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Abstract

Many approaches to moving object detection for
traffic monitoring and video surveillance proposed in the
literature are based on background suppression methods.
How to correctly and efficiently update the background
model and how to deal with shadows are two of the more
distinguishing and challenging features of such
approaches. This work presents a general-purpose
method for segmentation of moving visual objects (MVOs)
based on an object-level classification in MVOs, ghosts
and shadows. Background suppression needs a
background model to be estimated and updated: we use
motion and shadow information to selectively exclude
from the background model MVOs and their shadows,
while retaining ghosts. The color information (in the HSV
color space) is exploited to shadow suppression and,
consequently, to enhance both MVOs segmentation and
background update.

1. Introduction

Detection of moving objects in video streams is the
first relevant step of information extraction in many
computer vision applications, including traffic
monitoring, automated remote video surveillance, and
people tracking. A common goal to these applications is
robust tracking of objects in the scene, requiring to be
based on a reliable and effective moving object detection.

This work proposes a novel approach for detection of
moving objects in video streams (moving visual objects,
or MVOs for short hereafter) in unconstrained indoor and
outdoor video scenes. The approach is meant to be
general purpose and is based on three assumptions:
§ the background and the camera are assumed to be

stationary;
§ background changes are due to two factors: a) light

condition variations (e.g. clouds covering the sun in

outdoor scenes or lights turned on or off in indoor
scenes); b) objects that modify their status from
stopped to moving or vice versa;

§ object segmentation is assumed model-independent:
thus, we deal with different object classes (vehicles,
pedestrians, bicycles, and so on) whatever their
motion, trajectory and speed. Thus, our approach
cannot be based on frame difference, where the frame
rate must be carefully tuned in dependency on the
object speed. At the same time, motion models
cannot be exploited.
Starting from these assumptions, we focussed our

attention on moving object detection based on
background suppression. By this approach, an estimate of
the background (also called a background model) is
computed and evolved frame by frame: moving objects in
the scene are detected by the difference between the
current frame and the background model.

A typical problem arises from the changing nature of
the background, as stated by assumption 2. First, there
must be a trade-off between high responsiveness to
changes and reliable background model computation.
Second, the model must deal with erroneous "ghost"
detection: when objects belonging to the background start
to be in motion, they will be displaced with respect to
their original position and the background subtraction will
detect relevant differences in two areas: the area where
the object is currently located, and the area where the
objects was originally. This second area is commonly
referred to as a ghost (see for instance [2][3]), since it
does not correspond to any real moving object.

Another problem arising in object segmentation is
related to shadows. Indeed, we would like the moving
object detection not to classify shadows as belonging to
foreground objects. Unfortunately, points of objects and
associated shadows share two important visual features:
motion and detectability. Thus, whatever the background
update, often the moving points of both objects and
shadows are detected at the same time and grouped



together. As a consequence, the appearance and
geometrical properties of the object are distorted. This
problem affects many subsequent tasks, such as object
classification and the assessment of moving object
position (normally accounted as the shape centroid), as,
for instance, in traffic control systems that must evaluate
trajectories of vehicles and people on a road. Moreover,
the probability of object undersegmentation (i.e. object
merging) increases due to connectivity via shadows
between different objects [4]. In order to eliminate these
drawbacks, we have defined an approach for shadow
detection and suppression based on a color analysis in the
HSV space.

This work proposes a novel approach that fully
exploits both motion and color information to detect
moving objects, shadows and ghosts and exploit their
knowledge for good detection and good background
update.

The remainder of this paper is organized as follows.
Section 2 briefly reviews some related work on the topic
of moving object detection in video streams. In Section 3,
an overview of the approach and its ability to recognize
moving objects, shadows and ghosts are provided. The
novelties in the background update and shadow detection
methods are detailed in Sections 4 and 5, respectively.
Finally, a system prototype and its possible applications
are outlined and discussed in Section 6.

2. Related work

A large literature exists concerning moving object
detection in video streams, typically conceived as the first
step of applications such as traffic control and video-
surveillance. Many different approaches have been
proposed including frame difference [5], double frame
difference [6][7], and background suppression. The
background suppression approach requires a
computationally expensive background update, but is
more general, and thus we focus on it in the following.
Many works propose to perform the background update
by using statistics functions on a sequence of the most
recent sampled frames: for instance in [8] a mean function
is used, in [9] the mode, in [3] multiple Gaussians.
However, in order to correctly estimate the background
model, a rather large frame sequence must be used. Other
works propose to combine the statistics on the frame
sequence with previous values of the background model
(we will call these proposals adaptive methods for the
sake of briefness): in [10] the use of a Kalman filter is
suggested, while in several other papers a weighted
average of the previously computed background and the
current frame(s) (such as in [11]) is used, requiring a
limited computational load.

Since MVOs are not part of the background, their
inclusion in the background update function leads to
errors. However, most of the aforementioned methods
considers indifferently pixels belonging to MVOs and
other pixels. In order to solve this deficiency, some
methods propose to exclude from the background update
pixels detected as moving points; we call these methods
selective background update [3][1]. However, the use of
selectivity carries a further problem, associated with
ghosts: if ghosts are excluded from the background
update, the background will never be correctly estimated,
and ghosts will be permanently detected. This problem is
referred to as deadlock[12]. To solve this problem, in [3]
a verification step is introduced to check if pixels are
really points in motion. In this work, we propose to
perform this verification on the whole object containing
the pixel, since the information on the whole object seems
more reliable from the experiments performed.

Methods for detecting shadows have been proposed
in a number of recent papers. In [13], an approach is
proposed for extracting shadows from still images, which
could be applied also to video streams, by analyzing each
single frame separately. Other works, instead, propose
methods for shadow detection based on the difference
between the current frame and a reference frame. In [14],
a method is proposed for traffic scenes: first, the
background is suppressed from the current frame, then
shadows are separated by looking either for vertical or
horizontal edges, depending on the road, date, and day
time. Therefore, the approach may not be easy to apply
where this information is not available, like in indoor
scenes. In [15], the authors propose to compute the ratio
of the luminance between the current frame and the
previous frame; a point is marked as shadow if the local
variance of this ratio is small (this criterion is then
followed by further validation). In [3], too, the ratio of the
luminance the current frame and the background model is
exploited. An improvement of this method is proposed in
[1] based on the observation that shadows are
semitransparent, retaining features of the covered surface
such as patterns, color, textures; therefore, the authors
propose an analysis of the chromaticity in the {R,G,B}
color space. In this work a novel shadow detection
approach is presented, similar to [1], but based on an
analysis in the {H,S,V} color space, which seems more
intuitive.

3. Detecting objects, shadows and ghosts

The goal of the process we propose is twofold. The
first aim is to achieve good detection, meaning that we
want to detect real moving objects correctly, separating
them from their cast shadow. The separation is not carried



out in terms of model-based object recognition, nor it is
eased by assumptions on the light source position and
light direction. Instead, shadow detection is based only on
a syntactic discrimination between the "appearance" of
shadows and objects in terms of both luminance and
color. The second aim is to detect moving objects only,
without confusing them with apparently moving areas,
static objects, or noise, with the maximum responsiveness
possible. Since we segment objects by means of
background subtraction, this means a good background
model and update, i.e., the definition and the dynamic
modification of the background should be accurate and
quickly updated.

Figure 1. Object classification

To these aims, according with Fig. 1 we give the
definitions of:

Moving visual object (MVO): is a target object that
can be obtained by an ideal segmentation, i.e. the set of
the connected points belonging to an object currently
characterized by non null motion and a visual appearance
different from the background. Conversely,

Background: is the set of scene points currently not
in motion.

Among background points, we further distinguish:
Ghost: is a set of connected points, detected as in

motion but not corresponding to any real moving object.
Shadow: is a set of connected background points

modified by a shadow cast over them by a moving object
(note that we do not consider static cast shadow, i.e.
points shadowed by fixed objects, that are included in the
generic set of background points).

Eventually, shadow can further be classified as MVO
shadow, that is a shadow connected with an MVO, thus
sharing its same motion, and Ghost shadow, i.e. a shadow
not connected with any real MVO.

For instance, in the indoor scene of Fig. 2 a person
passes away, after having opened a cabinet door. By
simple background subtraction, all points in the right

image are detected. The rightmost blob corresponds to the
correct MVO (in grey) and its shadow (in black); the blob
in the middle (in grey) is a ghost, with its shadow (in
black) detected because the door of the cabinet is open in
the current frame but still closed in the background model

Figure 2. Example of image point classification
in an indoor scene

Why have we outlined this classification? Because
we state that both good detection and good background
update can be achieved only if knowledge of all five
categories is exploited explicitly.

For good detection, the need for shadow detection is
obvious. The lack of separation between MVOs and
MVO shadows causes two possible errors: the first one,
unavoidable, is that the object shape is distorted and all
geometric proprieties associated with MVOs are affected
by errors; the second is that, due to shapes, more separate
objects can be merged in a single blob, causing errors in
further identification and tracking steps. Moreover, a
good detection must be able to discriminate MVOs from
“false positives”, such as ghosts. Therefore,
discriminating shadows, ghosts, and MVOs is needed for
good detection. It is useful also for robust background
update, as will be outlined in the next section.

4. Background modeling and update

According with most of the recent literature, we
adopt a background model computed at every new frame
as a statistical combination of a sequence of previous
frames and the previously computed background. We
assume the background points to be those image points
more frequently (in a statistical sense) observed as still.
The statistical function chosen is the median: in [1] we
compared median with the mean and mode functions and
we experimentally proved that median performs well even
with limited length of the sequence of previous frames.
This method has some weak points: if the observation
time window is limited, points of moving objects could be
included in the background; on the contrary, due to the
non null time window, the update process is slow and
many false positives arise. In order to limit this effect,
some authors propose to use selectivity [3][1], by
excluding points detected as moving from the background
update. However, wrong selection may lead to deadlock
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problems. Therefore, the approach we propose is the
following:
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In order to exploit selectivity, we do not include in
the background update process those points belonging to
both MVOs and their MVO shadows. Instead, points
belonging to ghosts or ghost shadows are correctly
included in the background update by means of the
function f, which computes, for each (x,y) point, the
median value between values in previous frames and in
the current background.

The complete process is described in Fig. 3. After an
initial camera motion correction, the system selects
foreground points by means of background suppression.
These points are candidate to belong to MVOs since they
are different from the current background. In order to
improve detection, background suppression is computed
by taking into account point chromaticity and not in gray
levels only [17]. We compute the difference with the
background DBt1 as the distance in the RGB color space
as:
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 On the difference image DBt, the selection of the
initial set of foreground points is then carried out by
thresholding with an adequately low threshold TL.
Among the selected points, some are discarded as noise
and included in the background, by applying
morphological opening operators. Then, the shadow
detection process is applied and other points are labeled
as shadow points and separated from the set of foreground
points. A region-based labeling is performed to compute
the connected blobs of candidate moving points (by
means of 8-connectivity). Finally, blob analysis validates
detected blobs as either moving visual objects or ghosts.

MVOs are validated with rules on area, saliency and
motion. First the area must be large enough  (greater than
a TA threshold depending on the scene and on the signal-
to-noise ratio of the acquisition system); then, the blob
must be a "salient" foreground. In practice, we use a
double threshold for foreground points: the previously
defined TL  select many candidates, while a higher
threshold, TH, confirms only “strong” foreground and
points connected, discriminating fortuitous noise
aggregation. Finally, the third rule for MVO validation is
the average blob motion. To measure motion, for each

                                                
1 Bold notation means vector variable in the RGB color space; each
value referred on a single color band is indicated by a dotted suffix.

pixel belonging to an object we compute the spatio-
temporal differential equations for optical flow
approximation. The average optical flow computed over
all the pixels of an MVO is the measure we use to
discriminate between MVOs and ghosts: in fact, ghosts
have a near-to-zero optical flow, since their motion is
only apparent, resulting from erroneous background
values. Optical flow is very time consuming; however, we
compute it only when and where necessary, i.e. only on
the blobs resulting from background suppression (a small
percentage of image points, as reported in Table 1). This
allows us to achieve real time performance with standard
PC hardware and, at the same time, to obtain a significant
measure of motion in the scene (useful for example to
compute the average object speeds).

Figure 3. The control flow path
Validated MVOs are excluded from background

update. The same validation should be carried out for
shadow points, too, in order to select those corresponding
to moving shadows, that must similarly discarded from
background update. However, computing the optical flow
is not reliable on uniform areas such as shadows, which
typically do not exhibit high average optical flow. In fact,
the spatial difference in the equation is nearly nullified
because shadow smoothes and uniforms the luminance
values of underlying background. Therefore, in order to
discriminate MVO shadows from ghost shadows we use
information about connectivity between objects and
shadows: shadows 8-connected to MVOs are classified as
moving and finally associated with foreground points;
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remaining shadows are reintroduced in the background
update in the step named re-shadowing in Fig. 3.

The approach we proposed is independent from any
a-priori knowledge of the scene, in the sense that it works
at pixel level without exploiting any model-based
assumption on the scene, aiming to be general purpose.
By this approach, a stopped MVO is included in the
background after the update time. However, if the
application requires it, it is straightforward to  prevent
inclusion of stopped objects in the background, even if
they stay still for a high number of frames: objects
identified as MVO, can be considered MVO in successive
frames even if their intrinsic motion is null with an
arbitrary timeout.

In order to give evidence of the performance that can
be achieved with this approach, we have defined the two
performance metrics DR (Detection Rate) = TP/(TP+FN)
and FAR (False Alarm Rate) = FP/(TP+FP), where TP is
the number of the correctly detected MVO pixels, FN the
missed MVO pixels, and FP the background pixels
incorrectly detected as MVO pixels. In the ideal case, DR
should be 1 and FAR 0. We have implemented  the
approach described and tested on several different
sequences. In particular, we have devised a ground-truth
benchmark where a car is moving along a complex
trajectory, starting and stopping several times; on this
benchmark, we have measured a very high detection rate
DR = 0.988, with FAR = 0.019 only.

5.  Shadow detection

Shadow detection and suppression from the set of
foreground points aim to prevent moving cast shadows
being misclassified as moving objects, thus improving
object detection and limiting the risk of
undersegmentation. Detecting shadows is not trivial in
general. In fact, as deeply detailed in [4], the two classes
of points belonging to objects and shadows may have
similar visual appearance in many cases. This is quite
true, especially if working with grey level only. In [4], we
proved that the discrimination between shadows and
objects can be improved by adding color information.
Also in previous works in the literature (see for instance
[2]) the chrominance information was exploited.
However, in [4] we presented a novel approach based on
the exploitation of the HSV space to better distinguishing
shadows from objects, and reported results on detection
improvement. Our algorithm is based on the following
equation:

where SPt(x,y) is set to 1 if point It(x,y) is classified
as shadow, 0 otherwise.

Eq. 3 states that a point (x,y) is classified as shadow
if three properties hold: i) the ratio of the V component
(i.e., the lightness) of It(x,y) and Bt(x,y) respects both a
lower and a upper bound; ii, iii) the differences of the H
and S components (i.e., the chromaticity) are limited.The
rationale of the equation comes from the observation that
when an area is covered by a shadow, this often results in
a significant change in lightness without a great
modification of the color information. Thus, we upper-
bound the hue and saturation differences with a threshold
each, which values are deducted by many experiments,
and we impose the lightness ratio to be a value bound by
two thresholds α and β (with 0 < α < β < 1): the first one
takes into account the “power” of the shadow (the lower
the α value, the more the shadows are assumed to darken
the covered objects), while the second is used to increase
the robustness to noise (the lightness of the current frame
cannot be too similar to that of the background).

In order to assess performance of shadow detection,
we have segmented all the ground-truth MVOs from a
video sequence with strong shadows, and compared
against those extracted without and with shadow
suppression. On the sequence, we have measured two
parameters which could be exploited in the tracking
phase, namely the MVO area (in pixels) and centroid
position. The MVO area results 52.9.% greater than
ground truth on average without shadow suppression,
while 10,6% only by using shadow suppression. The
centroid position is about 4.6 pixels distant from that of
ground-truth MVO on average without shadow
suppression, and 1.9 only with shadow suppression, thus
proving the efficacy of the proposed approach.

6. Application

The method for detecting moving objects, shadows
and ghosts in video streams presented in this work is part
of a visual tracking system, that we called SaKbOT
(Statistic and Knowledge-based Object Tracker) system.
The system is composed of two main modules, one for
object detection described in the previous sections and the
other for object tracking. The information on the detected
MVOs (without shadow) extracted by the object detection
module is passed to a higher level module that
implements tracking using object-level history. The
object-level matching between objects in the scene and
objects in the past history is done by using a set of rules
working on a symbolic representation of objects as
feature vectors. Further details on the tracking module are
reported in [1]. This object-level abstraction allows to
reduce the computational load and to compensate for
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errors of the detection module by assessing object
consistency during time.

The SaKbOT system has been tested in a wide range
of different environments and applications: from video-
surveillance of the campus of University of Modena
(Italy), to traffic monitoring at intersections, aimed to
optimize traffic lights timings in a project of sustainable
mobility of the city of Bologna (Italy), to highway
incident detection at University of California, San Diego2.

Table 1 shows a variety of applications where our
MVO detection method has been experimented, including
traffic monitoring of urban areas and highways,
surveillance of parking zones, and indoor people
detection and tracking. These applications differ
significantly in terms of light conditions, and, as reported
in Table 1, density of objects in the scene, object size,
number of frames of object presence, thus proving that
the method can be rightly considered as general-purpose.

Application Sample frame Obj Size Pres

Shopping
center

(2300 frames
352x288)

140 1484 92

US highway
(440 frames

320x240)
70 3241 19

Parking area
(500 frames

345x135)

1 2456 490

Laboratory
(980 frames

320x240)
2 7228 48

Obj: total number of objects detected
Size: average MVO size in pixels
Pres: average number of frames of MVO presence

Table 1. Examples of application.

Typical parameters used in SaKbOT are n = 7 for the
length of the sequence of previous frames in the median
computation, sub-sampled one every ten; the weight wb
in Eq. 1 is posed equal to 2. All the thresholds are
empirically tuned, but they proved stable under
environment changes. The system runs on a standard PC
with images up to 352x288 pixels and achieve average

                                                
2 The authors wish to thank Prof. Mohan M. Trivedi and the staff of the
CVRR (Computer Vision and Robotics Research) Lab, at UCSD for
their support in testing the system.

performance close to 10 frames per second. For most
applications this can be considered real-time.
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