
Text Detection from Scene Images Using Sparse Representation

Wumo Pan
CENPARMI

Concordia University

wumo pan@cs.concordia.ca

T. D. Bui
Dept. Computer Science

Concordia University

bui@cse.concordia.ca

C. Y. Suen
CENPARMI

Concordia University

suen@cenparmi.concordia.ca

Abstract

A sparse representation based method is proposed
for text detection from scene images. We start with edge
information extracted using Canny operator and then
group these edge points into connected components.
Each connected component is labeled as text or non-text
by a two-level labeling process: pixel level labeling and
connected component labeling. The core of the labeling
process is a sparsity test using an over-complete dictio-
nary, which is learned from edge segments of isolated
character images. Layout analysis is further applied to
verify these text candidates. Experimental results show
that improvements in both recall rate and detection ac-
curacy in text detection have been achieved.

1 Introduction

Text detection and recognition from scene images is
a very challenging problem and is attracting more and
more research effort from the document image analysis
community.

Many successful text detection methods have been
published up to now. These methods can be roughly di-
vided into three groups: methods that focus on edge ex-
traction and analysis, methods exploiting texture prop-
erties of text and methods that mainly make use of color
information. Complete survey can be found in [2, 7].
There are also hybrid methods [3, 6] that use differ-
ent combinations of the above mentioned three types of
information. In [4], AdaBoost algorithm is applied to
train a cascade classifier. This method is very efficient
and achieves good text detection performance.

In this paper, we propose a method to detect text re-
gions by means of the sparse representation, which will
be described in detail in sections 2 and 3. The proposed
method starts with an edge map of the image. The ratio-
nale behind the proposed method lies in that: 1) char-
acter boundaries can most of the time be captured as

edge points, since advertisements tend to make the text
somehow distinct from the background so that the text
can be easily noticed and read by human beings; 2) hu-
man can easily tell where the text lies by only looking
at the edge map of an image.

What makes the human vision system capable of text
detection using only edge information? In their research
[9], Olshausen and Field suggested that the human vi-
sual system is more likely working in an over-complete
and sparse way. On the one hand, it has a huge amount
of visual neurons (mathematically, this corresponds to
an over-complete dictionary). On the other hand, only
a few neurons (this means sparsity) are excited in order
to capture essential information from the scene.

In this paper, we follow this idea and formulate the
text detection problem as a sparsity testing problem. We
first build an over-complete dictionary that gives sparse
representation to edge segments from characters only.
With such a dictionary, text detection would be straight
forward: we just label those connected components that
can be sparsely represented by the dictionary and dis-
card all other connected components that require a non-
sparse representation.

In the following, we describe how to build an over-
complete dictionary for edge segments from characters
in section 2. Details of the proposed method are pre-
sented in section 3. Experimental results are given in
section 4, and section 5 concludes this paper.

2 Learning Over-complete Dictionary for
Text

The core of the proposed method is to find an over-
complete dictionary for text or characters. Many trans-
forms, such as Gabor transform, wavelet transform,
ridgelet transform and curvelet transform etc., can be
used to give sparse representations for different types
of signals. However, these transforms are not readily
applicable in our situation, where we try to identify text
connected components from the edge map of a given

978-1-4244-2175-6/08/$25.00 ©2008 IEEE

image. Actually, to search for sparse representation of
given signals is a difficult problem and is still an active
research topic.

Instead of applying those transforms mentioned
above, we turn to methods that can learn the over-
complete representation from data. The method we use
here is the K-SVD algorithm [1], which is faster in
learning when compared with other sparsity searching
algorithms.

2.1 The K-SVD Algorithm

In this subsection, we briefly introduce the K-SVD
algorithm. Suppose we are given the data (or observa-
tions of the interested signal) represented by the n×N
matrix Y , where each column corresponds to an obser-
vation. We are looking to learn an over-complete dic-
tionary D (D ∈ Rn×K with K > n) so that

Y = DX (1)

and each column ofX is as sparse as possible. Each col-
umn of D is also called an atom. This goal is achieved
by solving the following constrained optimization prob-
lem:

min
D,X
{‖Y −DX‖2F } subject to ∀i, ‖xi‖0 ≤ T0, (2)

where ‖x‖0 gives the number of non-zero components
in the vector x, xi is the i-th column of the matrix X
and T0 is a threshold specifying the maximum number
of non-zero coefficients needed for the representation.
It is enforced to make sure that the learned dictionary
D would give sparse representation to the data in Y .
The notation ‖ · ‖F stands for the Frobenius norm.

In [1], problem (2) is solved iteratively. First, the
dictionary D is assumed to be fixed and the algorithm
tries to find sparse coefficients X . Since the penalty
term can be rewritten as

‖Y −DX‖2F =
N∑

i=1

‖yi −Dxi‖22, (3)

problem (2) can be decoupled into N distinct problems
of the form

min
xi
{‖yi −Dxi‖22} subject to ‖xi‖0 ≤ T0, (4)

for i = 1, 2, ..., N.

These problems are then solved using orthogonal
matching pursuit (OMP) method [10].

The second part of K-SVD algorithm is to update the
dictionary D. This update process is performed column
by column, using singular value decomposition (SVD).

The iteration procedure continues until the algorithm
converges. When the over-complete dictionary D is
available, the sparse representation of any observation
can be found by OMP.

2.2 Application of K-SVD to Text Detection

To train an over-complete dictionary for text signals
using K-SVD algorithm, we need to first collect some
data for training. It would be extremely tedious to man-
ually collect data from real scene images. Therefore,
we use images of isolated machine-printed characters,
which include 10 digits and lowercase and uppercase
letters. There are 12 typefaces (such as Times New Ro-
man, Arial, etc.) 4 styles (normal, bold, italic and bold
italic) and 2 size variations (11 point and 8 point) in
these images. Data were collected by the following pro-
cedure:

1. Generate the edge map for each character image
using Canny operator.

2. Scan each edge map with a small window of size
16 × 16. If a long enough edge segment (with a
length longer than 16) falls into the small scanning
window, we generate a new observation by doing
the following: initialize with zero a new image of
the same size as the scanning window; center the
edge segment into this image; convert this image
to a vector by concatenating its rows.

3. The newly generated observation is added into the
observation set if it is significantly different from
other observations already in the set. The dif-
ference between observations is measured by Eu-
clidean distance between vectors.

In total, we have collected 12278 observations from the
edge maps of these isolated character images. On the
left of Fig.1, we give some examples of the observations
we used for dictionary learning.

It would be tempting to use the whole character edge
map as one observation. This idea does not work well
because it usually results in long observation vectors
and would take the K-SVD too much time to learn.
Therefore, instead of working on the whole edge map,
we only look at the curve segments on the edge of char-
acters.

We also need to pay attention to the size of the slid-
ing window. If it is too large, again it will generate
very long observation vectors and thus increase the dif-
ficulty in learning. If it is too small, the curve segments
would not bear too much character shape information
and therefore become not so useful in text detection. In

Figure 1. Left: Examples of the obser-
vations taken from character edges for
learning the dictionary. Right: The most
frequently used atoms learned by K-SVD.

our experiments, we found that 16×16 is the best trade-
off.

Another important point is that we need to center the
edge segment in the newly generated image. This is be-
cause the learned dictionary D is not shift-invariant: it
will give quite different representations to shifted ver-
sions of the same observation. Therefore, in both data
collecting and text detection, we explicitly center the
edge segment at the center of the small image patch.

In applying the K-SVD algorithm, there are two im-
portant parameters we need to choose: the redundancy
factor Rf and the number of elements in each linear
combination, or T0. These values are chosen empir-
ically so that good text detection performance can be
achieved. Details of the parameter selection process
will be discussed in the experimental results section.

3 Text Detection via Sparse Representa-
tion

When an image is given, we first extract the edges
using Canny edge detector and then group these edge
points into connected components (CC). CCs corre-
spond to long lines are removed.

3.1 Connected Components Labeling

The labeling procedure actually consists of two
stages: pixel level labeling and connected component
level labeling. At the pixel level labeling, the edge map
is scanned using a 16 × 16 window in a similar way as
we scan the character edge map in data collecting. The
scanning step is set to 4 pixels in both directions. If a
long enough edge segment (with a length longer than
16) falls into the small window, we generate an obser-
vation vector y as we have done in data collecting and

we solve for x in the following equation using OMP:

y = Dx (5)

Here D is the over-complete dictionary we have
learned. If x is sparse enough , we label pixels on this
edge segment as text. By saying sparse enough, we
mean that x has at most T1 = 16 non-zero components.
This number is empirically chosen based on a dataset
of 120 real scene images. The results of this pixel level
labeling on three sample images are shown in Fig.2.

At connected component level labeling, we label
each connected component as text if more than 25 per-
cent of its points have been labeled as text at pixel label-
ing stage. Here we intentionally choose a low threshold
to avoid missing true text components.

3.2 Layout Analysis

After the labeling procedure, we apply layout anal-
ysis to filter out some of the possible false detections.
We merge horizontally neighboring CCs with similar
size into a structure called “Line”. After this line grow-
ing procedure, we will discard those short LINEs (with
fewer than 3 CCs) unless they have more than 80 per-
cent of the edge points been labeled as text at pixel level
labeling stage.

The detected text LINEs are shown in Fig.2. In these
examples, we draw the bounding box of each LINE to-
gether with the bounding boxes of the connected com-
ponents inside that LINE.

4 Experimental Results

A database of 120 scene images has been col-
lected to help us in selecting the parameters used
in the proposed method. To evaluate the pro-
posed method, we use the 2003 ICDAR (Interna-
tional Conference on Document Analysis and Recog-
nition) Text Location Contest trial test database,
which is publicly available and can be downloaded
at http://algoval.essex.ac.uk/icdar/Datasets.html. In-
cluded in this database are 251 images and the ground
truth of the word bounding boxes of all the target texts
in these images.

The evaluation is based on the notions of precision
and recall. Precision, p, is defined as the number of
correct word detection divided by the total number of
detection. Recall, r, is defined as the number of correct
word detection divided by the total number of the word
in the ground truth.

As mentioned above, we have experimentally se-
lected two main parameters in the K-SVD algorithm:

(a) Example A.

(b) Example B.

(c) Example C.

Figure 2. Some examples generated by
the proposed method. In each example,
the top left gives the input grayscale im-
age; the top right gives edge map gener-
ated by Canny operator; the bottom left
gives the pixel level labeling results; the
bottom right gives the text LINEs detected
after layout analysis.

(a)

(b)

Figure 3. (a) Recall rate of the proposed
algorithm under different parameter set-
tings. (b) Precision of the proposed algo-
rithm under different parameter settings.

the redundant factor Rf and the sparse threshold T0.
Let Rf ∈ {1, 2, 3, 4, 5} and T0 ∈ {6, 7, 8, 9, 10}. We
have exhaustively tried all combinations of these two
parameters on the training dataset and the performance
of these experiments are shown in Fig3.

From these experiments, we can see that as the re-
dundant factor Rf grows, the recall rate also grows.
However, the difference between Rf = 4 and Rf = 5
is not significant. If we fix the parameter Rf and let
T0 grow, the recall rate also increases, since more edge
points can be labeled as text. The situation is differ-
ent when it comes to the precision of text detection.
When Rf starts to grow, the precision grows too, but
very slowly. While Rf grows to 5, the precision even

Method p(precision) r(recall)
[8] 56.3% 64.3%
[5] 55.8% 68.9%

Proposed method 67.64% 75.23%

Table 1. Experimental results and compar-
ison.

starts to fall. For each fixed Rf , the precision gradually
starts to fall while T0 grows.

As the tradeoff between recall rate and detection pre-
cision, we choose T0 = 8 andRf = 4, which means we
have 1024 atoms in the dictionary. On the right of Fig.1,
we give some of the most frequently used learned atoms
when reconstructing the observations.

Even though many text detection methods can be
found in the literature, most of them report results on
private databases. To the best of our understanding,
only two methods [8, 5] have reported their results on
the public database adopted in this paper. In [8], three
algorithms have been investigated. The first method is
composed of gray value stretching and binarization by
an average intensity of the image. The second method
is a Split and Merge approach which is one of the well-
known algorithms for image segmentation. The third
one is a combination of the two methods. In the fol-
lowing comparison, results of the third method are re-
ported. In [5], low-level image features and high-level
text stroke features are combined hierarchically and
SVM is applied for final verifications. We include these
results together with ours in Table 1.

5 Conclusion

In this paper, a text detection method based on sparse
representation is proposed. This idea is inspired by the
result from vision research. Experimental results show
that such a mechanism could be an interesting compu-
tation model for text detection in images. It is also pos-
sible to apply this model to other object detection prob-
lems. Our future research also involves applying this
idea to pattern recognition problems, such as handwrit-
ten numeral recognition.

References

[1] M. Aharon, M. Elad, and A. Bruckstein. The k-svd: An
algorithm for designing of overcomplete dictionaries for
sparse representation. IEEE Trans. Signal Processing,
54(11):4311–4322, 2006.

[2] D. Chen and J. Luettin. A survey of text detection and
recognition in images and videos. RR-00-38, IDIAP,
2000.

[3] X. Chen, J. Yang, J. Zhang, and A. Waibel. Automatic
detection and recognition of signs from natural scenes.
IEEE Transactions on Image Processing, 13(1):87–99,
2004.

[4] X. Chen and A. L. Yuille. Detecting and reading text in
natural scenes. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition, 2004.

[5] Y. Choi. Scene text extraction in natural images using
hierarchical feature combining and verification. In the
2nd KAIST-Tsinghua Joint Workshop on Pattern Recog-
nition, pages 76–102, 2003.

[6] J. Gao and J. Yang. An adaptive algorithm for text de-
tection from natural scenes. In Proceedings of IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, volume II, pages 84–89, 2001.

[7] K. Jung, K. I. Kim, and A. K. Jain. Text information ex-
traction in images and video: a survey. Pattern Recog-
nition, 37:977–997, 2004.

[8] J. Kim, S. Park, and S. Kim. Text locating from natural
scene images using image intensities. In Proceedings of
eighth International Conference on Document Analysis
and Recognition, volume 2, pages 655–659, 2005.

[9] B. Olshausen and D. Field. Sparse coding with an over-
complete basis set: a strategy employed by v1? Vision
Research, 37:3311–3325, 1997.

[10] J. A. Tropp. Greed is good: Algorithmic results
for sparse approximation. IEEE Trans. Inf. Theory,
50(10):2231–2242, 2004.

