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Abstract

We present the design of the GFDL ocean circulation model
as adapted for simulations of the Mediterranean basin for
the Cedar multicluster architecture. The model simulates the
basic aspects of large-scale, baroclinic ocean circulation, in-
cluding treatment of irregular bottom topography. The data
and computational mapping strategies and their effect on the
design are discussed. The code was parameterized to offer
several choices for data partitionings of the computational
domain, for placement strategies for the data in the memory
hierarchy, and for the number of clusters and processors used
in the computational hierarchy of Cedar. The experiments
and performance trends are discussed. Using four clusters
and 32 processors the code demonstrates significant speedup
compared to a single cluster and compared to a single pro-
cessor.

1 Introduction

The numerical modeling of ocean circulation is a task of
great importance, both in its own right, as well as a compo-
nent of climate studies. Numerical techniques are based on
approximating the three-dimensional conservation equations
for momentum, mass, salinity and temperature in order to un-
derstand the evolution of these fields with time. Due to the
interaction between the atmosphere and the oceans, develop-
ing adequate predictive skill for the sea surface temperature
is an important step towards better climate studies. This
fact has been recognized with the inclusion of computational
ocean circulation as a Grand Challenge of the High Perfor-
mance Computing and Communications Initiative Program
[14]. Two major computational difficulties for conducting
ocean circulation simulations are the necessary fine spatial

resolution - orders of magnitude more detailed than what is
used in computational simulations today to conduct mean-
ingful forecasts, and the requirement to perform long term
simulations for meaningful climatic studies. These require-
ments make numerical ocean circulation an activity of high
computational complexity in both its time and space require-
ments. Therefore, it is not surprising that realistic global
and detailed regional ocean circulation models (OCMs) were
made feasible only recently.

The purpose of this paper is to discuss the paralleliza-
tion of numerical ocean circulation for the Cedar architec-
ture. Major goals in our investigation have been i) to explore
Cedar’s potential for grand challenge applications,ii) to show
that parameterizing the coding for Cedar’s hierarchical mem-
ory/computation paradigm so that it can be used for future
studies in mapping this code to other emerging multiproces-
sor architectures. This work will also provide the framework
for testing the ability of the hierarchical paradigm to sus-
tain performance as resources and problem size scale and
for understanding the behavior of the paradigm for a finite
difference model with an important explicit component.

The ocean general circulation model used in this work is
based on a basic model of the Geophysical Fluid Dynamics
Laboratory (GFDL) [8], as adapted in the Istituto per lo Stu-
dio delle Metodologie Geofisiche Ambientali (IMGA-CNR)
to the Mediterranean basin geometry [23]. This model, from
now on referred to as GFDL-IMGA, simulates the basic as-
pects of large-scale, baroclinic ocean circulation, including
treatment of irregular bottom topography. It is used in cli-
mate studies and also to study the development of mid–ocean
eddies. Temperature, salinity and the prediction of currents
are the main physical phenomena of interest. As most of
the major OCM to date, this model is based on the primitive
equations model designed by Bryan and Cox [4][8].

The structure of this paper is as follows: Section 2 con-
tains remarks on this and previous work. Section 3 presents
a brief description of the equations and the original code de-
sign. A complete mathematical formulation of the model can
be found in [4][8][10]. An overview of the Cedar architec-
ture, and the design and implementation of the code on Cedar
are described in Section 4. Section 5 discusses experiments
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and results. Finally our conclusions and remarks on future
plans are presented in Section 6.

2 Remarks on previous work

Major reorganizations of the original model of Bryan and
Cox were due to Cox [8], directed toward vector machines
with long start-up times, and Semtner [24], for register-to-
register vector architectures such as the Cray-1. See also [7]
[25] [26].

Recent attention has focussed toward the exploitation of
parallelism. We note for example [1][2] for the Cray 2,
with major emphasis on the use of efficient solvers for the
two-dimensional mass transport stream function; the award-
winning work of [27], on a modified version of [24] using
microtasking and vector processing, to achieve impressive
performance, on a 4-CPU Cray X-MP. The replacement of the
relaxation step for the stream function with a parallelized pre-
conditioned conjugate gradient solution of a pressure equa-
tion as described in [28] led to an important improvement of
the performance on the CM-2 Connection Machine.

It is also noted that that the Department of Energy’s
CHAMMP project [5] and the recent release of the Modular
Ocean Model from GFDL [22] are expected to contribute to
the effort to develop parallel ocean models [19].

Performance studies of the GFDL-IMGA model on the
Alliant FX/8 were conducted in [11]. Preliminary results on
the Cedar multiprocessor are described in [12].

3 Description of the model and original
code design

The mathematical model uses the Navier-Stokes equations
with three basic assumptions: Boussinesq approximation, in
which density differences are neglected, except in the buoy-
ancy term, hydrostatic assumption, where local acceleration
and other terms of equal order are eliminated from the equa-
tion of vertical motion, and turbulent viscosity hypothesis,
in which stresses exerted by scales of motion too small to
be resolved by the grid are represented as enhanced molec-
ular mixing. Temperature and salinity are calculated using
conservation equations, and the equations are linked by a
simplified equation of state.

3.1 Model equations

The equations are written in the spherical coordinate system
(� , � , z), with � denoting longitude and � latitude, only
that z denotes depth, defined as negative downward from the
surface z = 0.

The model equations are:

@~uh@t + ~u � r~uh + ~f � ~uh =� 1�0

~rp+ Ahr2~uh + (Av~uhz)z ; (1)pz = ��g ; (2)r � ~u = 0 ; (3)@T@t + ~u � rT = Khr2T + (KvTz)z ; (4)@S@t + ~u � rS = Khr2S + (KvSz)z ; (5)� = �(T; S; p); (6)

where ~u = (u; v; w) is the velocity vector, ~uh its horizontal
components, p, � are pressure and density, ~f = 2
 sin�~k ,T , S are the temperature and salinity tracers, and Ah;v, Kh;v
are the turbulent diffusion coefficients.

The boundary conditions for momentum and tracer fluxes
at the ocean surface (z = 0) are:�0Av(uh;z vh;z) = ~� ; (7)Kv @@z (T; S) = 0 ; (8)w = 0; (9)

where ~� is a seasonal wind stress. At the bottom z =�H(�; �), the vertical velocity w is set to be:w = �~uh � rH : (10)
At the side wall boundaries, the normal and tangential hori-
zontal velocities, and the horizontal fluxes of sensible tem-
perature and salinity are set to zero.

To eliminate fast moving gravity waves and thus avoid
the ensuing severe time step restrictions OCMs employ a
rigid-lid approximation to the equations. Manipulating the
equations under this approximation, the vertically averaged
velocity components of momentum (u; v) can be written in
terms of a two-dimensional stream function  :u = � 1Ha @ @� ; (11)v = 1Ha cos� @ @� : (12)
Using the incompressibility condition Eq. 3, a Poisson equa-
tion is derived for the time derivative of the stream function . Momentum is then expressed as the sum of the external
mode (u; v) and internal mode. Since internal and external
modes of momentum can be computed separately, the over-
all computation can be split into an explicit baroclinic phase,
approximating three dimensional fields of tracers and devia-
tions of horizontal velocity from the vertically averaged flow,
and an implicit barotropic phase, requiring the solution of
a Poisson equation for the transport stream function in the
horizontal (�; �) direction.
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3.2 Original code design

Derivative terms are approximated with second order finite
differences in space and time on an Arakawa B staggered
grid (u; v and T; S;  respectively defined at different points
of the computational cell). Discretization is uniform in the
horizontal direction and non-uniform in the vertical. Explicit
leapfrog with occasional mixing with a forward Euler step is
used for time stepping. Hence, data from three time steps are
required during the computation of any grid point, because
the leapfrog method uses data from the current and the previ-
ous time steps to predict values for the future time step. We
refer to [8] for the main aspects of the implementation of the
code on the Cyber 205 at the Geophysical Fluid Dynamics
Laboratory, that was the basic model used in this work.

The explicit nature of the baroclinic phase allows the
computation to be applied on sequences of two dimensional(�; z) data slabs. This approach was favored in ocean mod-
eling since it only required the storage of two dimensional
data in fast memory [3]. Since the GFDL-IMGA model was
based on the model of [8], computations in the baroclinic
phase are performed over both ocean and land areas using
masks to distinguish ocean from land cells.

The program expects as input initial and boundary con-
ditions, along with topography and wind information. It
then proceeds as follows. First, several initializations are
performed, then the time step loop is entered. This consists
of further initializations, the update of the internal modes
of momentum, vorticity driving function, temperature, salin-
ity, densities and performs a convective adjustment of water
columns if needed. This is followed by the update of the
mass transport stream function using the vorticity driving
function. Wrap-up time step computations are performed,
and, if desired, current results are printed. If that was the last
time step, wrap-up computations for the entire program are
performed, else the time step is repeated.

During the computation of prognostic variables in any
grid cell, the leapfrog method reads and writes data from
three time steps, which, consequently, should be present in
memory. As no data from other time steps is required, a
three-stage buffering method is used. The buffers contain
three dimensional fields of temperature, salinity, and velocity
components u and v, as well as two dimensional topography
and wind stress data. Seven slabs are needed to compute
second order approximations to the horizontal derivatives at
any point of a given slab, namely three slabs from the current
time step, three from the previous time step and one slab with
the values currently being computed. Two additional buffers
are needed for computing the mass transport stream function,
but these are shared with the space used for the baroclinic
phase.

4 Implementation on Cedar

4.1 Cedar system

The Cedar system was developed at the Center for Super-
computing Research and Development of the University of
Illinois. Its main characteristic are the hierarchical organi-
zation of its computational capabilities and memory system.
Cedar is a multicluster-based architecture with four clusters,
where each cluster is a modified Alliant FX/8 machine with
8 computational elements (CEs). Three levels of parallelism
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Figure 1: Cedar architecture

can be applied. First, vectorization can be used within a CE.
Second, small grain parallelism can be exploited by using
concurrency within the cluster. Finally, medium and large
grain parallelism can be used across the clusters.

There are four levels of memory system hierarchy, namely
registers for each CE, cache for each cluster, cluster memory
and global memory. The cluster cache provides a maximum
bandwidth of 47 MW/sec, for a total of 188 MW/sec for
the four clusters. As expected, the cost of access increases
at each level. The observed relative performance degrada-
tion of the memory hierarchy is a factor of 2, from cache
to cluster memory, a factor of 6 from cache to global mem-
ory, and a factor of 2 from cache to global memory, when
the prefetch system is used. Each CE has its own set of
scalar and vector registers. The CEs in each cluster share the
cache and cluster memory, while the global memory is shared
by the CEs of all clusters. Each cluster has 64 Mbytes of
cluster memory and 512 Kbytes of cache. The global mem-
ory size is 64 Mbytes (32 memory banks). Cedar utilizes
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pipelining in the global memory system and allows multi-
ple outstanding memory requests from each CE. Since each
Alliant processor has a limit on the maximum number of
outstanding read requests, data prefetching is used to to fully
exploit the memory system pipeline. This lets processors
start block moves from global memory and continue execu-
tion regardless of how many read requests are outstanding.
Prefetching can be disabled via a compiler flag. The pro-
cessors and the global memory are connected via the global
interconnection network, that consists of two unidirectional
packet-switched networks. These switching networks are 2-
stage Omega networks built from 8 � 8 cross-bar switches
[18][21]. The Cedar operating system, Xylem, extends the
Alliant Concentrix operating system to include multitasking
and virtual memory management of the Cedar memory hier-
archy (see [13]). A Xylem process consists of one or more
independently scheduled program segments, called cluster-
tasks, that execute asynchronously across the Cedar system,
as directed by Xylem system calls. Programs are mostly writ-
ten in Cedar Fortran [17, 16], a language resembling Fortran
77, with vector constructs such as those proposed for the For-
tran 90 standard and has extensions for memory allocation,
concurrency control, multitasking and synchronization. It
allows the specification of the location and visibility of the
data (private, shared, cluster or global), reflecting the Xylem
memory access and locality structure. Concurrent execution
of loops within a single cluster, or across clusters are pro-
vided with DOALL and DOACROSS constructs. Three groups
of synchronization routines are provided: DOACROSS loop
synchronization; Zhu-Yew synchronization primitives (see
[29]); and Cray-Style synchronization operations (see [9]).

4.2 Design of the parallel code

The work described in this paper will focus in the baroclinic
phase, the primary motivation being the fast convergence of
the SOR algorithm, a peculiarity of the domain and data sets
of interest here. The Cedar multicluster code was designed
to allow experiments with several parameterized partition-
ings of the computational domain. Section 5 presents per-
formance results from experiments where the computational
resources (e.g. number of clusters, number of processors per
cluster), data partition and placement strategies vary. We
next describe the data partitioning and placement strategies
used in the Cedar code.

4.2.1 Data partitioning

We already mentioned that memory considerations led to the
organization of data into (�; z) slabs. This strategy was also
beneficial for vector architectures with long start-up times
since it allowed the generation of long vectors by reshaping
two dimensional grid arrays in the (�; z) direction to one
dimensional vectors.

Several partitioning strategies of grid points of the com-
putational domain to resources can be used. The models dis-
cussed in [19] demonstrate the importance of the partitioning
strategy for the parallel implementation. For Cedar, we con-
sider partitionings to be of two types, one primary, taking
into account data partitioning across clusters, the other sec-
ondary, specifying the partitioning across vector processors
in each cluster. Hence secondary partitionings were applied
on slabs or their subdivisions. The implemented partition-
ings are depicted in Figures 2, 3, and 4 for the case of four
clusters. The first two partitionings, referred to as row and
column are one dimensional as they cut across a single (�
and � respectively) grid dimension. The third partitioning
is two dimensional, as it cuts across two dimensions of the
grid.

We see that in all cases, each cluster is responsible for
a set of two-dimensional slab pieces. The reasoning behind
the partitioning strategies used in this paper was based on the
following design principles:

1. The slab organization was to be preserved and par-
titionings for multiple cluster parallelism were to be
built as extensions of the slabs.

2. The partitioning of data and parallelization of com-
putation in each cluster would mostly rely on auto-
matic restructuring performed by available preproces-
sors (KAP and VAST).

We thus used relatively mature automatic restructuring tools
for each cluster, while the more difficult high-level partition-
ing is being done manually. We note that another goal of
this project is to provide information to compiler designers
about the effectiveness of several multi-cluster restructuring
strategies.

The computational domain consists of a parallelepiped
of I � J �K computational cells, with I, J and K cells in
the �, � and z directions respectively, at the centers and sides
of which momentum and tracer variables are defined. For
our experiments we set the parameter controlling the number
of partitions to be equal to the number of clusters. A feature
of the slab organization is that the restructuring techniques
resemble those used for the original code when running on
a single cluster. In most cases this means that each cluster
executes concurrently in the z direction and in vector mode
in the � direction.

In row partitioning, (Fig. 2), the grid is cut in the �
direction, so that J slabs are partitioned in C blocks of con-
tiguous slabs. Each block, containing dJ=Ce + 2 slabs, is
assigned to one of theC clusters. The two extra slabs contain
data for the South and North borders of the partition. This
data is necessary for the the second-order approximation of
the derivatives, when the first and last rows of the partition
are being updated.

As mentioned earlier, each cluster needs seven full slabs
in its work space. Hence this scheme will become less at-
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Figure 2: Representation of the grids with row partitioning.

tractive for models with high resolution, because work space
cannot be distributed amongst the clusters. One solution to
this problem is to use column partitioning (Fig. 3) for which
the grid is cut in the � direction. The I points are distributed
among the clusters, while two extra columns are provided
for the East and West borders. During each time step, the
slab-by-slab computation of each subdivision of the basin
is executed independently by each cluster. One advantage
of this scheme over the row partitioning is that each of theC clusters will work with approximately 1=C of the work
space necessary to be present in memory for the computation
of each slab piece. Hence the work space is distributed be-
tween clusters, demanding less memory and obtaining more
data locality.

The two-dimensional partitioning, (Fig. 4), is a combi-
nation of the two previous methods. In the four cluster case,
the two horizontal dimensions are divided equally and each
quadrant is assigned to a different cluster. Two-dimensional
partitioning can be used when four or more clusters are avail-
able. This scheme is used as a solution for the problem
of memory versus granularity which was mentioned earlier.
Note that the vector lengths do not become as small as in
column partitioning as the number of clusters increases, nor
are the memory requirements as large as in row partitioning.
This scheme is also flexible in that it can be extended to
handle more arbitrary sections of data.

Cluster 1 Cluster 2 Cluster 4

East (I)

North (J)

Depth (K)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 3: Representation of the grids with column partition-
ing.

4.2.2 Data placement

The multi-level memory hierarchy allows several data place-
ment options. We distinguish two types of data, namely work
space, which is two dimensional by virtue of the slab orga-
nization, and virtual disk space, containing the entire set of
three dimensional fields. Four data placements are possible,
referred to as “CC”, “GC”, “GG” or “CG”, where the first
letter denotes where the virtual disk is stored, the second let-
ter denotes the location of the work space and “C” and “G”
specify cluster and global memory respectively. Each of
these data placement choices corresponds to a different view
of Cedar. In particular, a “flat” shared memory multiproces-
sor paradigm, close to the Cray architecture, corresponds to
the GG placement of virtual disk and work space in global
memory and using multitasking or some form of microtask-
ing. On the other extreme, the CC placement of disk and
work space across cluster memories corresponds to a dis-
tributed memory paradigm, where each node is a cluster of
processors, with global memory used as a communication
buffer.

In our implementation, the CC version also uses global
memory to store scalar quantities such as energy, tempera-
ture, salinity, etc, that are partially computed by each cluster.
As expected, although explicit message passing is not used
in the CC version, there is the need to communicate data
through the slower global memory.

In between lies the hierarchical placement GC, which
uses both cluster and global memory. As will be seen from
our experiments, this is the that best exploits Cedar’s memory
system, using the fast local memory for frequently accessible
work space and the global memory for the three dimensional
virtual disk space. An analogy can be made between this
hierarchical memory usage on Cedar and the use of the SSD
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Figure 4: Representation of the grids with two-dimensional
partitioning.

on the Cray Y/MP system.
To achieve good performance it is clearly desirable to

maximize the ratio between floating point operations using
cluster memory data, and global memory accesses. Note
that the GC version during the baroclinic phase, for each
point in the three-dimensional grid requires approximately
12 global memory accesses (8 reads and 4 writes) while
almost 300 floating point operations are executed. Hence,
the three-dimensional phase achieves a ratio of 25 floating
point operations using data in cluster memory for each global
memory access.

4.3 Remarks on the design of the parallel code

The Cedar multicluster program was parameterized to run
with several clusters and partitioning schemes, as well as
different number of horizontal grid points, vertical levels and
islands. The partitioningsof Section 4.2.1 were implemented
by creating one Cedar Fortran task per partition and statically
mapping it on a cluster. Within each cluster, loops were
executed with dynamic self-scheduling. Data placement of
work and virtual disk space data to global and cluster memory
in the GG, CC and GC configurations was easily achieved
using Cedar Fortran memory attributes.

A partial parallelization of the relaxation phase was achieved
by writing the relaxation phase as a combination of one di-
mensional steps and observing that one of these steps is
readily parallelizable while the other step is a recurrence
which is solved with a fast lower bidiagonal solver [6][10].

Nevertheless, Krylov subspace type algorithms are likely to
be more efficient for general OCM, as can be testified by the
work in [2] as well as by the solvers used in the MOM code
[22]. The fast convergence of the relaxation step caused the
computation of the necessary matrix coefficients to consume
an important amount of time relative to the solution step [10].
Hence the time-independent part of the matrix construction
was moved outside the time step loop.

We next summarize the steps of the parallelization strat-
egy.

1. The performance of the original code for several di-
mensions of the test data and several compilation op-
tions using the VAST restructuring compiler was ob-
tained on an Alliant FX/8 (which is the basic cluster
unit of Cedar). These experiments showed that the
computational bottleneck was the baroclinic phase.

2. Data and control were partitioned to introduce paral-
lelization. See [10] for further details. Corresponding
to the flexibility of Cedar, the partitioning strategies of
Section 4.2.1 were investigated.

3. Routine loop parallelization and vectorization within
single tasks were handled by the KAP and VAST re-
structuring compilers.

4. The Poisson solver was restructured for greater paral-
lelism.

5 Results

In this section we present the performance of the Cedar mul-
ticluster ocean simulation code and compare them with the
original code optimized with the VAST restructurer and Al-
liant compiler. The data sets used in the experiment simulate
the Mediterranean basin. They are denoted by PnLk where
1=n is the horizontal resolution in degrees and k is the num-
ber of vertical levels. In particular:P8L16 This model uses grid spacing of 0:125� (approxi-

mately 13.87 km). The grid size is 334 � 118 in the
horizontal direction, and 16 levels in the vertical direc-
tion. Nine islands are represented with this resolution
and each time step simulates one hour.P4L8 This model uses grid spacing of 0:25� (approximately
27.75 km). The grid size is 167� 57 in the horizontal
direction and 8 levels in the vertical direction. Five
islands are represented with this resolution and each
time step simulated three hours.

Although memory limitations forced us to use 32 bit preci-
sion, the results were in good agreement with those obtained
from 64 bit precision. All times reported for Cedar corre-
spond to wall clock time obtained from the high-resolution
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library routines hrcget and hrcdelta (see [20]), in sin-
gle user mode. Results on the Alliant FX/8 are CPU times
collected in single user mode, using the Alliant library routine
etime. All these routines have 10 �sec accuracy. Timing
results are in seconds per timestep; these were derived by
running 12 (resp. 16) time steps and averaging the last 10
(resp. 14) for model P8L16 (resp. P4L8). By ignoring the
first two time steps we eliminated the effect of startup over-
head in the performance, since this is expected to be minimal
in long term simulations. Timings were obtained by execut-
ing several runs for each version of the code and each data
set, while varying the number of clusters and CEs per clus-
ter. Experiments were also run for the GG and GC versions
of the code to simulate slowdown of global memory access
time by explicitly disabling the prefetch unit. Indeed, unless
stated otherwise, the prefetch unit will be on.

To account for the hierarchical nature of Cedar, in the
following discussion we first introduce some notation for
four different instances of speedup. Considering Tv(C; p)
the run time of version “v”, using C clusters and p CEs
per cluster, we define the overall, multi-CE, and multicluster
speedups for C clusters and p CEs per cluster using version
“v” respectively as:Sov(C; p) = Tv(1; 1)Tv(C; p) ; (13)Scev (C; p) = Tv(C; 1)Tv(C; p) ; (14)Sclv (C; p) = Tv(1; p)Tv(C; p) : (15)

and the true speedup for p CEs asSp = t01t0p : (16)
where t01 is the best execution time using one CE, and t0p is
the best execution time using p CEs.

Similarly, we define the overall, multi-CE, and multiclus-
ter efficiency (Eov(C; p), Ecev (C; p), Eclv (C; p)) as the corre-
spondent speedup divided respectively by the total number
of CEs, number of CEs in one cluster, and number of clusters.

We next present and discuss results for both models.
Table 1 has the results for the original code compiled using
VAST running model P4L8 and P8L16 on the Alliant FX/8.
We used scalar optimization, concurrency, vectorization, and
associativity transformations as VAST optimization options.

For model P4L8, the results for the GC version with the
prefetching unit turned on and off are in Tables 2 and 3
respectively. The results for the CC version are presented
in Table 4, and the results for the GG version, with and
without prefetch are presented in Tables 5 and 6. For modelP8L16, Tables 7 and 8 have the results for the GC version
with and without prefetch. The results for the CC version

CEs P4L8 P8L16

1 10.7 92.1
2 6.0 52.1
4 3.7 32.2
8 2.6 23.3

Table 1: Original program, average runtime per time step.

C Number of Clusters
E 1 2 3 4
s row col row col row col 2D
1 12.9 6.7 6.8 4.9 4.9 3.8 4.1 3.7
2 6.7 3.5 3.6 2.6 2.6 2.0 2.2 2.0
4 3.7 1.9 2.0 1.5 1.5 1.2 1.3 1.1
8 2.2 1.2 1.2 0.9 1.0 0.8 0.9 0.8

Table 2: Average time in sec per timestep, model P4L8 - GC
version with prefetch.

are presented in Table 9, and the results for the GG version,
with and without prefetch are presented in Tables 10 and 11.

As expected, the use of global memory to store the three-
dimensional data and of the cluster memory to store the work
space best exploited Cedar’s hierarchical memory, giving the
best performance among the data placement strategies we
tried. The best performance using the model P4L8 (see Ta-
ble 2) averages 0.75 seconds per time step, (S32 = 14:3),
while model P8L16 (Table 7) averages 4.21 seconds per time
step, with a true speedup S32 of 21.88, and a rate of approx-
imately 50 MFLOPS (using single precision).

Since a large portion of the computations of the code
admits a simple distributed memory partitioning of all of the
data, an important comparison is between the GC version and
the CC version. The results for the GC version were consis-
tently better than the ones for the CC version, but always by
less than 10%. One reason for the similarity between these
results is the fact that the extra time that is spent accessing
the global memory in the GC version is compensated by the
communication between clusters, containing the information
from the borders, that is necessary in the CC version. The
most important reason though is the ratio between the num-
ber of floating point operations using cluster memory data

C Number of Clusters
E 1 2 3 4
s row col row col row col 2D
1 13.5 7.0 7.1 5.2 5.1 4.0 4.2 3.8
2 7.0 3.7 3.7 2.7 2.7 2.2 2.3 2.1
4 3.8 2.0 2.1 1.6 1.6 1.2 1.4 1.2
8 2.3 1.2 1.3 1.0 1.0 0.8 0.9 0.8

Table 3: Average time in sec per timestep, model P4L8 - GC
version without prefetch.
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C Number of Clusters
E 1 2 3 4
s row col row col row col 2D
1 13.0 6.7 6.8 5.0 5.0 3.9 4.2 3.8
2 6.7 3.5 3.6 2.7 2.7 2.1 2.3 2.1
4 3.7 2.0 2.0 1.5 1.5 1.2 1.4 1.2
8 2.3 1.2 1.3 1.0 1.0 0.8 1.0 0.8

Table 4: Average time in sec per timestep, model P4L8 - CC
version.

C Number of Clusters
E 1 2 3 4
s row col row col row col 2D
1 16.9 8.8 8.9 6.5 6.8 5.4 5.8 5.0
2 9.0 4.7 4.8 3.5 3.6 2.9 3.2 2.7
4 4.9 2.6 2.7 1.9 2.0 1.6 1.8 1.5
8 2.7 1.5 1.6 1.1 1.2 1.0 1.1 0.9

Table 5: Average time in sec per timestep, model P4L8 - GG
version with prefetch.

to the number of global memory accesses which is roughly
25. Therefore, since using the prefetch capability of Cedar to
transfer data from global to cluster memory in blocks causes
the cost of global memory access to approach that of cluster
memory access, the transfer of the three-dimensional data
into cluster memory is relatively inexpensive. In fact, the
ratio of 25 is sufficient to obviate the need for the block
fetching of data given the present Cedar relative memory
costs. Comparing the results from Tables 7 and 8, we ob-
serve that in the GC version, the runs that used the prefetch
unit were at most 5% faster than the runs that did not.

Clearly, such a result will change as the cost functions
change. The data transfer between the work space and the
virtual disk, (respectively cluster and global memory in the
GC version), is done with the use of two subroutines, that are
called at the beginning and end of each time step. During the
baroclinic phase, the global memory is accessed only when
these routines are called. Hence, we were able to artificially
vary the global memory access time by calling these routines
more than once whenever a read or a write was required.
As an experiment, we ran the GC version artificially slow-
ing down the global memory access time by factors ranging

C Number of Clusters
E 1 2 3 4
s row col row col row col 2D
1 28.3 14.6 14.6 10.4 10.1 8.1 8.0 7.7
2 14.5 7.5 7.6 5.4 5.3 4.3 4.3 4.1
4 7.6 4.0 4.1 2.9 2.9 2.3 2.4 2.2
8 4.1 2.2 2.3 1.7 1.7 1.3 1.5 1.3

Table 6: Average time in sec per timestep, model P4L8 - GG
version without prefetch.

C Number of Clusters
E 1 2 3 4
s row col row col row col 2D
1 96.6 48.8 47.4 34.2 31.9 26.1 24.6 24.8
2 50.3 25.6 24.7 17.9 16.5 13.8 12.7 13.0
4 28.1 14.4 13.7 10.0 9.0 7.8 7.0 7.3
8 17.7 9.0 8.3 6.4 5.5 5.0 4.2 4.4

Table 7: Average time in sec per timestep, model P8L16 -
GC version with prefetch.

C Number of Clusters
E 1 2 3 4
s row col row col row col 2D
1 99.4 51.2 50.2 35.6 33.3 27.2 25.3 25.9
2 52.1 26.6 25.9 18.7 17.5 14.3 13.1 13.6
4 38.0 14.9 14.1 10.4 9.4 8.1 7.2 7.5
8 18.0 9.2 8.7 6.6 5.6 5.1 4.6 4.7

Table 8: Average time in sec per timestep, model P8L16 -
GC version without prefetch.

from 1 (no slowdown, i.e. the original) to 50. The slow-
down ratios are given by tk=t1 where tk is the run time with
slowdown factor of k, and t1 is the execution time without
slowdown. The results are plotted in Figures 5 and 6 for the
models P4L8 and P8L16 respectively. The best results when
no prefetch was used, were obtained with column partition-
ing for model P8L16, and with 2D partitioning for modelP4L8; hence, the line for the 2D partitioning and the line
for the column partitioning are duplicated in Figures 5 and 6
respectively, representing the runs with and without prefetch
in both cases (lower and upper line respectively).

Using these plots one could estimate the program’s run
time for a slower global memory. In both figures one can
easily observe that the slope of the line for the run without
prefetch is larger than the others, thus these plots also show
the increasing need for data prefetch as global memory be-
comes more remote. The moderate rate of degradation of
performance is leading evidence that if the increasing re-
moteness of memory is caused by increasing the number
of clusters then we would expect to maintain reasonable
performance for the code over a significant increase in the
number of processors. The increase in the number of clusters

C Number of Clusters
E 1 2 3 4
s row col row col row col 2D
1 95.7 48.8 48.3 34.3 33.2 26.2 25.2 25.2
2 50.4 25.7 25.1 18.1 17.4 13.9 13.2 13.2
4 28.1 14.5 13.9 10.2 9.6 7.8 7.4 7.4
8 17.9 9.4 8.9 6.6 6.0 5.1 4.6 4.7

Table 9: Average time in sec per timestep, model P8L16 -
CC version.
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C Number of Clusters
E 1 2 3 4
s row col row col row col 2D
1 118.9 60.6 61.8 43.4 46.6 36.3 36.1 35.6
2 63.1 32.2 32.9 22.6 20.0 18.6 18.7 18.3
4 33.3 17.3 17.7 12.1 12.6 9.9 10.0 9.8
8 17.3 9.1 9.4 6.5 6.8 5.3 5.5 5.4

Table 10: Average time in sec per timestep, model P8L16 -
GG version with prefetch.

C Number of Clusters
E 1 2 3 4
s row col row col row col 2D
1 214.6 108.8 109.6 75.7 74.6 57.3 56.7 56.3
2 109.1 55.5 55.9 38.5 38.5 29.3 29.1 28.8
4 55.6 28.5 28.7 19.9 19.8 15.3 15.3 15.1
8 28.7 14.8 15.0 10.5 10.5 8.2 8.3 8.2

Table 11: Average time in sec per timestep, model P8L16 -
GG version without prefetch.

would, of course, require the problem size to grow but the
operation-transfer ratio of 25 is maintained independent of
problem size. All of these results use the prefetch unit as
a block fetch mechanism. The performance could also be
maintained as the remoteness of global memory increases by
using a larger grain true prefetch, i.e., prefetching the data
needed to compute slab j + 1 to cluster memory while com-
puting slab j. At present, Cedar Fortran does not explicitly
support such a divided use of the CE’s within a cluster but it
is possible to implement manually.

Another result that shows the importance of the use of
data prefetch is the difference in performance of the GG
version with and without the use of the prefetch unit. Com-
paring the best results for the GG version with and without
prefetch (Tables 5 and 6 for model P4L8, and Tables 10 and
11 for modelP8L16), we notice that the performance dropped
approximately 40% and 54% for models P4L8 and P8L16 re-
spectively, when prefetch was not used. These results show
the importance of the use of data prefetch when there is a
small ratio between the number of floating point operations
and global memory accesses (in the GG version this ratio is
less than one).

It is also instructive to compare the difference in perfor-
mance between the GG and GC version with and without the
use of prefetch. Basic memory system performance on Cedar
[15] predicts potential improvement by using the prefetch
unit to offset latency may bring the global memory access
rate close to the cluster memory access rate. We can confirm
this prediction by comparing the results from the GC and
GG runs using model P8L16 with 8 CEs. Table 12 shows the
percentage of difference in execution time for P8L16 with
8 CEs per cluster between GG and GC versions with and
without prefetch used.

0 20 40
0

1

2

3

Factor of slowdown of global memory

tkt1

dotted line = row partitioning
dashed line = column partitioning
full line = 2D partitioning

no prefetch

Figure 5: Slowdown for model P4L8, varying the global
memory access time.

0 20 40
0

2

4

Factor of slowdown of global memory access

tkt1

dotted line = row partitioning
dashed line = column partitioning
full line = 2D partitioning

no prefetch

Figure 6: Slowdown for model P8L16, varying the global
memory access time.

Some interesting trends arise from comparing Table 12,
Table 7 and Table 10. The first is the obvious result that
when no prefetching is used there is a significant difference
between the versions. The fact that the difference is not as
large as one might expect given the basic performance char-
acteristics of the Cedar system, [15], indicates that in both
versions there is a nonnegligible amount of cluster and/or
register activity. Secondly, consider the data when prefetch-
ing is turned on. Note that while the row partitioning is
the least affected by moving to GG from GC its percentage
change is the most sensitive to the number of clusters used.
This is also a direct consequence of the block lengths used
for global memory accesses. The row partitioning suffers
most, relatively speaking, from the increased contention of
accessing global memory with more clusters since the size
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Number of Clusters
pref. 1 2 3 4

row col row col row col 2D
off 59.0 60.3 72.8 59.8 87.8 61.5 83.3 75.7
on -2.0 0.1 13.4 1.7 24.2 6.2 30.6 20.4

Table 12: Percentage of difference in execution time from
the GG to the GC versions, using model P8L16 with 8 CEs
per cluster.

of its block fetches are longer than the column and 2D par-
titionings and the resulting memory requests are denser in
time. Thirdly, the performance of the GG version for all par-
titionings with prefetch is very close to the GC version with
row partitioning and prefetch. This confirms the expected
complementary nature of prefetching from global memory
or data distribution into cluster memory. The interesting part
of this particular observation is, however, that the variation
in the relative performance of the GG and GC versions for
different partitionings is a result of the variation of the GC
performance not the GG version. It is the explanation of this
variation that we address next.

The variation in performance of the different partition-
ings for the GC version and the CC version is related to
vector length and cache usage. The row partitioning vector
length is independent of the number of clusters (but the num-
ber of slabs processed per cluster varies) while the column
partitioning vector length decreases as the number of clus-
ters increases (but the number of slabs processed remains
constant). Both partitionings process the same amount of
data but the distribution into more fetches of smaller length
makes the column partitioning more sensitive to overhead of
vector/concurrent operation. Similarly, the 2D partitioning
on 4 clusters falls in between the row and column partition-
ings due to its compromise vector length and number of slabs
processed. As a result, one trend would be for the column
and 2D partitionings to have worse performance than the
row partitioning for small to moderate sized problems. On
the other hand, the column and 2D partitionings work with a
smaller amount of workspace data and for small to moderate
sized problems there will be a cache usage effect. For theP8L16 data set, the column partitioning requires work space
that is only slightly larger than the cluster cache while the
row partitioning is large enough to flush cache with a sin-
gle sweep through the work space. In general the code has
very little reuse of data and therefore whenever caching can
be exploited it can have a significant effect. For the P8L16

data set, these two contradictory effects end up with a net
gain for the column and 2D partitionings (although this is
not true for the P4L8 data set where the row partitioning will
also exploit cache). The net effect is somewhat disappoint-
ing however and future work will attempt to quantify the
expected performance advantage for the column partitioning
more carefully to see if it can be enhanced. If it can, in

fact, be enhanced via, for example, more careful code gen-
eration, then a two level blocking strategy may be useful.
This is needed because the cache usage advantage of the
column and 2D partitionings will disappear as the problem
size and workspace requirements increase. A second level
of partitioning of the subdomain given to a particular cluster
into column or 2D partitions could then be used to improve
performance. The effect of the cache can also be seen by con-
sidering the multicluster speedups SclGC(4; 8) and SclCC(4; 8)
for the row and column partitionings. For the row parti-
tionings we have, SclGC(4; 8) = 3:5 and SclCC (4; 8) = 3:5
which are certainly respectable and for the most part ex-
pected given the decoupled nature of the computations. The
column partitionings yield the near-perfect and superlinear
values SclCC(4; 8) = 3:9 and SclGC(4; 8) = 4:2. These re-
sults are due to the fact that as clusters are added the column
partitioning reduces the amount of work space required per
cluster and eventually benefits from the cache effect. Since
data accessed in global memory is not cached in the cluster
cache, the performance variation across partitions is reduced
considerably.

While the multicluster speedups are reasonable, the multi-
CE speedups confirm some expected problems with the use
of the Alliant FX/8’s as clusters. Specifically, the cluster
memory system bandwidth is saturated quicker than global
memory for the same sparsity of memory requests per clus-
ter. The comparison of the multi-CE speedups for all versions
and partitionings, is presented in Table 13 for model P8L16

using 1 and 4 clusters with 8 CEs per cluster. The data
clearly shows the effect of saturation of the cluster mem-
ory bandwidth. The values of Scev (1; 8) for the GG version
with and without prefetch show that control overhead and
other parallel considerations are not a source of performance
degradation for 8 CE’s. Therefore, the GC and CC ver-
sions, which use cluster memory, have their performance
degraded by the saturation of the cluster memory bandwidth.
The values of Scev (4; 8) show similar trends. The GG ver-
sion without prefetch, as expected, has no trouble due to
global memory contention. The use of prefetch degrades the
speedup somewhat but the sparsity of the memory requests
is such that a reasonable efficiency is maintained. The GC
and CC version for similar sequences of memory requests in
cluster memory1 experience clear performance degradation.
It can be concluded that the global memory system is more
robust when stressed than the cluster memory systems.This
is not unexpected since the transfer of data between cluster
memory and cache is accomplished via a bus and the global
memory system makes use of two unidirectional Omega net-
works.

1The stream of memory requests may be different when the arrays are
in global memory from those seen when accessing cluster memory due to
some idiosyncrasies of the code generator. It is much more conservative
with common subexpression elimination when the data resides in global
memory which can in some cases significantly alter the type of memory
traffic generated. This is not a major problem for this code.
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Version Scev (1; 8) Scev (4; 8)
row col 2D

GG no prefetch 7.49 6.97 6.80 6.89
GG with prefetch 6.88 6.82 6.57 6.62
GC no prefetch 5.52 5.33 5.55 5.57
GC with prefetch 5.47 5.21 5.83 5.57
CC 5.34 5.09 5.44 5.39

Table 13: Multi-CE speedups for model P8L16.

6 Conclusions

We implemented a multicluster ocean circulation model on
Cedar, and experimented with three partitioning schemes,
using several data placement strategies, and mappings to
the components of Cedar. The experiments simulated the
Mediterranean Sea topography.

The best result using the model with the P4L8 data set
requires 0:75 seconds per time step, while the original code
restructured automatically on an Alliant FX/8 required 2:58
seconds per time step. The best result with the P8L16 data
set requires 4:21 seconds per time step, with a speedup of
21:88 for the 32 CEs and a multicluster speedup in excess of
3:5 for all of the versions of the code.

As expected the GC version of the code which placed
the virtual disk data in global memory and work space in
cluster memory, best exploited Cedar’s control and memory
structures. The experiments also showed that the use of the
prefetch unit could mitigate the effect of the latency of the
global memory system, bringing the times for the GG version
close to those of the GC version. The complementary nature
of the partitioning of the data into the cluster memories and
the use of prefetch on all or part of the data from global
memory is seen in the similar performance of the GC and
CC versions.

The multicluster versions of the code were derived by
a straightforward and perhaps eventually automatable large
grain restructuring of the code. This technique allowed the
clusters to exploit the mapping of the computations to con-
current and vector processing that was used in the original
code but which would not scale beyond a moderate number
of processors.

Future work on this code includes the more detailed quan-
titative characterization of the observed performance trends
as well as the application of Cedar performance prediction
techniques to evaluate alternate, and potentially more ef-
ficient, organizations of the computations within a cluster.
These reorganizations of cluster work will center on the is-
sue of exploitation of topography information in the reduc-
tion of unnecessary operations. These alterations in cluster
processing strategies may also require further parameteri -
zation of the large grain partitioning used across clusters.
Finally, the development and analysis of an efficient multi-

cluster implementation of the relaxation phase of the code
will be considered. For the test cases used for the results
above, the relaxation phase performance was not a major
factor.
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