinucci et al. / Future Generation Computer Systems 19 (2003) 611–626 625

“protected” environment, therefore we have imple-
mented no particular security policy (e.g. to check
the accesses performed on the RMI servers acting
as MDFi executors in Lithium). On the other hand,
we plan to replace the current centralized MDFi task
pool repository of Lithium by adistributed reposi-
tory, to avoid bottlenecks in the fireable instruction
accesses.
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