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et Télédétection
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ABSTRACT

Spectral decomposition of mesh geometry has first been intro-
duced by Taubin for geometry processing purposes. It has been ex-
tended to address transmission issues by Karni & Gotsman. Such
decompositions give rise to pseudo-frequential information of the
geometry defined over the mesh connectivity. For large meshes a
piecewise decomposition has to be applied in order to restrict the
complexity of the transform. In this paper, we propose to intro-
duce overlap for its spectral representation. We show visual gains
obtained in compression and progressive transmission of mesh ge-
ometry.

1. INTRODUCTION

Over the past decade, very fruitful efforts have converged to offer
tools devoted to the processing of meshes. Meshes are consid-
ered 2D surfaces defined in the 3D space. Applications using such
data range from collaborative design, art heritage and biomedical
to game industry. This paper reviews the mesh geometry spectral
decomposition. We improve the technique to progressive trans-
mission purposes.
Spectral decomposition has been used first for geometry compres-
sion by Karni and Gotsman[5]. They further improved their method
to achieve lower computational time by using fixed basis decom-
position. Unfortunately, in a progressive transmission point of vue,
these methods based on mesh partitioning lead to artifacts on the
borders of the submeshes. We extend their fixed basis concept to
introduce spatial overlapping in the spectral representation. How-
ever, state-of-the-art mesh compression[1] requires proper connec-
tivity encoding, which we do not address here.

2. SPECTRAL SPACE, MESH SPECTRUM AND BASIS
DECOMPOSITION

In this section we define how to compute the spectrum of the mesh
geometry by using the Laplacian operator. This may be seen as the
equivalent of the DCT for meshes. Taubin first originated this re-
search line when he was investigating filtering[9]. The foundations
of this representation relies on the fact that performing a Fourier
analysis is equivalent to diagonalize a Laplacian matrix. We first
have to define the local Laplacian operator for meshes, and then to
derive the transform equations.

2.1. Mesh geometry decomposition

Taubin[9] proposed an original way to apply Fourier analysis to
discrete 3D meshes by using the Laplacian operator, and Karni &
Gotsman[5] adapted it to compression purposes. Our work follows
this track. A mesh consists of a set � of � vertices ( � ������� )
and a set 	�
���
 of edges. The geometry is specified in Cartesian
coordinates ������������������
���� . In other words, geometry
is defined as three vectors (X, Y, Z) of dimension � defined on
every node of the mesh graph. One can add per-vertex or per-
face attributes such as color, transparency, texture, etc. We focus
here on geometrical data defined over the connectivity graph of the
mesh and do not treat the per-vertex attributes which could also be
transformed using this decomposition. Defining the star  "!$#"% of a
vertex &('*)�� as:+ &-,.)/� 01)2 "! # % 314 ��& ' �$&5,(�6)7	 (1)

and denoting 8 ' the degree of vertex & ' (i.e : 8 ' ���  9!:#(%;� ), Taubin
defines the Laplacian matrix of the mesh as the �=<>� matrix ?
of generic term:

? ' ,@�
ABC BDFE if !G�H0I 8KJML' if 01)2 "! # % and 8;'ON�QPP otherwise

(2)

The eigenvectors of ? form an orthogonal basis of �SR , so one can
consider the eigenvalues as pseudo-frequencies of the geometry
defined over the mesh graph1. These eigenvalues T ' �UP�VW!�V� I E � are bounded by P and X . The transformed vectors of the
geometry are obtained by projecting the three X, Y, Z vectors over
the basis functions. The eigenvalues are ordered by decreasing
magnitude. We thus obtain the following projection system:

8Y![Z;\F�[T"]"�5^_^`^_�aT R J�L �b�Qc JML ?*c (3)

The columns of c are the basis functions (eigenvectors of ? ) and
the columns of c JML are the dual basis functions. As a result of
the transform applied to � , we obtain three vectors of dimension
N called spectra or spectral components �[dO��ef��gh� :

di�jck���lem�Qc.���ngj�jc�� (4)

An exact reconstruction is performed by:

�o�Qc JML d6�n�p�jc JML e1�n�q�Qc J�L g (5)

1In the case of a 2D square mesh, the r ' , terms are equal to s , tOsau-v
and w providing a discrete approximation of the Laplacian operator.



Ohbuchi[8] proposed to use a Kirchhoff matrix[2] (also known as
combinatorial Laplacian) to derive the spectral information. Such
a matrix exhibits almost the same properties as Taubin’s one and
enables faster computations.

Fig. 1. Spectra (log scale) of the dark grey patch for models bunny
and fandisk (optimal basis).

2.2. Mesh spectra

The sum of the powers of the signal over the three pseudo-frequency
axis defines the power spectrum of the Laplacian of � (coefficients
sorted with respect to eigenvalues):

� ' ���-d ' � 
�� �-e ' � 
�� �ag ' � 
 �*PUV !bV � I E (6)

It is illustrated in Fig. 1 for two patches extracted from the models
bunny and fandisk.

3. FIXED BASIS DECOMPOSITION, PARTITIONING
AND OVERLAPPING

For large meshes (a typical limit today is about 500 vertices), the
computation of the eigenvalues may become unstable, and very
time-consuming. This computation is generally done in �1�[� � � ,
but it may be reduced to �1�[��� in the case of sparse matrices.
For these reasons, meshes have to be partitioned into several sub-
meshes (patches) . It is the case in Fig. 1 where the only patches
in dark grey are considered to compute the spectra. They are lim-
ited to 500 nodes. But, since the eigenvalues depend on the mesh
connectivity, one has to perform matrix diagonalization for every
patch. In order to improve the efficiency of the method, it may
be useful to perform the decomposition on a fixed basis for all
the patches. We use the same idea as in an earlier work[6]: a
Tutte projection[10] is performed to map the original geometry on
a fixed basis for every patch. In the following, we first describe
Tutte projection and vertex mapping, which are the two stages for
translating from arbitrary to fixed connectivity basis functions. Fi-
nally we complement this approach with the presentation of our
new patch augmentation scheme by spatial overlapping. Using
a fixed basis, we divided by 3 the overall processing time. This
comes from avoiding diagonalizing tens of �(P(P1<�� P P matrices.

3.1. Tutte projection

Changing the connectivity of a mesh into a fixed one is generally
a difficult problem. A Tutte projection allows to assign 2D co-
ordinates to vertices with respect to their connectivity. The Tutte
projection is an iterative process: the vertices of the patch border
are fixed on a circle, and 2D coordinates of the inner vertices are

updated until every vertex is at a fixed distance from the center of
mass of its neighborhood. This process converges to an equilib-
rium: the vertices are mapped on the disk while respecting their
connectivity. Finding a solution in the Tutte disk will translate
into a solution in the original connectivity representation. Such a
projection is also known as harmonic projection.

Fig. 2. Left: A patch after Tutte projection. The vertices are lo-
cated at the center of their neighbors. The vertices still have origi-
nal connectivity but they now have 2D-only coordinates. The grid
contains 196 vertices. Right: Regular grid on which to map the
Tutte projected vertices. The grid contains 196 vertices

3.2. Vertex mapping

The problem amounts to construct a one-to-one correspondence
between vertices of the Tutte projection and of a regular grid. To
assign every arbitrary connectivity to a fixed one is an assignment
problem which is known as bipartite matching. This may be turned
into a unit capacity flow problem. The costs of the bipartite graph
are the distances between a vertex in the Tutte projection and every
vertex in the regular grid. Several methods already exist to solve
this problem[3]. We choose the augmenting path algorithm[4],
which provides a solution within a couple of seconds for a 500-
vertices patch. To have a fixed basis, we just need to add a multi-
plication by a permutation matrix in the projective system (Eq. 3),
because vertex mapping only renumbers the vertices. This step
sets the overall decomposition algorithm complexity to �1�[� 
 �
(computation of distances between vertices of the Tutte projection
and those of the regular grid). The heuristic we used has shown to
perform within less than �1�[� 
 � .
The main advantage of this method is the use of only one fixed
basis for every patch, thus saving both memory and processing
time. However, the major drawback is that decorrelation is of
lower quality than if performed on the optimal basis. Since vertex
mapping changes the connectivity, the geometry is still well recon-
structed, but on an associated 6-regular connectivity. There is still
decorrelation, but it is not performed on the mesh original connec-
tivity. This drawback is well illustrated within the transmission
problem, where the quality of the progressive reconstructed mesh
is still significally improved up to the end of the bitstream.

3.3. Partitioning and patch augmentation by overlapping

For partitioning the mesh into patches, we initially used the MeTiS
software[7]. This general purpose approach takes the connectivity



Fig. 3. Patch augmentation by overlapping : in this exemple the
mesh is partitioned in 4 patches. The patch being augmented is
represented in dark grey. The vertices selected for the overlapping
on the neighboring patches are choosen in a spiral way as shown
by the arrows. The patch resulting from the augmentation is rep-
resented in dark and light gray.

into account regardless of the geometry2. This partitioning method
provides patches with approximately 400 vertices. A regular mesh
has an amount of vertices given by the square of an integer which
for small size patches leads to values like E � 
 � E ��� , E � 
 �mX(X � ,E � 
 ��X � � , etc. For computational reasons we fixed this num-
ber to X�� 
 � �(X � . Therefore we have to increase the amount of
vertices of any patch from some 400 or so 529. In their original
work[6], Karni and Gotsman introduce some new vertices located
in the center of existing triangles. This has no effect on the original
geometry.
We choose to augment the patches without any new vertex but
rather by adding vertices located in adjacent patches, thus yield-
ing redundancy in the representation because of the overlapping
between patches. Vertices are added in a spiral way as described
in Fig. 3 .
In practice, it turns out that the Laplacian operator tends to smooth
the geometry, preferably pushing the vertices in the interior of
the patches. With this added redundancy, acting like a LOT3 for
meshes, we improve the quality of the reconstructed mesh, at a re-
duced extra cost. Vertices belonging to more than one patch are
reconstructed by computing the mean of the geometrical values
from the patches they belong to.

4. MESH GEOMETRY COMPRESSION AND
PROGRESSIVE TRANSMISSION

In the previous section, it was explained how to decompose geom-
etry over the mesh connectivity and how to reconstruct it. From a
compression or transmission point of view, we have to make sure
that connectivity has already been decoded before beginning de-
coding any spectral coefficient. If connectivity is sent first, the
original patches yielding the basis functions may be easily retrieved.
Then, one sends the geometrical information either with respect
to the geometrical relevance of the coefficients or patch by patch.
Compression is achieved by quantization of the spectral coeffi-
cients followed by entropy coding.

2The patches created with this software are generally not homotopic to
a disk, which is a condition of optimality for the Tutte projection. Tak-
ing the geometry and topological information into account for partitioning
leads to better results.

3Lapped Orthogonal Transform.

Fig. 4. Left: Bunny model with 500-vertices patches. 5% of the
spectral coefficients are used for reconstruction. No patch over-
lapping. ��� '
	 ���Y^ 
 � < E P J

�
. Right: Bunny with 400-vertices

patches, augmented to 480 vertices (20% overlapping). 5% of the
spectral coefficients were used for reconstruction. The quality of
the reconstruction is improved, particularly on the border of the
patches (cells drawn in black). ��� '
	 ���Y^ P E < E P J

�
. See Eq. 8

for visual distance definition.

With a correct bitstream structure, it becomes easy to progressively
send the spectral coefficients in the spectra order. However, in
the case of on-the-fly decoding of the geometry, the first approx-
imations of the models are often of poor quality. We address this
issue with our patch augmentation strategy: the geometry keeps
relatively smooth because overlapping was introduced in the de-
composition. The low frequencies are better captured. In order to
qualify the methodology, we have to define a metric to evaluate
our results. We follow Karni & Gotsman proposal[5].

4.1. Visual metric

We first need to define a geometrical Laplacian for every vertex.
This Laplacian will have to penalize the increase of the distance of
a vertex to the center of its neighbors (i.e: the barycentric position).
Let � ' , be the distance of vertex & ' to vertex &-, . The geometrical
local Laplacian operator is defined as:

� ?���&(' �*�Q&(' I � ,���� '���� � J�L' , & ,� ,���� ' � � � J�L' , (7)

The local Laplacian represents the local smoothness of the mesh
at vertex &(' . The visual distance between a mesh � and another
mesh ��� with the same connectivity must combine global dis-
tances between vertices and distances between local Laplacians.
Such a visual distance � � '�	 then takes into account raw PSNR-
like information and local smoothness difference:

��� '�	 ���Q��� � � � EX � � � � R JML 

'�! ] ��& ' I & �' �
� R J�L 

'�! ] � � ?S��& ' � I � ?S��& �' � �-� (8)

This metric has the advantage to differentiate between random
noise addition on the vertices and poor reconstruction quality: the
eye better accomodates on a smooth object rather than on a noisy
mesh. The metric increases in case of local disturbances which
generally results in a poor quality to the human eye (see Fig. 4).



Unfortunately, the order of magnitude of the visual metric depends
on the mesh. It will not be the same for bunny and fandisk (resp.

E P J
�

and E P J�� ).
4.2. Geometric compression

Partitioning was performed by MeTiS[7] algorithm. The vertex
mapping heuristic makes use of the augmenting path method[4].
The d6� e1� g vectors are quantized and entropy coded. A typi-
cal range of quantization for geometrical information is from 10
to 16 bits per coordinate. Actually, it turns out that spectral co-
efficients need more precision in their representation than spatial
coefficients. At this stage we used a uniform scalar quantizer and
a quick hand-made Huffman coder. If performances are the final
goal of the process, more work may be done to better compress the
data. Fig. 5 presents the rate/distortion curve for model venusc and
head. We naturally used optimal basis for compression. We found
that our algorithm better performs when using 14 bits for uniform
quantization.
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Fig. 5. Rate-distortion curves : venus (left) and head (right) mod-
els for compression (optimal basis). Uniform quantization pre-
cision was 16 bits. We could not distinguish the reconstructed
model from � � '
	 � E ^ �1< E P J�� (venus) and ��� '
	 � E ^ � < E P J

�

(head)on. Overlapping results approximately in a 1 bit/vertex
overhead, but provides much better quality at the beginning of the
reconstruction.

4.3. Progressive transmission

We simulated on-the-fly decoding during progressive transmission.
In order to better represent the geometrical artifacts of this trans-
form, we used a CAD object (which has flat areas and orthogonal
adjacent surfaces), see Fig. 6. In the case of such a CAD model
like fandisk, one must wait for the whole data to get rid of spurious
waves on the flat areas. This demonstrates that spectral decom-
position used towards compression of CAD data is a bad choice.
However, we focused on models coming from natural signals, like
animals, faces and so on.

5. CONCLUSION AND FUTURE WORK

Our goal was to validate the spectral decomposition of mesh geom-
etry as a powerful tool to both compress and transmit the geometry.
As we got more and more background with this tool, we were able
to define the major orientations of our future work. We need better
partitioning where all patches project on a disk and maybe the use
of an harmonic projection which would lead to better decorrela-
tion. We believe all processings would take advantage to be done

Fig. 6. Various stages of on-the-fly mesh geometry decoding. We
took 20% overlapping (480 vertices per patch after augmentation).
On CAD objects, many coefficients are needed to better recon-
struct the geometry. � �

�
� '
	 � �;^ � < E P J�� , � L��

�
� '
	 � � ^ � � < E P J�� ,�

�
�
�

� '�	 � E ^ � < E P J�� , �
� ] �� '�	 ��P;^ � X < E P J�� . The model is well

reconstructed from ��� '�	 � ��< E P J
�

on.

in a patch-dependent basis. These are some of the improvements
we are currently working on.
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