
BPEL4WS Unit Testing: Test Case Generation Using a Concurrent Path

Analysis Approach

Jun Yan1,2,3, Zhongjie Li2, Yuan Yuan2, Wei Sun2 and Jian Zhang1

yanjun@ios.ac.cn, {lizhongj,yyuan,weisun}@cn.ibm.com, zj@ios.ac.cn
1Laborary of Computer Science, Institute of Software, Chinese Academy of Sciences

2IBM China Research Lab
3Graduate University of Chinese Academy of Sciences

Abstract

BPEL is a language that could express complex con-

current behaviors. This paper presents a novel method of

BPEL test case generation, which is based on concurrent

path analysis. This method first uses an Extended Control

Flow Graph (XCFG) to represent a BPEL program, and

generates all the sequential test paths from XCFG. These

sequential test paths are then combined to form concurrent

test paths. Finally a constraint solver BoNuS is used to solve

the constraints of these test paths and generate feasible test

cases. Some techniques are proposed to reduce the number

of combined concurrent test paths. Some test criteria de-

rived from traditional sequential program testing are also

presented to reduce the number of test cases. This method

is modularized so that many test techniques such as various

test criteria and complex constraint solvers can be applied.

This method is tested sound and efficient in experiments. It

is also applicable to the testing of other business process

languages with possible extension and adaption.

1 Introduction

With the advent of SOA age, business process design,

analysis, development and testing is becoming more and

more important. Business Process Execution Language for

Web Services [1] (abbreviated to BPEL in this paper) de-

fines a model and a grammar for describing the behavior of

a business process based on interactions between the pro-

cess and its partner processes.

Mission-critical business solutions need comprehensive

testing to ensure that it could perform correctly and reliably

in operation. However, in current industrial practice, busi-

ness process testing focuses on system and user acceptance

testing, whereas unit testing [8] has not gained much atten-

tion. This is strange, given the fact that unit testing has been

prevalent in object-oriented software development, and test

generation for both sequential and concurrent programs has

a long research history. A possible reason is that BPEL is

still a new language, although it is gaining momentum in

industry. We expect that BPEL process testing will draw

more attention along with the maturation and adoption of

SOA and BPEL specification. BPEL unit testing treats an

individual BPEL process as the unit under test, and tests its

internal logic thoroughly. This paper proposes a method of

test case generation for an individual BPEL process.

BPEL has built-in constructs expressing concurrency

and synchronization, thus can be seen as a kind of con-

current programs. In the area of testing concurrent pro-

grams, many existing research works are based on reach-

ability analysis. A common method is to construct a reach-

ability graph (RG) of the program under test [9]. It repre-

sents all the possible execution scenarios resulted from non-

deterministic run of the concurrent program. This method

is limited in practice due to state space explosion problem.

To overcome this problem, our approach will not construct a

RG and cover all the serialized paths; instead, we only cover

“basic paths”, which differ with each other by at least one

activity. Our approach is more applicable to programs with-

out complex variable sharing or process interaction patterns,

and conforms to BPEL programming common practices.

Some test generation methods based on path analysis

are also proposed for testing concurrent programs [6, 13].

These methods are applicable to programs consisting of

communicating processes or tasks, like those written in Ada

or CSP, but inappropriate for BPEL, which has neither ex-

plicit separation of individual processes (tasks) nor synchro-

nization via rendezvous.

Furthermore, BPEL has unique features in both syntax

(for example, flow with activity synchronization, join con-

dition) and semantics (for example, dead-path-elimination)

that need special treatment.

We introduce a novel BPEL test case generation method

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

in this paper. This method first uses an Extended Control

Flow Graph (XCFG) to represent a BPEL program, and

generates all the sequential test paths from XCFG. These

sequential test paths are then combined to form concurrent

test paths. Finally we adopt the idea of symbolic excution

method [7] to extract a set of constraints from the test paths

and employ a constraint solver BoNuS to solve the con-

straints of these test paths and generate feasible test cases.

This method can handle almost all the features of BPEL.

The paper is organized as follows. Some BPEL basics

and characteristics will be introduced in the next section,

then the proposed test generation method is elaborated in

section 3. Some experimental results are shown in Section

4. Section 5 follows with related works and the recapitula-

tion of their differences with our work. Section 6 concludes

the paper with future work predictions.

2 BPEL Language

2.1 BPEL Basics

Like any programming language, BPEL has typical con-

trol structures including sequence, switch, while, etc.

It defines pick to await the occurrence of one of a set of

events and then performs the enclosed activities, similar to

switch in branching different control flows. In addition,

BPEL uses the flow construct to provide concurrency and

synchronization. Synchronization between concurrent ac-

tivities is provided by means of links. Each link has a

source activity and a target activity. Furthermore, a tran-

sition condition (a Boolean expression) is associated with

each link and is evaluated when the source activity termi-

nates. As long as the transition condition of a link has not

been evaluated, the value of the link is undefined.

Each activity of a flow has a join condition. This condi-

tion consists of incoming links of the activity combined by

Boolean operators. Only when all the values of its incoming

links are defined and its join condition evaluates to true, an

activity can start. The join conditions can be defined by the

following BNF production:

c ::= TRUE|FALSE|l|¬c|c ∧ c|c ∨ c|(c)

where l is the name of a link. For example, ¬(¬l1 ∧ l2) ∨
¬l3 is a join condition. The join condition is set to be the

disjunction of the incoming edges by default.

As a consequence, if its join condition evaluates to

false then the activity never starts. If the attribute

suppressJoinFailure is set as "true", the semantics

of a false join condition are to skip the activity and set the

status of all outgoing links from that activity to negative

and propagate the link status along the entire paths instead

of throwing out an exception. This is called dead-path-

elimination (DPE).

This flow construct brings in a major complexity of

BPEL testing with its flexible control flow expressing pow-

ers and special semantics.

Figure 1 is an example of BPEL program describing a

loan approval process. This process begins by receiving a

loan request. For low amounts (less than $10,000) and low-

risk individuals, approval is automatic. For high amounts or

medium and high-risk individuals, each credit request needs

to be studied in greater detail. The use of risk assessment

and loan approval services is represented by invoke ele-

ments, which are contained within a flow, and their (poten-

tially concurrent) behavior is staged according to the depen-

dencies expressed by corresponding link elements. Note

that the transition conditions attached to the links determine

which links get activated, all the join conditions use default

setting. Finally the process responds with either a “loan ap-

proved” message or a “loan rejected” message. Because the

loan approval service can return a fault of type “loanPro-

cessFault”, a fault handler is provided in this process. When

a fault occurs, control is transferred to the fault handler,

where a reply element is used to return a fault response

of type unableToHandleRequest to the loan requester.

getVariableData('reque
st', 'amount')>=10000

getVariableData('reque
st', 'amount')<10000

getVariableData('riskAs

sessment', 'risk')='low'

getVariableData('riskAs

sessment', 'risk')!='low'

getVariableData('reque
st', 'amount')>=10000

getVariableData('reque
st', 'amount')<10000

getVariableData('riskAs

sessment', 'risk')='low'

getVariableData('riskAs

sessment', 'risk')!='low'

Figure 1. A BPEL Example

2.2 BPEL Characteristics

Here we list some BPEL characteristics that are impor-

tant to our test generation approach. Their relevance will be

discussed in later sections.

Event handlers

The whole process as well as each scope can be associ-

ated with a set of event handlers that are invoked concur-

rently if the corresponding event occurs. The business pro-

cess is enabled to receive such events concurrently with the

normal activity of the scope to which the event handler is

attached. This allows such events to occur (or not occur) at

an arbitrary number of times while the corresponding scope

is active. Particularly, a specific message event can occur

multiple times.

Shared variables and serializable scopes

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

When the variableAccessSerializable attribute is

set to “yes”, the scope provides concurrency control in gov-

erning access to shared variables between “threads” inside

a flow. For those shared variables that are not protected as

such, we assume that their read and write order is nondeter-

ministic at process design time, thus the order can be deter-

mined at test generation phase. This assumption is viable

because it conforms to common use (random, unprotected

access to shared variables is dangerous and not desired in

process design). However, general handling of shared vari-

ables protected by variableAccessSerializable at-

tribute is difficult and will not be covered in this paper.

Control cycle

BPEL specifies that a link must not create a control cy-

cle, that is, the source activity must not have the target ac-

tivity as a logically preceding activity, where an activity A

logically precedes an activity B if the initiation of B seman-

tically requires the completion of A. Therefore, directed

graphs created by links are always acyclic. So in BPEL pro-

gram there is no loop of control flow except “while” loop.

3 A Concurrent Path Analysis Approach

Our approach can be divided into four main steps or

tasks: XCFG construction, sequential paths enumeration,

sequential paths combination and constraint processing.

Some existing test coverage criteria and constraint solvers

can be used in our testing approach. The approach is visu-

alized in Figure 2.

3.1 Extended Control Flow Graph (XCFG) Con­
struction

The original flow graph of BPEL such as Figure 1 is a di-

rect visualization of the BPEL source code, but it is highly

compact and does not express dynamic execution alterna-

tives resulted from concurrency, DPE, exceptions and so

on. This is why an Extended Control Flow Graph (XCFG)

model is proposed to represent a BPEL program, for the

benefit of test path searching.

3.1.1 XCFG

A key point of XCFG is that all the BPEL activities are

stored in edges and each edge has a predicate attribute to

guard its execution. All the nodes in XCFG are homoge-

neous, instead of falling into different categories such as

control nodes and normal nodes. We give the definition of

XCFG similar to EFSM in [15]:

Definition 3.1 (XCFG). The XCFG is defined as a 4-tuple

〈N, E, s, f〉 where

• N is a set of nodes that represent the program states.

XCFG

Construction

BPEL Program

Sequential Path

Enumeration

XCFG Exclusive Edges

Sequential Paths

Sequential Path

Combination

Combination

of Paths

Comstraint

Processing

Test Case Set

Constraint

Solver

Test Criteria Exclusive Pairs

Process Operations

Input/Output Files

Internal Data

Predefined Processes

Figure 2. Test Method Workflow

• E is a set of edges that represent the transitions

between two nodes. Each transition is a tuple

〈cn, nn, pr, ac〉 where cn and nn denote the current

node and the next node of the transition respectively;

pr is a predicate, i.e., a set of conditional expressions.

The ac is an action, which records BPEL receiving ac-

tivities (the receiving direction of a 2-way invocation,

receive, etc) and assignment statements that give val-

ues to the variables.

• s is the start node and f is the final node, s, f ∈ N .

Note that since the XCFG model can express concurrent

flow, a state of an execution in XCFG may correspond to

more than one node. While in EFSM, each node represents

a state.

3.1.2 XCFG Transformation

As stated in Section 3.1.1, BPEL basic activities will be

mapped to XCFG edges. Now we discuss the detailed trans-

formation.

Normal logic

The most difficult and important part of the transforma-

tion is that of flow and link constructs. Each activity in-

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

side a flow could have two kinds of execution states at run-

time: executed and skipped, depending on the evaluation of

its join condition. Similarly each link could have two kinds

of execution states at runtime: normal and DPE, depending

on the evaluation of its transition condition. In transforma-

tion, each activity or link will be mapped to either a pair of

edges - one is normal edge, the other is dead edge, or a sin-

gle normal edge. The normal edge and its paired dead edge

(denoted as E and E′ respectively in this paper) connect

the same two nodes. The sketch map is shown in Figure 3,

where graph (a) is the original BPEL flow graph, graph (b)

is the resulting XCFG segment. For simplification the dead

edges are not shown.

Activity

. . .

. . .

Li1

Lo1

Lim

Lon

(a)

N1

N2

. . .

. . .

Ei1

Eo1

Eim

Eon

EA

(b)

Figure 3. Activity and Link Translation

For a BPEL activity, the ac element of a mapped normal

edge is the actions of the BPEL activity, while the ac of a

mapped dead edge is empty. The ac of an edge mapped

from a link is always empty. In addition, we need to intro-

duce a binary-domain variable es to denote the edge state.

We add the assignment es = TRUE to the normal edge’s

ac and es = FALSE to the dead edge’s ac.

For a normal edge EA mapped from a BPEL activity,

the predicate prA is translated from the join condition of

the activity by replacing the variable li with esli . For a

normal edge EL mapped from a BPEL link, the predicate

is: prL = trL ∧ esA, where trL is the transition condition

of the link, and A is the source activity of the link. The

predicate of a dead edge is the negation of its paired normal

edge.

If an activity has only one incoming link, the mapped

edges for the activity and the link can be merged, because

the state of the activity is defined by the state of the only in-

coming link. Consider the graph (a) of Figure 4, the transi-

tion condition of link L is trL, the join condition of activity

A is lA. Firstly according to the above descriptions, it can be

transformed into graph (b), where the dashed lines represent

dead edges. Then EA and EL, E′
A and E′

L can be merged

respectively, resulted in graph (c). The new edge EA+EL’s

predicate is pr = trL, while the new edge E′
A +E′

L’s pred-

icate is ¬pr. The ac of a new edge is the mergence of the

original two edges. If the join condition is ¬L, we need to

merge EA and E′
L, E′

A and EL respectively.

Since the external services are black-box for us, the ac

of an edge mapped from an invoke activity is a set of input

clauses for the modified variables and some user defined

assertions for test oracles.

A

L

(a)

N1

N2

N3

EL

EA

E′
L

E′
A

(b)

N1

N3

EL + EA E′
L + E′

A

(c)

Figure 4. Edges Mergence

The BPEL switch construct could be transformed as

follows. Firstly, a virtual entry node is added. Secondly

an edge is added for each case branch, where pr is the

expression of the branch, and ac is empty.

The pick is transformed in the same way as the switch,

because it is similar to switch in its semantics of selecting

one from several branches to execute. The difference is:

pick does not introduce predicate elements to the XCFG

edges; rather, it introduces action elements into the XCFG

edges.

The BPEL while could cause paths of infinite length. In

our work, the loop is transformed to a structure that has no

backward edges with 0-1 loop test criterion.

Event handling

The event handlers in a scope, as described in Section

2.2, add concurrent event processing “threads” to the nor-

mal activity of the contained scope. Therefore, this is simi-

lar in effect to a “thread” in a flow construct, and could be

transformed in a similar way. The difference is: event han-

dlers allow a specific message event to occur multiple times,

possibly in parallel. Multiple enablements of a single mes-

sage event will bring in complexity in variable sharing. To

simplify the discussion, this paper limits its maximum en-

ablement to one time. More complex handling will be our

future work.

Fault handling

For an activity that can throw a fault, we add an extra

edge from the destination node of the edge mapped from

the activity to the source node of the edge mapped from

the related faultHandlers activity. Often, the exception

handling logic will cause a termination of the whole pro-

gram, and the states of other running “threads” are undeter-

minate. In this paper, to simplify discussion and focus on

main points, we assume that the exception handling logic

will not affect the other running “threads”, which will run

to completion undisturbedly.

3.1.3 An XCFG Example

Figure 5 shows the XCFG of the example process in Figure

1. All dashed edges are dead edges. Ns and Nf represent

the virtual start and final node respectively.

Compared with the orignal BPEL flow graph, XCFG has

the following differences to facilitate test path searching.

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

Ns

N1

N2

N3

N4

N5

N6

Nf

Ne

E0

E9

E1E′
1

E2

E′
2

E3 E′
3

E4

E′
4

E5 E′
5

E6 E′
6

E7

E′
7

E8

E10

E0: receive

E1: receive-to-approver

link

E2: InvokeAssessor

E3: InvokeApprover

E4: assessor-to-approver

link

E5: Assign

E6: Assign-to-reply link

E7: approver-to-reply link

E8: fault thrown

E9: reply

E10: fault handler

Figure 5. XCFG

Firstly, it unravels the folded structures of BPEL (e.g. while

loop, dead path elimination) into unfolded structures that

are directly traversable in graph searching. Secondly, it

turns implicit, disjoint control flows (e.g. exception han-

dling) into explicit, connected control flows. Thirdly, it

eliminates all the controlling structures including while,

switch, flow and so on. All the nodes of XCFG are ho-

mogeneous. What control logic (switch, concurrent, etc) is

feasible will be determined based on data constraints anal-

ysis or simple rules.

3.2 Exclusive Edges

The relation of two edges in XCFG is determined by

their predicates. A simple relation is Exclusive. Two edges

are exclusive if they cannot be executed in parallel at run-

time. We use (E1, E2) to denote exclusive edges. Exclu-

sive edges can be identified during the XCFG construction.

There are two types of exclusive edges.

The first type exists between two edges s.t. one edge’s

terminus is the other one’s origin. Consider, for example,

a node of graph (a) in Figure 6 that has only one outgoing

normal edge. If the join condition of the original activity

is in a disjunctive form jc (i.e. the edge’s pr = jc): jc =
l1∨. . .∨lm where l1 . . . lm are the incoming links of the ac-

tivity, we have (¬jc∧l1)∨. . .∨(¬jc∧lm) = FALSE. This

implies that the dead activity edge E′
A is exclusive with all

the incoming normal link edges. Otherwise, if the join con-

dition is in conjunctive form, the normal activity edge EA

is exclusive with all the incoming dead edges. Similarly, for

a node of graph (b) with a single incoming edge, the dead

edge E′
I of the activity or the incoming link is exclusive

with all the outgoing normal edges.

The second type exists between two edges with the same

origin node. The following rules could be used to collect

this type of exclusive edges: 1) The common origin is a

N1

. . .
El1

EA

Elm

E′
A

E′
l1

E′
lm

(a)

N1

. . .

EI

El1

E′
I

Elm

E′
l1

E′
lm

(b)

Figure 6. The First Type Exclusive Edges

node mapped from a switch or pick activity; 2) One edge

is the other one’s paired dead edge; 3) One edge is the other

one’s exception edge; 4) The predicate conjunction of the

two edges is reported to be unsatisfiable by a constraint

solver.

Example 3.2. For example, in the XCFG of Figure 5,

(E1, E
′
3
),(E′

2
, E4) are exclusive edges of the first type.

If N3 corresponds to a switch node, then E4 and E5 are

exclusive. E′
1 and E1 are exclusive since E′

1 is the dead

edge of E1. Also E8 is exclusive with E7 since it’s an

exception edge. If the transition conditions of E1 and

E2 are "getVariableData(’request’, ’amount’)

>= 10000" and "getVariableData(’request’,

’amount’) <= 20000" respectively, then E′
1 and E′

2

are exclusive. This conclusion can be drawn by manual

calculation or invoking a constrain solver (Please refer to

Section 3.6.3 for more about constraint solving).

3.3 Sequential Path Enumeration

An XCFG is a directed graph and a sequential path is

defined as in the graph theory. Each path begins with the

start node and ends with the final node. Note the “sequential

path” here is only a graphical concept and it may be not a

executable one. With some restrictions (e.g. test criteria,

refer to section 3.5), a simple BFS (Breadth First Search) or

DFS (Depth First Search) algorithm could be used to find a

finite set of sequential paths.

The first type of exclusive edges are used to filter some

invalid sequential paths. For instance, any path that begins

with E0E1E
′
3

in Figure 5 is invalid for E1 and E′
3

are ex-

clusive.

3.4 Sequential Path Combination

The combination of m paths {p1, . . . , pm} means that

the state transitions of these m paths in XCFG should be

executed jointly at runtime while the state transition of the

other paths are not. We use p1| . . . |pm to denote the com-

bination of these m sequential paths. The value m is called

the scale of this combination. In other words, we can think

the test path p1| . . . |pm as the “concurrent” running of these

m paths at run time. Therefore, the combined paths could

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

be called concurrent test paths (note that this is actually a

simplified statement, the sequential paths of a combined

path are not necessarily concurrent, as can be seen later).

3.4.1 Exclusive Pairs

There may be some conflicts in combination. For instance,

if two paths correspond to different branch of a switch node,

they cannot run concurrently and thus cannot be combined.

we can use Exclusive Pairs to describe such a confliction.

Two sequential paths p1 and p2 that contain two exclusive

edges are Exclusive Pairs, denoted as (p1, p2).

3.4.2 Combination Algorithm

Since a set of sequential paths containing exclusive pairs

cannot be combined, we can use a dynamic combination

procedure to make use of exclusive pairs to filter many in-

valid combinations. The pseudo-code of the combination

algorithm is shown in Figure 7, where IsCombinable() is a

function that judges whether a sequential path can be com-

bined with a composed path by utilizing the exclusive pairs

rule set in Section 3.4.1. Here we use Test Set to store the

Sequential Paths SP [MAX PATH];
Test Set TS = {ǫ};
void PathComb(SP , TS) {

for(i = 0; i < MAX PATH; i + +){

TSi = φ;
for each element p of TS

if (IsCombinable(p, SP [i])) add p|SP [i] to TSi;
TS = TS ∪ TSi;

}

}

Figure 7. Sequential Path Combination

combined paths. The element ǫ is an empty path. For any

path p, we have p|ǫ = p. This element is only used for

convenience of the combination algorithm.

The naive combination will inevitably encounter path

number explosion. Let NSP to denote the number of se-

quential paths. We have to combine 2NSP times in the worst

situation. It will be beneficial to put some additional restric-

tions on the combination in order to reduce the combination

times.

3.4.3 Concurrent Path Scale Restriction

In fact, we do not need to combine arbitrary number of se-

quential paths from 1 to NSP . Consider C sequential paths

which originate from a node and can run concurrently, if

the origination node is inside a sequence, then only one

outgoing edge can be executed, if it’s inside a flow, each

normal edge or the paired dead edge must be executed. For

an exception node, the exception edge or the other follow-

ing activities will be executed. We can use the following

algorithm to estimate the Lower-bound CLB and the upper-

bound CUB of the scale. We use BPEL program to calculate

the values instead of XCFG.

First we estimate the lower-bound. Note that the param-

eter “node” designates a basic activity, a structured activity,

a scope construct, an event handlers construct, a fault han-

dlers construct, an OnMessage clause or a switch branch.

For the present, we omit compensation handlers. In count-

ing the child nodes of event handlers and pick, we’ll not

include OnAlarm clauses for simplification.

int CLB(node N){

switch(N){

case a basic activity without followers:
/* terminate, final reply */
return 1;

case scope, OnMessage, a switch branch:
return the CLB value of its sequence or flow child
node plus the CLB value of its event handlers child
nodes;

case flow, event handlers:
return the sum of CLB values of its child nodes;

case a basic activity:
return the sum of the CLB values of its followers;

otherwise:
/* sequence, switch, while, fault handlers, pick,
other basic activity */
return the minimum CLB of its child nodes;

}

}

The upper-bound CUB can be estimated with a similar

method. CLB(s) and CUB(s) return the lower- and upper-

bound of the valid test paths’ scale, where s is the start node.

The strategy of scale can be applied to our combination

algorithm by setting a restriction to each item p of TS. If

CUB ≪ NSP , the total number of test paths will be reduced

to (without consideration of exclusive pairs)

∑

CLB≤r≤CUB

(

NSP

r

)

= O(NSP
CUB).

Taking into account the effect of exclusive pairs, this num-

ber will decrease more (Please refer to Section 4 for exper-

imental results).

3.5 Test Coverage Criteria

The default test coverage criterion used in this paper is

to test all the possible paths, with a 0-1 criterion for the

loop construct. When testing big programs, we can make

use of some traditional test coverage criteria for sequential

programs to reduce the number of sequential paths. Here

we only describe two test criteria.

3.5.1 Basis Path Coverage

McCabe etc. [11] defined a structural complexity called Cy-

clomatic Complexity for sequential programs based on the

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

control flow graph (CFG). The complexity is defined to be
∑

(mi −1)+1 where mi is the out-degree of each decision

node. A subset of all the paths (the number equals to the cy-

clomatic complexity) is selected out to achieve a so-called

basis path coverage. This subset is called a basis path set.

This coverage criterion can use very few tests to cover all

the branches of the tested program.

This criterion can be extended for BPEL testing. We first

enumerate a basis path set of the XCFG, and then combine

these basis paths to concurrent test paths. The resulted cov-

erage can be called basis concurrent path coverage. The

size of this test set will be much smaller than that of the all

path coverage criterion.

Note due to the exclusive edges, most combinations are

infeasible. Thus the feasible test path may not cover all the

edges of XCFG. Please refer to Section 4 for experimental

results.

3.5.2 User Directed Path Coverage

Instead of using an existing test coverage criterion, users

may want to prescribe coverage goals by themselves. For

example, a common goal is to find all the test paths that

cover the exception handling logic. We can easily apply

these criteria to our method using the following steps. Some

experiment results can be found at Section 4.

1. Collect the sequential paths covering those edges into

a set CP , the other sequential paths which are not ex-

clusive with the elements of CP form a set NCP .

2. PathComb(CP , TS);

3. Remove ǫ from TS, then we will not get any combined

path that contains no paths from CP ;

4. PathComb(NCP , TS).

3.6 Constraint Processing

The combined test paths cannot be executed yet and not

all of these paths are feasible. A test path is infeasible if

there are no initial values of variables that can make the pro-

gram run along this path. All the variables in the paths are

described as a set of constraints and assignments. Whether

a test path is feasible can be determined by solving the con-

straints, and if there exists a solution, an initial set of values

could be assigned to the variables for test execution.

3.6.1 Variable Sharing Treatment

The XCFG expresses a partial order relation of some edges.

For those edges that have no ordering relation, i.e., concur-

rent, if these edges contain write and read operation to the

same variable, it will cause nondeterminism of execution.

To overcome this problem, a method is to predefine the r-w

order of involved edges. Consider an example of a program

N1

N2

N3

N4

f1(v); f2(v);

Figure 8. R­W order

segment in Figure 8. Suppose that at least one of the func-

tions f1 and f2 modify the variable v. If f1 should be exe-

cuted before f2, we can add an edge from N2 to N3 in the

XCFG to ensure this ordering is used in test data generation.

This edge is displayed as a dashed line in the figure.

If the r-w order is not predefined, suppose there are n

threads visiting a variable wherein m threads modify the

value, then there are m!(m+1)n−m possible r-w orderings,

and during test data generation, we will generate different

test data for the same test path according to different r-w or-

derings. However, uncontrolled variable sharing is prone to

program problems, thus should be avoided in programming.

3.6.2 Constraints Collection

The paper [14] introduces a backward substitution method

to collect the constraints from sequential paths. That

method processes the variable assignments one by one from

the last to the first, and replaces all the affected variables in

the predicates after the assignments. Then it collects all the

conditions as a constraint set. The solution for this constrain

set is the initial set of values for the variables that makes the

path feasible. For example, consider an assertion x >= 0

following an assignment x = x + 1, using the backward

substitution, we can get x + 1 >= 0.

We extend this method to our concurrent paths. Firstly,

the predicates of XCFG edges are stored to its nodes, as a

preparation for the main procedure of collecting constraints,

using the following “PredicatesConcentration” algorithm.

void PredicatesConcentration(node N , test path p){

for each outgoing edge E of N

if (E ∈ p) add prE to N ’s constraint set;
else add ¬prE to N ’s constraint set;

}

This algorithm is run for each concurrent path to process

all the nodes on this path, resulting in a path whose nodes

contain all the predicate information.

Then we use the backward substitution algorithm in Fig-

ure 9 to collect constraints for a test path. Recall that an

edge’s action is a list of assignments. We use each assign-

ment of an edge to substitute the affected variable in the

constraint sets of the nodes after the edge. The “nodes af-

ter an edge” include the terminus node of the edge and all

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

the nodes reachable from the terminus node. The main idea

of this algorithm is that an assignment cannot be processed

until all the followed assignments have been used for sub-

stitution.

Constraint Set CCC(test path p){

Constrain Set S = Φ;
N = the final node, mark N as ENABLED;
while(TRUE){

for each incoming edge E of N {
use the assignments of E, from last to first, to

substitute the affected variables in the con-
straint sets of the nodes after E;

mark E as PROCESSED;
if (E’s origin NE ’s all outgoing edges are PRO-

CESSED)
mark NE as ENABLED;

}
if (there exists an ENABLED node N ′ that have incom-

ing edges marked with not PROCESSED)
N = N ′;

else break; /* All the incoming edges of all the EN-
ABLED nodes become PROCESSED */

}
merge all the constraint sets of nodes to S;
return S;

}

Figure 9. Constrains Collection

This algorithm processes each edge exactly once, and

each edge’s assignments are used to process all the nodes

after the edge, therefore the time complexity of this algo-

rithm is O(ne) where n and e are the number of nodes and

edges respectively.

Example 3.3 (Constraints Collection). Consider a path in

Figure 10, the dotted edge E3 represents the XCFG edges

that are not contained in the path. E6 is an empty edge that

controls the r-w order. We use the C-like expressions to

N1

N2

N3

N4

N5

E1

E2E3

E4

E5

E6

E7

E1 = {@(x + y >= 0)};

E2 = {@(y > 0), x++};

E3 = {@(x + y < 3)};

E4 = {x++, y++};

E5 = {@(x < 5)};

E6 = {};

E7 = {@(x + 2y > 0)};

Figure 10. A Test Path

describe the edge predicates and actions, where those ex-

pressions followed by an “@” represent predicates.

The constraint sets of the nodes are:

S N1 = {x + Y >= 0, y > 0, !(x + y < 3)};

S N2 = {}; S N3 = {x < 5};

S N4 = {x + 2y > 0};

Then the substitution can begin. After processing these

edges in the order: E7, E4, E5, E6, E1, E2, we will get the

constraint set:

S = {x + y >= 0, y > 0, !(x + y < 3), x + 1

< 5, x + 1 + 1 + 2(y + 1) > 0}

We can get a suite of initial values for the variables {x,y}
by solving the constraint set S to make the BPEL program

executed along this path.

3.6.3 Constraint Solving

The purpose of constraint solving for program testing lies

in two aspects: judge the feasibility of a test path, and gen-

erate a set of initial values for the variables. The solver

used to check the feasibility should be complete, i.e., if the

constraint is satisfiable, the solver can definitely give us a

set of solutions; if the constraints set is unsatisfiable, the

tool can tell us that it cannot find any solution. For most

of BPEL programs, each constraint is a Boolean combina-

tion of primitive constraints, while a primitive constraint is

a Boolean variable or a comparison between two numeric

expressions. Deciding the satisfiability of this problem is

NP-complete. However, for many real instances, this prob-

lem can be solved in a reasonable amount of time. The

paper [14] introduces a extension of a Boolean satisfiabil-

ity checker BoNuS which calls LP Solve [2] to solve linear

numeric constraints. For example, we can apply this solver

to the result of Example 3.3 and get a solution {x = 1, y

= 3} in less than 1 millisecond on a Pentium IV 3GHz PC.

4 Experimental Results

We applied the proposed test generation method

to the example of Figure 1. We introduced

an error by replacing the transition condition

of the incoming link of InvokeAssessor with

getVariableData(’request’,’amount’) < 20000.

This modification introduced an additional concurrency

into the original program. Now the two links originating

from the Receive activity would become non-exclusive

because their transition conditions have overlay now so that

they could be enabled in parallel.

Firstly we tried to get all the possible test paths. We got

totally 14 sequential paths and CLB = CUB = 3. Then we

obtained 57 combined paths. Only 9 combinations’ scales

are 3. All these 9 paths are feasible and 4 feasible paths

cover the bug pattern E1|E2 that is deliberately introduced.

Then we used a user directed coverage criterion that pre-

scribes the coverage of the exception edge E8. Four sequen-

tial paths contain this edge. The valid test path number is

4.

At last we tried the basis path criterion. We got 9 basis

sequential paths and 3 valid test paths. Many combinations

are infeasible. Two feasible test paths cover the bug pattern

E1|E2.

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

5 Related Works

Testing concurrent programs presents new testing prob-

lems and difficulties that cannot be solved by regular se-

quential program testing techniques. Concurrent programs

are characterized by parallel computation and event syn-

chronization. There could be multiple control flows in a

program run, thus a test path could also be concurrent.

A Control Flow Graph (CFG) is a static representation of

a sequential program that represents all alternatives of con-

trol flow. Based on CFG, various forms of control-flow and

data-flow testing metrics have been defined, [3]. However,

for concurrent programs, to our best knowledge, there are

no such simple graphs for analysis. Petri-Nets cannot easily

represent data handling logic. The work [5] uses UML 2.0

activity diagram as a formal base for model analysis rather

than code analysis. For a specific programming language,

UML activity diagram tends to be limited in that some pro-

gram features cannot be expressed in a straightforward way.

For example, BPEL flow construct allows multiple-choice

style workflow pattern [10], which cannot be represented

by a simple UML activity structure.

Due to runtime randomness of the scheduler, commu-

nication, and other factors, the exact behavior of a con-

current program is usually nondeterministic. For the same

set of input data, several runs of the program can produce

different permutations of concurrent computation activities,

generally called interleavings. Some bugs, e.g. race con-

ditions and deadlocks, can only reveal themselves under a

specific interleaving that is hard to be forced to execution.

Most research works focus on generating all the interleav-

ings. The work [9] extends the notion of structural test-

ing criteria of sequential programs to concurrent programs,

and proposes a hierarchy of coverage criteria including con-

currency state coverage, state transition coverage and syn-

chronization coverage. These criteria are defined based on

selecting a set of paths from a concurrency graph This ap-

proach is limited in practice by state space explosion. The

paper [12] presents four different test generation methods,

to effectively generate a small set of test sequences that

cover all the nodes (edges) in a RG. Although this method

achieves test reduction, it still requires constructing a RG.

The paper [4] is a typical work on using timing heuristic to

force context switches at concurrent events based on some

decision function designed to find a well-classified concur-

rent bug patterns. It assumes that testers have created a good

test suite that covers program input, so it does not deal with

test case generation, but it is complementary to ours in that

the test cases derived by our method can be used as input to

their work.

Our approach doesn’t construct a RG or enumerate all

the interleavings; we only cover some “basic paths”. The

benefit of our approach is three-fold: 1) the state space ex-

plosion problem is avoided by some techniques. 2) it is es-

pecially applicable for programs in which concurrent com-

putation units have only very few or no shared variables

or other types of synchronization, thus there is little inter-

ference between the parallel activities and permutation is

useless. 3) Basic paths can be executed directly with the

support of test notation and execution environment . 4) Also

basic path could act as a foundation for advanced refinement

to detect more concurrency-related bugs. One refinement is

to rely on the runtime but add assertion-like business logic

constraints to enhance the verification logic in a test case

(effect: reduce the valid behavior space) . Another is to dis-

turb the runtime scheduler to force different interleavings,

as is done in [4] (effect: increase the chances of exercising

more interleavings). These two refinements are better to be

used in combination.

As far as we know, there are no other BPEL test case

generation work. Li et al. [8] proposes a BPEL unit test

framework, but does not touch test case generation.

6 Conclusion

In this paper, we have proposed a novel BPEL test case

generation method that can effectively handle BPEL con-

current features. An Extended Control Flow Graph (XCFG)

is defined to represent a BPEL program. Then all the possi-

ble sequential paths are searched from the XCFG, and com-

bined into concurrent test paths. We have introduced three

techniques: exclusive edges, exclusive pairs and combina-

tion scale strategy to alleviate the path number explosion

problem. We also provide a technique to process constraints

to generate test data for test paths.

A significant advantage of our method is that it is mod-

ularized so that it can be used together with other testing

technologies. For example, different test coverage criteria

are supported. In addition, it has the potential to be ap-

plied to other business process languages including BPMN,

WfXML, XPDL, XLANG, WSFL, etc 1, with possible

adaption and extension to deal with their specific features.

Also our work can be used in regression testing by reusing

the sequential paths and combined paths of the old version

of the program under test.

Future works are needed to improve the proposed

method. Firstly, more techniques are needed to rule out the

redundant path combinations for complex programs and im-

prove the combination algorithm. Secondly, some advanced

BPEL features (mainly the complex scope nesting) are left

to be explored in future.

1Process Markup Languages. http://www.ebpml.org/

status.htm

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

References

[1] Business Process Execution Language for Web Services

(BPEL4WS). Available at ftp://www6.software.

ibm.com/software/developer/library/

ws-bpel.pdf.
[2] M. Berkelaar. lp solve, a public domain Mixed Inte-

ger Linear Program solver, available at http://groups.

yahoo.com/group/lp_solve/.
[3] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J.

Zeil. A formal evaluation of data flow path selection criteria.

IEEE Transactions on Software Engineering, 15(11):1318–

1332, November 1989.
[4] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and

how to test them. In IPDPS’03, page 286, 2003.
[5] V. Garousi, L. Briand, and Y. Labiche. Control flow analysis

of UML 2.0 sequence diagrams. Technical report. Avail-

able at http://www.sce.carleton.ca/squall/

pubs/tech_report/TR_SCE-05-09.pdf.
[6] T. Katayama, E. Itoh, and Z. Furukawa. Test-case generation

for concurrent programs with the testing criteria using inter-

action sequences. In Proceedings of the 6th Asian-Pacific

Software Engineering Conference, pages 590–597, Decem-

ber 1999.
[7] J. C. King. Symbolic execution and program testing. Com-

munications of the ACM, July 1976.
[8] Z. Li, W. Sun, Z. B. Jiang, and X. Zhang. BPEL4WS

unit testing: framework and implementation. In Proceed-

ings of 2005 IEEE International Conference on Web Ser-

vices (ICWS’2005), volume 1, pages 103 – 110, 11-15 July

2005.
[9] R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural test-

ing of concurrent programs. IEEE Transactions on Software

Engineering, 18(3):206–215, March, 1992.
[10] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-

puszewski, and A. P. Barros. Workflow patterns. Distributed

and Parallel Databases, 14(1):5–51, 2003.
[11] A. H. Watson and T. J. McCabe. Structured Testing: A Test-

ing Methodology Using the Cyclomatic Complexity Metric.

Computer Systems Laboratory, National Institute of Stan-

dards and Technology, September 1996. NIST Special Pub-

lication 500-235.
[12] W. E. Wong, Y. Lei, and X. Ma. Effective generation of

test sequences for structural testing of concurrent programs.

In Proceedings of 10th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS’05),

pages 539–548, 2005.
[13] R. D. Yang and C. G. Chung. A path analysis approach

to concurrent program testing. Information and Software

Technology, 34(1):43–56, 1992.
[14] J. Zhang and X. Wang. A constraint solver and its ap-

plication to path feasibility analysis. International Jour-

nal of Software Engineering & Knowledge Engineering,

11(2):139–156, 2001.
[15] J. Zhang, C. Xu, and X. Wang. Path-oriented test data

generation using symbolic execution and constraint solv-

ing techniques. In Proceedings of the Second International

Conference on Software Engineering and Formal Methods

(SEFM’04), pages 242–250, 2004.

Appendix: Experiments

We tested the modified version of the BPEL program of

Figure 1. Here we list the results. We get 14 sequential

paths:

p1 = E0E1E3E7E9; p9 = E0E2E
′

4E3E8E10;

p2 = E0E1E3E8E10; p10 = E0E2E
′

4E
′

3E
′

7E9;

p3 = E0E
′

1E3E7E9; p11 = E0E2E5E6E9;

p4 = E0E
′

1E3E8E10; p12 = E0E2E
′

5E
′

6E9;

p5 = E0E
′

1E
′

3E
′

7E9; p13 = E0E
′

2E
′

4E
′

3E
′

7E9

p6 = E0E2E4E3E7E9; p14 = E0E
′

2E
′

4E3E7E9;

p7 = E0E2E4E3E8E10; p15 = E0E
′

2E
′

4E3E8E10;

p8 = E0E2E
′

4E3E7E9; p16 = E0E
′

2E
′

5E
′

6E9;

Using the combination algorithm in Figure 7, we get 57

combined paths: {ǫ, p1, p2, p3, p4, p5, p6, p1|p6, p3|p6,

p7, p2|p7, p4|p7, p8, p1|p8, p9, p2|p9, p10, p5|p10, p11,

p1|p11, p2|p11, p3|p11, p4|p11, p5|p11, p8|p11, p9|p11,

p10|p11, p1|p8|p11, p2|p9|p11, p5|p10|p11, p12, p1|p12,

p2|p12, p3|p12, p4|p12, p5|p12, p6|p12, p7|p12, p1|p6|p12,

p3|p6|p12, p2|p7|p12, p4|p7|p12, p13, p1|p13, p2|p13, p14,

p1|p14, p3|p14, p15, p2|p15, p4|p15, p16, p1|p16, p2|p16,

p14|p16, p1|p14|p16, p15|p16, p2|p15|p16}
Using the scale restriction technique proposed in Section

3.4.3, we get CLB = CUB = 3, and then 9 valid combina-

tions can be selected out of the total 57. The constraints of

all these paths can be solved by BoNuS in less than 1 mil-

lisecond. {p1|p8|p11, p2|p9|p11, p5|p10|p11, p1|p6|p12,

p3|p6|p12, p2|p7|p12, p4|p7|p12, p1|p14|p16, p2|p15|p16}
These combined test paths are represented in a not so

intuitive way. To facilitate understanding, an informal

representation based on the original BPEL flow graph

can be used. Here, we use (A1|A2) to denote that

two segments A1 and A2 run concurrently. We also use

abbreviated denotations of BPEL activities as follows:

Rc: Receive, Ap: Approver, ApE: Approver

Exception, As: Assessor, An: Assign,

Rp: Reply. Then the 9 combined test paths equal

to Rc-(Ap|As-An)-Rp, Rc-(ApE|As-An)-Rp,

Rc-As-An-Rp, Re-(Ap|As-Ap)-Rp, Rc-As-Ap-Rp,

Rc-(ApE|As-ApE)-Rp, Rc-As-ApE-Rp, Rc-Ap-Rp and

Rc-ApE-Rp respectively.

Suppose that instead of using the default all-path cover-

age goal, a user prescribes that he wants to cover only the

exception handling logic (which corresponds to E8 in the

XCFG graph). Then the sequential paths p2, p4, p7, p9, p15

contain E8. There are totally 4 test paths left for this cover-

age goal: {p2|p9|p11, p2|p7|p12, p4|p7|p12, p2|p15|p16}.

Suppose that a user chooses the basis-path-coverage,

then firstly we can get 9 basis sequential paths instead of

14:

{p1, p2, p3, p5, p6, p9, p11, p12, p16}

There are totally 3 valid combinations according to the scale

restriction: {p2|p9|p11, p1|p6|p12, p3|p6|p12}.

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

