# On the Difference Between Updating a Knowledge Base and Revising it

### Hirofumi Katsuno Alberto O. Mendelzon

NTT Basic Research laboratories, Tokyo, Japan University of Toronto, Toronto, Canada

Semantic-Web Seminar, CS, ISU

#### Outline

## Introduction

- 2 Revision Operators
  - Axioms
  - Semantics
  - Characterization

# Opdate Operators

- Possible Models Approach (Winslett)
- Axioms
- Characterization

# 4 Comparison of Revision and Update

- 5 Reasoning About Action
  - Winslett's Framework
  - Generalizations
- 6 Contraction and Erasure
  - Contraction
  - Erasure



- Revision:
  - Knowledge base  $\psi$  is to be revised by sentence  $\mu$ .

## • Revision:

- Knowledge base  $\psi$  is to be revised by sentence  $\mu.$
- Select from the models of  $\mu$  those that are "closest" to the models of  $\psi.$

## • Revision:

- Knowledge base  $\psi$  is to be revised by sentence  $\mu.$
- Select from the models of  $\mu$  those that are "closest" to the models of  $\psi.$
- These models determine a new theory, denoted by  $\psi \circ \mu$ .

## • Revision:

- Knowledge base  $\psi$  is to be revised by sentence  $\mu.$
- Select from the models of  $\mu$  those that are "closest" to the models of  $\psi.$
- These models determine a new theory, denoted by  $\psi \circ \mu$ .
- Update:

## • Revision:

- Knowledge base  $\psi$  is to be revised by sentence  $\mu.$
- Select from the models of  $\mu$  those that are "closest" to the models of  $\psi.$
- These models determine a new theory, denoted by  $\psi \circ \mu$ .
- Update:
  - Knowledge base  $\psi$  is to be updated by sentence  $\mu$ .

## • Revision:

- Knowledge base  $\psi$  is to be revised by sentence  $\mu.$
- Select from the models of  $\mu$  those that are "closest" to the models of  $\psi.$
- These models determine a new theory, denoted by  $\psi\circ\mu.$

## • Update:

- Knowledge base  $\psi$  is to be updated by sentence  $\mu$ .
- For each model M of  $\psi,$  select the set of models of  $\mu$  that are closest to M.

## • Revision:

- Knowledge base  $\psi$  is to be revised by sentence  $\mu.$
- Select from the models of  $\mu$  those that are "closest" to the models of  $\psi.$
- These models determine a new theory, denoted by  $\psi\circ\mu.$

## • Update:

- $\bullet\,$  Knowledge base  $\psi$  is to be updated by sentence  $\mu.$
- For each model M of  $\psi,$  select the set of models of  $\mu$  that are closest to M.
- The union of these sets of models determine a new theory, denoted  $\psi \diamond \mu.$

# General Examples

• Books On a Table and Robot:

3

<ロ> (日) (日) (日) (日) (日)

# General Examples

• Books On a Table and Robot:

• 
$$\psi = (a \land \neg b \land \neg c \land \neg d \land \neg e) \lor (\neg a \land \neg b \land c \land d \land e)$$

3

<ロ> (日) (日) (日) (日) (日)

# General Examples

### • Books On a Table and Robot:

• 
$$\psi = (a \land \neg b \land \neg c \land \neg d \land \neg e) \lor (\neg a \land \neg b \land c \land d \land e)$$

• 
$$\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$$

# General Examples

#### • Books On a Table and Robot:

• 
$$\psi = (a \land \neg b \land \neg c \land \neg d \land \neg e) \lor (\neg a \land \neg b \land c \land d \land e)$$

• 
$$\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$$

• For revision of  $\psi$  by  $\mu,$  choose models of  $\mu$  that are "closest" to the models of  $\psi.$ 

# General Examples

#### • Books On a Table and Robot:

• 
$$\psi = (a \land \neg b \land \neg c \land \neg d \land \neg e) \lor (\neg a \land \neg b \land c \land d \land e)$$

• 
$$\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$$

- For revision of  $\psi$  by  $\mu,$  choose models of  $\mu$  that are "closest" to the models of  $\psi.$
- With the distance been number of different propositional letters, only (¬a, ¬b, ¬c, ¬d, ¬e) survives.

# General Examples

#### • Books On a Table and Robot:

• 
$$\psi = (a \land \neg b \land \neg c \land \neg d \land \neg e) \lor (\neg a \land \neg b \land c \land d \land e)$$

- $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$
- For revision of  $\psi$  by  $\mu,$  choose models of  $\mu$  that are "closest" to the models of  $\psi.$
- With the distance been number of different propositional letters, only (¬a, ¬b, ¬c, ¬d, ¬e) survives.
- For update of ψ by μ choose, for each model of ψ the "closest" model of μ: Both models (a, b, c, d, e) and (¬a, ¬b, ¬c, ¬d, ¬e) survive.

# General Examples

- Books On a Table and Robot:
  - $\psi = (a \land \neg b \land \neg c \land \neg d \land \neg e) \lor (\neg a \land \neg b \land c \land d \land e)$
  - $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$
  - For revision of  $\psi$  by  $\mu,$  choose models of  $\mu$  that are "closest" to the models of  $\psi.$
  - With the distance been number of different propositional letters, only  $(\neg a, \neg b, \neg c, \neg d, \neg e)$  survives.
  - For update of ψ by μ choose, for each model of ψ the "closest" model of μ: Both models (a, b, c, d, e) and (¬a, ¬b, ¬c, ¬d, ¬e) survive.
- 5-Bit Unchanged Register:

- 4 伺 ト 4 ヨ ト - 4 ヨ ト - ヨ

# General Examples

- Books On a Table and Robot:
  - $\psi = (a \land \neg b \land \neg c \land \neg d \land \neg e) \lor (\neg a \land \neg b \land c \land d \land e)$
  - $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$
  - For revision of  $\psi$  by  $\mu,$  choose models of  $\mu$  that are "closest" to the models of  $\psi.$
  - With the distance been number of different propositional letters, only (¬a, ¬b, ¬c, ¬d, ¬e) survives.
  - For update of ψ by μ choose, for each model of ψ the "closest" model of μ: Both models (a, b, c, d, e) and (¬a, ¬b, ¬c, ¬d, ¬e) survive.
- 5-Bit Unchanged Register:
  - $\psi = 10000 \lor 00111$  (obtained by two readings of the register)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# General Examples

#### • Books On a Table and Robot:

• 
$$\psi = (a \land \neg b \land \neg c \land \neg d \land \neg e) \lor (\neg a \land \neg b \land c \land d \land e)$$

- $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$
- For revision of  $\psi$  by  $\mu,$  choose models of  $\mu$  that are "closest" to the models of  $\psi.$
- With the distance been number of different propositional letters, only (¬a, ¬b, ¬c, ¬d, ¬e) survives.
- For update of ψ by μ choose, for each model of ψ the "closest" model of μ: Both models (a, b, c, d, e) and (¬a, ¬b, ¬c, ¬d, ¬e) survive.

## • 5-Bit Unchanged Register:

- $\psi = 10000 \lor 00111$  (obtained by two readings of the register)
- $\mu = 11111 \lor 00000$  (obtained by analysis of circuitry)

# General Examples

### • Books On a Table and Robot:

• 
$$\psi = (a \land \neg b \land \neg c \land \neg d \land \neg e) \lor (\neg a \land \neg b \land c \land d \land e)$$

- $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$
- For revision of  $\psi$  by  $\mu,$  choose models of  $\mu$  that are "closest" to the models of  $\psi.$
- With the distance been number of different propositional letters, only (¬a, ¬b, ¬c, ¬d, ¬e) survives.
- For update of ψ by μ choose, for each model of ψ the "closest" model of μ: Both models (a, b, c, d, e) and (¬a, ¬b, ¬c, ¬d, ¬e) survive.

## • 5-Bit Unchanged Register:

- $\psi = 10000 \lor 00111$  (obtained by two readings of the register)
- $\mu = 11111 \lor 00000$  (obtained by analysis of circuitry)
- Revision of  $\psi$  by  $\mu$  gives 00000

# General Examples

### • Books On a Table and Robot:

• 
$$\psi = (a \land \neg b \land \neg c \land \neg d \land \neg e) \lor (\neg a \land \neg b \land c \land d \land e)$$

- $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$
- For revision of  $\psi$  by  $\mu,$  choose models of  $\mu$  that are "closest" to the models of  $\psi.$
- With the distance been number of different propositional letters, only  $(\neg a, \neg b, \neg c, \neg d, \neg e)$  survives.
- For update of ψ by μ choose, for each model of ψ the "closest" model of μ: Both models (a, b, c, d, e) and (¬a, ¬b, ¬c, ¬d, ¬e) survive.

## • 5-Bit Unchanged Register:

- $\psi = 10000 \lor 00111$  (obtained by two readings of the register)
- $\mu = 11111 \lor 00000$  (obtained by analysis of circuitry)
- Revision of  $\psi$  by  $\mu$  gives 00000
- Update of  $\psi$  by  $\mu$  gives 00000  $\vee$  11111.

• L: Finitary propositional language.

3

<ロ> (日) (日) (日) (日) (日)

- L: Finitary propositional language.
- $\Xi$ : Finite set of all propositional letters in L.

3

A (1) > A (2) > A

- L: Finitary propositional language.
- $\Xi$ : Finite set of all propositional letters in L.
- $\psi$ : Propositional formula representing the knowledge base.

- L: Finitary propositional language.
- $\Xi$ : Finite set of all propositional letters in L.
- $\psi$ : Propositional formula representing the knowledge base.

#### Interpretation

An **interpretation** is a mapping  $I : \Xi \rightarrow \{T, F\}$ .

- 4 目 ト 4 日 ト

- L: Finitary propositional language.
- $\Xi$ : Finite set of all propositional letters in L.
- $\psi$ : Propositional formula representing the knowledge base.

#### Interpretation

An **interpretation** is a mapping  $I : \Xi \rightarrow \{T, F\}$ .

• A model of  $\psi$  is an interpretation that makes  $\psi$  true.  $Mod(\psi)$  is the set of all models of  $\psi$ .

- 4 目 ト 4 日 ト

- L: Finitary propositional language.
- $\Xi$ : Finite set of all propositional letters in L.
- $\psi$ : Propositional formula representing the knowledge base.

#### Interpretation

An **interpretation** is a mapping  $I : \Xi \rightarrow \{T, F\}$ .

- A model of  $\psi$  is an interpretation that makes  $\psi$  true.  $Mod(\psi)$  is the set of all models of  $\psi$ .
  - If  $\psi$  is inconsistent, then  $Mod(\psi) = \emptyset$ .

- 4 伺 ト 4 ヨ ト - 4 ヨ ト - ヨ

- L: Finitary propositional language.
- $\Xi$ : Finite set of all propositional letters in L.
- $\psi$ : Propositional formula representing the knowledge base.

#### Interpretation

An **interpretation** is a mapping  $I : \Xi \rightarrow \{T, F\}$ .

• A model of  $\psi$  is an interpretation that makes  $\psi$  true.  $Mod(\psi)$  is the set of all models of  $\psi$ .

• If  $\psi$  is inconsistent, then  $Mod(\psi) = \emptyset$ .

•  $\phi$  is **complete** if, for all  $\mu$ ,  $\phi \rightarrow \mu$  or  $\phi \rightarrow \neg \mu$ .

Axioms

# Revision: Definition and Axioms

•  $\psi$ : Knowledge base

ヘロト 人間ト 人団ト 人団ト

- $\psi$ : Knowledge base
- $\mu$ : Sentence

イロト 不得下 イヨト イヨト 二日

- $\psi$ : Knowledge base
- $\mu$ : Sentence
- $\psi \circ \mu$ : **Revision of**  $\psi$  by  $\mu$ ; the knowledge base resulting by adding  $\mu$ to  $\psi$ .

< 回 > < 三 > < 三 >

- $\psi$ : Knowledge base
- $\mu$ : Sentence
- $\psi \circ \mu$ : **Revision of**  $\psi$  by  $\mu$ ; the knowledge base resulting by adding  $\mu$ to  $\psi$ .

#### Axioms

- 4 伺 ト 4 ヨ ト - 4 ヨ ト - ヨ

- $\psi$ : Knowledge base
- $\mu$ : Sentence
- $\psi \circ \mu$ : **Revision of**  $\psi$  by  $\mu$ ; the knowledge base resulting by adding  $\mu$ to  $\psi$ .

#### Axioms

**R1**  $\psi \circ \mu$  implies  $\mu$ ;

(4 個 ) (4 回 ) (4 回 ) (5 )

- $\psi$ : Knowledge base
- $\mu$ : Sentence
- $\psi \circ \mu$ : **Revision of**  $\psi$  by  $\mu$ ; the knowledge base resulting by adding  $\mu$ to  $\psi$ .

#### Axioms

**R1**  $\psi \circ \mu$  implies  $\mu$ ;

R2 If  $\psi \wedge \mu$  is satisfiable, then  $\psi \circ \mu \leftrightarrow \psi \wedge \mu$ ;

- $\psi$ : Knowledge base
- $\mu$ : Sentence
- $\psi \circ \mu$ : **Revision of**  $\psi$  by  $\mu$ ; the knowledge base resulting by adding  $\mu$ to  $\psi$ .

#### Axioms

**R1**  $\psi \circ \mu$  implies  $\mu$ ;

- **R2** If  $\psi \wedge \mu$  is satisfiable, then  $\psi \circ \mu \leftrightarrow \psi \wedge \mu$ ;
- **R3** If  $\mu$  is satisfiable, then  $\psi \circ \mu$  is satisfiable;

(김德) 김 글 이 귀 글 이 글

- $\psi$ : Knowledge base
- $\mu$ : Sentence
- $\psi \circ \mu$ : **Revision of**  $\psi$  by  $\mu$ ; the knowledge base resulting by adding  $\mu$ to  $\psi$ .

#### Axioms

**R1**  $\psi \circ \mu$  implies  $\mu$ ;

- **R2** If  $\psi \wedge \mu$  is satisfiable, then  $\psi \circ \mu \leftrightarrow \psi \wedge \mu$ ;
- **R3** If  $\mu$  is satisfiable, then  $\psi \circ \mu$  is satisfiable;
- R4  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$  imply  $\psi_1 \circ \mu_1 \leftrightarrow \psi_2 \circ \mu_2$ ;
# Revision: Definition and Axioms

- $\psi$ : Knowledge base
- $\mu$ : Sentence
- $\psi \circ \mu$ : **Revision of**  $\psi$  by  $\mu$ ; the knowledge base resulting by adding  $\mu$ to  $\psi$ .

#### Axioms

**R1**  $\psi \circ \mu$  implies  $\mu$ ;

- **R2** If  $\psi \wedge \mu$  is satisfiable, then  $\psi \circ \mu \leftrightarrow \psi \wedge \mu$ ;
- **R3** If  $\mu$  is satisfiable, then  $\psi \circ \mu$  is satisfiable;
- R4  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$  imply  $\psi_1 \circ \mu_1 \leftrightarrow \psi_2 \circ \mu_2$ ;
- **R5**  $(\psi \circ \mu) \land \phi$  implies  $\psi \circ (\mu \land \phi)$ ;

# Revision: Definition and Axioms

- $\psi$ : Knowledge base
- $\mu$ : Sentence
- $\psi \circ \mu$ : **Revision of**  $\psi$  by  $\mu$ ; the knowledge base resulting by adding  $\mu$ to  $\psi$ .

#### Axioms

R1  $\psi \circ \mu$  implies  $\mu$ ;

- **R2** If  $\psi \wedge \mu$  is satisfiable, then  $\psi \circ \mu \leftrightarrow \psi \wedge \mu$ ;
- **R3** If  $\mu$  is satisfiable, then  $\psi \circ \mu$  is satisfiable;
- R4  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$  imply  $\psi_1 \circ \mu_1 \leftrightarrow \psi_2 \circ \mu_2$ ;
- **R5**  $(\psi \circ \mu) \land \phi$  implies  $\psi \circ (\mu \land \phi)$ ;
- **R6** If  $(\psi \circ \mu) \land \phi$  is satisfiable, then  $\psi \circ (\mu \land \phi)$  implies  $(\psi \circ \mu) \land \phi$ .

# Revision: Definition and Axioms

- $\psi$ : Knowledge base
- $\mu$ : Sentence
- $\psi \circ \mu$ : **Revision of**  $\psi$  by  $\mu$ ; the knowledge base resulting by adding  $\mu$ to  $\psi$ .

#### Axioms

R1  $\psi \circ \mu$  implies  $\mu$ ;

- **R2** If  $\psi \wedge \mu$  is satisfiable, then  $\psi \circ \mu \leftrightarrow \psi \wedge \mu$ ;
- **R3** If  $\mu$  is satisfiable, then  $\psi \circ \mu$  is satisfiable;
- R4  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$  imply  $\psi_1 \circ \mu_1 \leftrightarrow \psi_2 \circ \mu_2$ ;
- **R5**  $(\psi \circ \mu) \land \phi$  implies  $\psi \circ (\mu \land \phi)$ ;
- **R6** If  $(\psi \circ \mu) \land \phi$  is satisfiable, then  $\psi \circ (\mu \land \phi)$  implies  $(\psi \circ \mu) \land \phi$ .
  - Intuitively, R5 and R6 say that revision should be accomplished with • minimal change. ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

Katsuno, Mendelzon (NTT, Toronto)

•  $\mathcal{I} = \{I : \Xi \to \{T, F\}\}$ : The set of all interpretations over L

イロト 不得下 イヨト イヨト 二日

•  $\mathcal{I} = \{I : \Xi \rightarrow \{T, F\}\}$ : The set of all interpretations over L

 $\mathsf{Pre-Order} \,\, \mathsf{over} \,\, \mathcal{I}$ 

A **pre-order**  $\leq$  **over**  $\mathcal{I}$  is a reflexive and transitive relation on  $\mathcal{I}$ .

イロト 不得下 イヨト イヨト 二日

•  $\mathcal{I} = \{I : \Xi \rightarrow \{T, F\}\}$ : The set of all interpretations over L

 $\mathsf{Pre-Order} \,\, \mathsf{over} \,\, \mathcal{I}$ 

A **pre-order**  $\leq$  **over**  $\mathcal{I}$  is a reflexive and transitive relation on  $\mathcal{I}$ .

• Write I < I' iff  $I \le I'$  and  $I' \le I$ .

- 4 伺 ト 4 ヨ ト 4 ヨ ト - ヨ

•  $\mathcal{I} = \{I : \Xi \rightarrow \{T, F\}\}$ : The set of all interpretations over L

 $\mathsf{Pre-Order} \,\, \mathsf{over} \,\, \mathcal{I}$ 

A **pre-order**  $\leq$  **over**  $\mathcal{I}$  is a reflexive and transitive relation on  $\mathcal{I}$ .

- Write I < I' iff  $I \le I'$  and  $I' \le I$ .
- $\leq$  is **total** if, for all  $I, J \in \mathcal{I}$ ,  $I \leq J$  or  $J \leq I$ .

(4 個 ) (4 回 ) (4 回 ) (5 )

•  $\mathcal{I} = \{I : \Xi \rightarrow \{T, F\}\}$ : The set of all interpretations over L

 $\mathsf{Pre-Order} \,\, \mathsf{over} \,\, \mathcal{I}$ 

A **pre-order**  $\leq$  **over**  $\mathcal{I}$  is a reflexive and transitive relation on  $\mathcal{I}$ .

- Write I < I' iff  $I \le I'$  and  $I' \le I$ .
- $\leq$  is **total** if, for all  $I, J \in \mathcal{I}, I \leq J$  or  $J \leq I$ .
- Assume that to each  $\psi$ , there is assigned a pre-order  $\leq_{\psi}$  over  $\mathcal{I}$ .

(4 個 ) (4 回 ) (4 回 ) (5 )

•  $\mathcal{I} = \{I : \Xi \rightarrow \{T, F\}\}$ : The set of all interpretations over L

 $\mathsf{Pre-Order} \,\, \mathsf{over} \,\, \mathcal{I}$ 

A **pre-order**  $\leq$  **over**  $\mathcal{I}$  is a reflexive and transitive relation on  $\mathcal{I}$ .

- Write I < I' iff  $I \le I'$  and  $I' \le I$ .
- $\leq$  is **total** if, for all  $I, J \in \mathcal{I}, I \leq J$  or  $J \leq I$ .
- Assume that to each  $\psi$ , there is assigned a pre-order  $\leq_{\psi}$  over  $\mathcal{I}$ .

#### Faithful (Persistent) Assignment

The assignment  $\psi \mapsto \leq_{\psi}$  is **faithful** or **persistent** if

•  $\mathcal{I} = \{I : \Xi \rightarrow \{T, F\}\}$ : The set of all interpretations over L

 $\mathsf{Pre-Order} \text{ over } \mathcal{I}$ 

A **pre-order**  $\leq$  **over**  $\mathcal{I}$  is a reflexive and transitive relation on  $\mathcal{I}$ .

- Write I < I' iff  $I \le I'$  and  $I' \le I$ .
- $\leq$  is **total** if, for all  $I, J \in \mathcal{I}$ ,  $I \leq J$  or  $J \leq I$ .
- Assume that to each  $\psi$ , there is assigned a pre-order  $\leq_{\psi}$  over  $\mathcal{I}$ .

#### Faithful (Persistent) Assignment

The assignment  $\psi \mapsto \leq_{\psi}$  is **faithful** or **persistent** if

•  $I, I' \in Mod(\psi)$  implies  $I \not\leq_{\psi} I'$ ;

•  $\mathcal{I} = \{I : \Xi \rightarrow \{T, F\}\}$ : The set of all interpretations over L

 $\mathsf{Pre-Order} \text{ over } \mathcal{I}$ 

A **pre-order**  $\leq$  **over**  $\mathcal{I}$  is a reflexive and transitive relation on  $\mathcal{I}$ .

- Write I < I' iff  $I \le I'$  and  $I' \le I$ .
- $\leq$  is **total** if, for all  $I, J \in \mathcal{I}, I \leq J$  or  $J \leq I$ .
- Assume that to each  $\psi$ , there is assigned a pre-order  $\leq_{\psi}$  over  $\mathcal{I}$ .

#### Faithful (Persistent) Assignment

The assignment  $\psi \mapsto \leq_{\psi}$  is **faithful** or **persistent** if

- $I, I' \in Mod(\psi)$  implies  $I \not\leq_{\psi} I'$ ;
- 2  $I \in Mod(\psi)$  and  $I' \notin Mod(\psi)$  imply  $I <_{\psi} I'$ ;

•  $\mathcal{I} = \{I : \Xi \rightarrow \{T, F\}\}$ : The set of all interpretations over L

 $\mathsf{Pre-Order} \text{ over } \mathcal{I}$ 

A **pre-order**  $\leq$  **over**  $\mathcal{I}$  is a reflexive and transitive relation on  $\mathcal{I}$ .

- Write I < I' iff  $I \le I'$  and  $I' \le I$ .
- $\leq$  is **total** if, for all  $I, J \in \mathcal{I}, I \leq J$  or  $J \leq I$ .
- Assume that to each  $\psi$ , there is assigned a pre-order  $\leq_{\psi}$  over  $\mathcal{I}$ .

#### Faithful (Persistent) Assignment

The assignment  $\psi \mapsto \leq_{\psi}$  is **faithful** or **persistent** if

- $I, I' \in Mod(\psi)$  implies  $I \not\leq_{\psi} I'$ ;
- 2  $I \in Mod(\psi)$  and  $I' \notin Mod(\psi)$  imply  $I <_{\psi} I'$ ;

# Semantic Characterization of Revision

• Let  $\mathcal{M} \subseteq \mathcal{I}$ . *I* is minimal in  $\mathcal{M}$  with respect to  $\leq_{\psi}$  if  $I \in \mathcal{M}$  and there does not exist  $I' \in \mathcal{M}$ , such that  $I' <_{\psi} I$ .

# Semantic Characterization of Revision

- Let  $\mathcal{M} \subseteq \mathcal{I}$ . *I* is minimal in  $\mathcal{M}$  with respect to  $\leq_{\psi}$  if  $I \in \mathcal{M}$  and there does not exist  $I' \in \mathcal{M}$ , such that  $I' <_{\psi} I$ .
- Min(M,≤<sub>ψ</sub>): Set of all I ∈ M, that are minimal in M with respect to ≤<sub>ψ</sub>.

# Semantic Characterization of Revision

- Let  $\mathcal{M} \subseteq \mathcal{I}$ . *I* is minimal in  $\mathcal{M}$  with respect to  $\leq_{\psi}$  if  $I \in \mathcal{M}$  and there does not exist  $I' \in \mathcal{M}$ , such that  $I' <_{\psi} I$ .
- Min(M,≤<sub>ψ</sub>): Set of all I ∈ M, that are minimal in M with respect to ≤<sub>ψ</sub>.

#### Theorem

A revision operator  $\circ$  satisfies Axioms R1-R6 iff there exists a faithful assignment that maps each KB  $\psi$  to a total pre-order  $\leq_{\psi}$ , such that  $Mod(\psi \circ \mu) = Min(Mod(\mu), \leq_{\psi})$ .

(4 個 ) (4 回 ) (4 回 ) (5 )

•  $\psi$ : A knowledge base

- $\psi$ : A knowledge base
- $\mu$ : A new sentence

3

(日) (同) (日) (日) (日)

- $\psi$ : A knowledge base
- $\mu$ : A new sentence
- $\diamond_{pma}$ : PMA operator; write  $\psi \diamond_{pma} \mu$

(4 同) (4 日) (4 日)

- $\psi$ : A knowledge base
- $\mu$ : A new sentence
- $\diamond_{pma}$ : PMA operator; write  $\psi \diamond_{pma} \mu$
- The difference between two interpretations I and J in  $\mathcal{I}$  is given by

 $\operatorname{Diff}(I,J) = \{p \in \Xi : I(p) \neq J(p)\}.$ 

・ 伊 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- $\psi$ : A knowledge base
- $\mu$ : A new sentence
- $\diamond_{pma}$ : PMA operator; write  $\psi \diamond_{pma} \mu$
- The difference between two interpretations I and J in  $\mathcal{I}$  is given by

$$\operatorname{Diff}(I,J) = \{ p \in \Xi : I(p) \neq J(p) \}.$$

An interpretation J<sub>1</sub> is closer to an interpretation / than is an interpretation J<sub>2</sub>, written J<sub>1</sub> ≤<sub>I,pma</sub> J<sub>2</sub> iff Diff(I, J<sub>1</sub>) ⊆ Diff(I, J<sub>2</sub>).

- $\psi$ : A knowledge base
- $\mu$ : A new sentence
- $\diamond_{pma}$ : PMA operator; write  $\psi \diamond_{pma} \mu$
- The difference between two interpretations I and J in  $\mathcal{I}$  is given by

$$\operatorname{Diff}(I,J) = \{p \in \Xi : I(p) \neq J(p)\}.$$

- An interpretation J<sub>1</sub> is closer to an interpretation / than is an interpretation J<sub>2</sub>, written J<sub>1</sub> ≤<sub>I,pma</sub> J<sub>2</sub> iff Diff(I, J<sub>1</sub>) ⊆ Diff(I, J<sub>2</sub>).
- $\bullet$  The set of models that is "closest" to I in  ${\rm Mod}(\mu)$  according to this definition is

 $\operatorname{Incorporate}(\operatorname{Mod}(\mu), I) = \operatorname{Min}(\operatorname{Mod}(\mu), \leq_{I, \operatorname{pma}}).$ 

- 4 伺 ト 4 ヨ ト 4 ヨ ト - ヨ

- $\psi$ : A knowledge base
- $\mu$ : A new sentence
- $\diamond_{pma}$ : PMA operator; write  $\psi \diamond_{pma} \mu$
- The difference between two interpretations I and J in  $\mathcal{I}$  is given by

$$\operatorname{Diff}(I,J) = \{p \in \Xi : I(p) \neq J(p)\}.$$

- An interpretation J<sub>1</sub> is closer to an interpretation / than is an interpretation J<sub>2</sub>, written J<sub>1</sub> ≤<sub>I,pma</sub> J<sub>2</sub> iff Diff(I, J<sub>1</sub>) ⊆ Diff(I, J<sub>2</sub>).
- $\bullet$  The set of models that is "closest" to I in  ${\rm Mod}(\mu)$  according to this definition is

$$\operatorname{Incorporate}(\operatorname{Mod}(\mu), I) = \operatorname{Min}(\operatorname{Mod}(\mu), \leq_{I, \text{pma}}).$$

$$\operatorname{Mod}(\psi \diamond_{\operatorname{pma}} \mu) = \bigcup_{I \in \operatorname{Mod}(\psi)} \operatorname{Incorporate}(\operatorname{Mod}(\mu), I).$$

•  $L = \{b, m\}$  for "book on the table", "magazine on the table"

(日) (同) (日) (日) (日)

•  $L = \{b, m\}$  for "book on the table", "magazine on the table" •  $\psi \leftrightarrow (b \land \neg m) \lor (\neg b \land m)$ 

イロト イポト イヨト イヨト

- $L = \{b, m\}$  for "book on the table", "magazine on the table" •  $\psi \leftrightarrow (b \land \neg m) \lor (\neg b \land m)$
- $\mu \leftrightarrow b$

イロト 不得 トイヨト イヨト 二日

- $L = \{b, m\}$  for "book on the table", "magazine on the table"
- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- $\mu \leftrightarrow b$
- $I = \langle F, T \rangle$  is a model of  $\psi$ ;

• 
$$I' = \langle T, F \rangle$$
 is a model of  $\psi$ ;

イロト 不得 トイヨト イヨト 二日

- L = {b, m} for "book on the table", "magazine on the table"
  ψ ↔ (b ∧ ¬m) ∨ (¬b ∧ m)
- $\mu \leftrightarrow b$
- *I* = ⟨*F*, *T*⟩ is a model of ψ; *J*<sub>1</sub> = ⟨*T*, *T*⟩, *J*<sub>2</sub> = ⟨*T*, *F*⟩ are models of μ;

(김희) 김 글 (김) (글) (글)

- $L = \{b, m\}$  for "book on the table", "magazine on the table"
- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- $\mu \leftrightarrow b$
- $I = \langle F, T \rangle$  is a model of  $\psi$ ;
  - $J_1 = \langle T, T \rangle, J_2 = \langle T, F \rangle$  are models of  $\mu$ ;
  - $\text{Diff}(I, J_1) = \{b\} \subseteq \{b, m\} = \text{Diff}(I, J_2);$
- $I' = \langle T, F \rangle$  is a model of  $\psi$ ;
  - $J_1 = \langle T, T \rangle, J_2 = \langle T, F \rangle$  are models of  $\mu$ ;
  - $\operatorname{Diff}(I', J_2) = \emptyset \subseteq \{m\} = \operatorname{Diff}(I', J_1);$

- $L = \{b, m\}$  for "book on the table", "magazine on the table"
- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- $\mu \leftrightarrow b$
- $I = \langle F, T \rangle$  is a model of  $\psi$ ;
  - $J_1 = \langle T, T \rangle, J_2 = \langle T, F \rangle$  are models of  $\mu$ ;
  - $\text{Diff}(I, J_1) = \{b\} \subseteq \{b, m\} = \text{Diff}(I, J_2);$
  - $J_1 \leq_{I,\text{pma}} J_2$ .
- $I' = \langle T, F \rangle$  is a model of  $\psi$ ;
  - J<sub>1</sub> = (T, T), J<sub>2</sub> = (T, F) are models of μ;
  - $\operatorname{Diff}(I', J_2) = \emptyset \subseteq \{m\} = \operatorname{Diff}(I', J_1);$
  - $J_2 \leq_{I',\text{pma}} J_1$ .

- $L = \{b, m\}$  for "book on the table", "magazine on the table"
- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- $\mu \leftrightarrow b$
- $I = \langle F, T \rangle$  is a model of  $\psi$ ;
  - $J_1 = \langle T, T \rangle, J_2 = \langle T, F \rangle$  are models of  $\mu$ ;
  - $\text{Diff}(I, J_1) = \{b\} \subseteq \{b, m\} = \text{Diff}(I, J_2);$
  - $J_1 \leq_{I,\text{pma}} J_2$ .
- $I' = \langle T, F \rangle$  is a model of  $\psi$ ;
  - $J_1 = \langle T, T \rangle, J_2 = \langle T, F \rangle$  are models of  $\mu$ ;
  - $\operatorname{Diff}(I', J_2) = \emptyset \subseteq \{m\} = \operatorname{Diff}(I', J_1);$
  - $J_2 \leq_{I',\text{pma}} J_1$ .
- $\operatorname{Mod}(\psi \diamond_{\operatorname{pma}} \mu) = \{J_1, J_2\};\$

- $L = \{b, m\}$  for "book on the table", "magazine on the table"
- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- $\mu \leftrightarrow b$
- $I = \langle F, T \rangle$  is a model of  $\psi$ ;
  - $J_1 = \langle T, T \rangle, J_2 = \langle T, F \rangle$  are models of  $\mu$ ;
  - $\text{Diff}(I, J_1) = \{b\} \subseteq \{b, m\} = \text{Diff}(I, J_2);$
  - $J_1 \leq_{I,\text{pma}} J_2$ .
- $I' = \langle T, F \rangle$  is a model of  $\psi$ ;
  - $J_1 = \langle T, T \rangle, J_2 = \langle T, F \rangle$  are models of  $\mu$ ;
  - $\operatorname{Diff}(I', J_2) = \emptyset \subseteq \{m\} = \operatorname{Diff}(I', J_1);$
  - $J_2 \leq_{I',\text{pma}} J_1$ .
- $\operatorname{Mod}(\psi \diamond_{\operatorname{pma}} \mu) = \{J_1, J_2\};\$
- $\psi \diamond_{\text{pma}} \mu \leftrightarrow b$ .

#### Axioms

#### Postulates for Update

•  $\psi \diamond \mu$ : Result of updating KB  $\psi$  with sentence  $\mu$ .

- 4 同 1 4 日 1 4 日 1

#### Axioms

#### Postulates for Update

•  $\psi \diamond \mu$ : Result of updating KB  $\psi$  with sentence  $\mu$ .

#### Postulates for Update

イロト 不得下 イヨト イヨト 二日

#### Axioms

#### Postulates for Update

•  $\psi \diamond \mu$ : Result of updating KB  $\psi$  with sentence  $\mu$ .

#### Postulates for Update

U1  $\psi \diamond \mu$  implies  $\mu$ ;

イロト 不得 トイヨト イヨト 二日

#### Postulates for Update

•  $\psi \diamond \mu$ : Result of updating KB  $\psi$  with sentence  $\mu$ .

#### Postulates for Update

U1  $\psi \diamond \mu$  implies  $\mu$ ;

U2 If  $\psi$  implies  $\mu$ , then  $\psi \diamond \mu$  is equivalent to  $\psi$ ;

### Postulates for Update

•  $\psi \diamond \mu$ : Result of updating KB  $\psi$  with sentence  $\mu$ .

#### Postulates for Update

- U1  $\psi \diamond \mu$  implies  $\mu$ ;
- U2 If  $\psi$  implies  $\mu$ , then  $\psi \diamond \mu$  is equivalent to  $\psi$ ;
- U3 If both  $\psi$  and  $\mu$  are satisfiable, then  $\psi \diamond \mu$  is satisfiable;
#### Axioms

### Postulates for Update

•  $\psi \diamond \mu$ : Result of updating KB  $\psi$  with sentence  $\mu$ .

### Postulates for Update

- U1  $\psi \diamond \mu$  implies  $\mu$ ;
- U2 If  $\psi$  implies  $\mu$ , then  $\psi \diamond \mu$  is equivalent to  $\psi$ ;
- U3 If both  $\psi$  and  $\mu$  are satisfiable, then  $\psi \diamond \mu$  is satisfiable;
- U4 If  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$ , then  $\psi_1 \diamond \mu_1 \leftrightarrow \psi_2 \diamond \mu_2$ ;

# Postulates for Update

•  $\psi \diamond \mu$ : Result of updating KB  $\psi$  with sentence  $\mu$ .

### Postulates for Update

U1  $\psi \diamond \mu$  implies  $\mu$ ;

- U2 If  $\psi$  implies  $\mu$ , then  $\psi \diamond \mu$  is equivalent to  $\psi$ ;
- U3 If both  $\psi$  and  $\mu$  are satisfiable, then  $\psi \diamond \mu$  is satisfiable;
- U4 If  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$ , then  $\psi_1 \diamond \mu_1 \leftrightarrow \psi_2 \diamond \mu_2$ ;

U5  $(\psi \diamond \mu) \land \phi$  implies  $\psi \diamond (\mu \land \phi)$ ;

# Postulates for Update

•  $\psi \diamond \mu$ : Result of updating KB  $\psi$  with sentence  $\mu$ .

### Postulates for Update

U1  $\psi \diamond \mu$  implies  $\mu$ ;

- U2 If  $\psi$  implies  $\mu$ , then  $\psi \diamond \mu$  is equivalent to  $\psi$ ;
- U3 If both  $\psi$  and  $\mu$  are satisfiable, then  $\psi \diamond \mu$  is satisfiable;
- U4 If  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$ , then  $\psi_1 \diamond \mu_1 \leftrightarrow \psi_2 \diamond \mu_2$ ;
- U5  $(\psi \diamond \mu) \land \phi$  implies  $\psi \diamond (\mu \land \phi)$ ;
- U6 If  $\psi \diamond \mu_1$  implies  $\mu_2$  and  $\psi \diamond \mu_2$  implies  $\mu_1$ , then  $\psi \diamond \mu_1 \leftrightarrow \psi \diamond \mu_2$ ;

# Postulates for Update

•  $\psi \diamond \mu$ : Result of updating KB  $\psi$  with sentence  $\mu$ .

### Postulates for Update

U1  $\psi \diamond \mu$  implies  $\mu$ ;

- U2 If  $\psi$  implies  $\mu$ , then  $\psi \diamond \mu$  is equivalent to  $\psi$ ;
- U3 If both  $\psi$  and  $\mu$  are satisfiable, then  $\psi \diamond \mu$  is satisfiable;
- U4 If  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$ , then  $\psi_1 \diamond \mu_1 \leftrightarrow \psi_2 \diamond \mu_2$ ;
- U5  $(\psi \diamond \mu) \land \phi$  implies  $\psi \diamond (\mu \land \phi)$ ;
- U6 If  $\psi \diamond \mu_1$  implies  $\mu_2$  and  $\psi \diamond \mu_2$  implies  $\mu_1$ , then  $\psi \diamond \mu_1 \leftrightarrow \psi \diamond \mu_2$ ;
- U7 If  $\psi$  is complete, then  $(\psi \diamond \mu_1) \land (\psi \diamond \mu_2)$  implies  $\psi \diamond (\mu_1 \lor \mu_2)$ ;

#### Axioms

## Postulates for Update

•  $\psi \diamond \mu$ : Result of updating KB  $\psi$  with sentence  $\mu$ .

### Postulates for Update

U1  $\psi \diamond \mu$  implies  $\mu$ ;

- U2 If  $\psi$  implies  $\mu$ , then  $\psi \diamond \mu$  is equivalent to  $\psi$ ;
- U3 If both  $\psi$  and  $\mu$  are satisfiable, then  $\psi \diamond \mu$  is satisfiable;
- U4 If  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$ , then  $\psi_1 \diamond \mu_1 \leftrightarrow \psi_2 \diamond \mu_2$ ;
- U5  $(\psi \diamond \mu) \land \phi$  implies  $\psi \diamond (\mu \land \phi)$ ;
- U6 If  $\psi \diamond \mu_1$  implies  $\mu_2$  and  $\psi \diamond \mu_2$  implies  $\mu_1$ , then  $\psi \diamond \mu_1 \leftrightarrow \psi \diamond \mu_2$ ;
- U7 If  $\psi$  is complete, then  $(\psi \diamond \mu_1) \land (\psi \diamond \mu_2)$  implies  $\psi \diamond (\mu_1 \lor \mu_2)$ ;
- U8  $(\psi_1 \lor \psi_2) \diamond \mu \leftrightarrow (\psi_1 \diamond \mu) \lor (\psi_2 \diamond \mu)$

• U1-U5 for Update correspond to R1-R5 for Revision;

< □ > < 同 > < 回 > < 回 > < □ > <

- U1-U5 for Update correspond to R1-R5 for Revision;
- If  $\psi$  is consistent, then U2 is weaker than R2.

- 4 同 1 4 日 1 4 日 1

- U1-U5 for Update correspond to R1-R5 for Revision;
- If  $\psi$  is consistent, then U2 is weaker than R2.

#### Persistent Inconsistency Lemma

If an update operator  $\diamond$  satisfies U2 and  $\psi$  is inconsistent, then  $\psi \diamond \mu$  is inconsistent, for all  $\mu.$ 

- U1-U5 for Update correspond to R1-R5 for Revision;
- If  $\psi$  is consistent, then U2 is weaker than R2.

#### Persistent Inconsistency Lemma

If an update operator  $\diamond$  satisfies U2 and  $\psi$  is inconsistent, then  $\psi \diamond \mu$  is inconsistent, for all  $\mu.$ 

• Once an inconsistency is introduced, there is no way to eliminate it;

- U1-U5 for Update correspond to R1-R5 for Revision;
- If  $\psi$  is consistent, then U2 is weaker than R2.

#### Persistent Inconsistency Lemma

If an update operator  $\diamond$  satisfies U2 and  $\psi$  is inconsistent, then  $\psi \diamond \mu$  is inconsistent, for all  $\mu.$ 

- Once an inconsistency is introduced, there is no way to eliminate it;
- Not quite so: there is no way to eliminate it using update!

伺下 イヨト イヨト

- U1-U5 for Update correspond to R1-R5 for Revision;
- If  $\psi$  is consistent, then U2 is weaker than R2.

#### Persistent Inconsistency Lemma

If an update operator  $\diamond$  satisfies U2 and  $\psi$  is inconsistent, then  $\psi \diamond \mu$  is inconsistent, for all  $\mu.$ 

- Once an inconsistency is introduced, there is no way to eliminate it;
- Not quite so: there is no way to eliminate it using update!
- An inconsistent KB is the result of an inadequate theory. It can be remedied with revision, by adding new knowledge that supersedes the inconsistency.

- U1-U5 for Update correspond to R1-R5 for Revision;
- If  $\psi$  is consistent, then U2 is weaker than R2.

#### Persistent Inconsistency Lemma

If an update operator  $\diamond$  satisfies U2 and  $\psi$  is inconsistent, then  $\psi \diamond \mu$  is inconsistent, for all  $\mu.$ 

- Once an inconsistency is introduced, there is no way to eliminate it;
- Not quite so: there is no way to eliminate it using update!
- An inconsistent KB is the result of an inadequate theory. It can be remedied with revision, by adding new knowledge that supersedes the inconsistency.
- It cannot be repaired by update since a change of worlds when there is no available world to start with leaves us with no worlds!

12 / 28

- ∢ 🗇 ト

• Think of the meanings of U6-U8 in terms of models.

3

(日) (同) (日) (日)

• Think of the meanings of U6-U8 in terms of models.

#### Lemma

If an update operator  $\diamond$  satisfies U2 and U8, then  $\psi \wedge \mu$  implies  $\psi \diamond \mu.$ 

3

• Think of the meanings of U6-U8 in terms of models.

#### Lemma

If an update operator  $\diamond$  satisfies U2 and U8, then  $\psi \land \mu$  implies  $\psi \diamond \mu$ .

 By our example, update operators do not satisfy in general that ψ ◊ μ implies ψ ∧ μ when ψ is consistent with μ.

伺下 イヨト イヨト

• Think of the meanings of U6-U8 in terms of models.

#### Lemma

If an update operator  $\diamond$  satisfies U2 and U8, then  $\psi \land \mu$  implies  $\psi \diamond \mu$ .

 By our example, update operators do not satisfy in general that ψ ◊ μ implies ψ ∧ μ when ψ is consistent with μ.

#### Monotonicity Lemma

If an update operator  $\diamond$  satisfies U8 and  $\phi$  implies  $\psi,$  then  $\phi \diamond \mu$  implies  $\psi \diamond \mu.$ 

(4月) (4日) (4日) 日

• Think of the meanings of U6-U8 in terms of models.

#### Lemma

If an update operator  $\diamond$  satisfies U2 and U8, then  $\psi \land \mu$  implies  $\psi \diamond \mu$ .

 By our example, update operators do not satisfy in general that ψ ◊ μ implies ψ ∧ μ when ψ is consistent with μ.

### Monotonicity Lemma

If an update operator  $\diamond$  satisfies U8 and  $\phi$  implies  $\psi,$  then  $\phi \diamond \mu$  implies  $\psi \diamond \mu.$ 

• Monotonicity is undesirable for theory revision.

・ 伊 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Think of the meanings of U6-U8 in terms of models.

#### Lemma

If an update operator  $\diamond$  satisfies U2 and U8, then  $\psi \land \mu$  implies  $\psi \diamond \mu$ .

 By our example, update operators do not satisfy in general that ψ ◊ μ implies ψ ∧ μ when ψ is consistent with μ.

#### Monotonicity Lemma

If an update operator  $\diamond$  satisfies U8 and  $\phi$  implies  $\psi,$  then  $\phi \diamond \mu$  implies  $\psi \diamond \mu.$ 

• Monotonicity is undesirable for theory revision.

Gärdenfors's Impossibility Theorem

There is no non-trivial revision operator that satisfies monotonicity together with R1-R4.

イロト 不得 トイヨト イヨト 二日

• Think of the meanings of U6-U8 in terms of models.

#### Lemma

If an update operator  $\diamond$  satisfies U2 and U8, then  $\psi \land \mu$  implies  $\psi \diamond \mu$ .

• By our example, update operators do not satisfy in general that  $\psi \diamond \mu$  implies  $\psi \land \mu$  when  $\psi$  is consistent with  $\mu$ .

### Monotonicity Lemma

If an update operator  $\diamond$  satisfies U8 and  $\phi$  implies  $\psi,$  then  $\phi \diamond \mu$  implies  $\psi \diamond \mu.$ 

• Monotonicity is undesirable for theory revision.

Gärdenfors's Impossibility Theorem

There is no non-trivial revision operator that satisfies monotonicity together with R1-R4.

• Update operators do not satisfy R2: Result not applicable. E . . .

Katsuno, Mendelzon (NTT, Toronto)

Updating vs. Revising a KB

October 12, 2008 13 / 28

#### Axioms

### Generalized Closeness

•  $I \mapsto \leq_I$ : Map from interpretations to pre-orders.

イロト 不得下 イヨト イヨト 二日

- $I \mapsto \leq_I$ : Map from interpretations to pre-orders.
- $I \mapsto \leq_I$  is **faithful** if, for all  $I \in \mathcal{I}$ ,

 $I \neq J$  implies  $I <_I J$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

- $I \mapsto \leq_I$ : Map from interpretations to pre-orders.
- $I \mapsto \leq_I$  is **faithful** if, for all  $I \in \mathcal{I}$ ,

 $I \neq J$  implies  $I <_I J$ .

• This new "closeness" generalizes the particular measure used in the PMA.

(4月) (4日) (4日) 日

- $I \mapsto \leq_I$ : Map from interpretations to pre-orders.
- $I \mapsto \leq_I$  is **faithful** if, for all  $I \in \mathcal{I}$ ,

 $I \neq J$  implies  $I <_I J$ .

- This new "closeness" generalizes the particular measure used in the PMA.
- Postulates exactly capture all update operators defined by partial pre-order.

- $I \mapsto \leq_I$ : Map from interpretations to pre-orders.
- $I \mapsto \leq_I$  is **faithful** if, for all  $I \in \mathcal{I}$ ,

 $I \neq J$  implies  $I <_I J$ .

- This new "closeness" generalizes the particular measure used in the PMA.
- Postulates exactly capture all update operators defined by partial pre-order.
- The classes of operators defined by partial orders and partial pre-orders coincide.

Update Operators Characterization

### Characterization of Update Operators

#### Theorem

Let  $\diamond$  be an update operator. TFAE:

イロト 不得下 イヨト イヨト 二日

Update Operators Characterization

### Characterization of Update Operators

#### Theorem

Let  $\diamond$  be an update operator. TFAE:



3

イロト 不得 トイヨト イヨト

# Characterization of Update Operators

#### Theorem

Let  $\diamond$  be an update operator. TFAE:

- satisfies U1-U8;
- Provide the exists a faithful assignment that maps each interpretation *I* to a partial pre-order ≤<sub>I</sub>, such that

$$\operatorname{Mod}(\psi \diamond \mu) = \bigcup_{I \in \operatorname{Mod}(\psi)} \operatorname{Min}(\operatorname{Mod}(\mu), \leq_I).$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

# Characterization of Update Operators

#### Theorem

Let  $\diamond$  be an update operator. TFAE:

● satisfies U1-U8;

Provide the exists a faithful assignment that maps each interpretation *I* to a partial pre-order ≤<sub>I</sub>, such that

$$\operatorname{Mod}(\psi \diamond \mu) = \bigcup_{I \in \operatorname{Mod}(\psi)} \operatorname{Min}(\operatorname{Mod}(\mu), \leq_I).$$

O There exists a persistent assignment that maps each interpretation I to a partial order ≤<sub>I</sub>, such that

$$\operatorname{Mod}(\psi \diamond \mu) = \bigcup_{I \in \operatorname{Mod}(\psi)} \operatorname{Min}(\operatorname{Mod}(\mu), \leq_I).$$

• Update uses partial pre-orders; Revision uses total pre-orders;

3

▲ 伊 ▶ ▲ 王 ▶ ▲ 王

- Update uses partial pre-orders; Revision uses total pre-orders;
  - Revision can accommodate partial pre-orders;

A (1) > A (2) > A (2)

• Update uses partial pre-orders; Revision uses total pre-orders;

- Revision can accommodate partial pre-orders;
- Possible to design class of update operators on total pre-orders: If we replace U6-U7 by

If  $\psi$  is complete and  $(\psi \diamond \mu) \land \phi$  is satisfiable, then  $\psi \diamond (\mu \land \phi)$  implies  $(\psi \diamond \mu) \land \phi$ .

the total pre-order analog of Update Theorem may be proven.

- 4 伺 ト 4 ヨ ト - 4 ヨ ト - ヨ

• Update uses partial pre-orders; Revision uses total pre-orders;

- Revision can accommodate partial pre-orders;
- Possible to design class of update operators on total pre-orders: If we replace U6-U7 by

If  $\psi$  is complete and  $(\psi \diamond \mu) \land \phi$  is satisfiable, then  $\psi \diamond (\mu \land \phi)$  implies  $(\psi \diamond \mu) \land \phi$ .

the total pre-order analog of Update Theorem may be proven.

• Update is "local", a different ordering is induced by each model of  $\psi$ , whereas revision is "global", only one ordering is induced by the whole of  $\psi$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Action: (Precondition, Postcondition)

イロト イポト イヨト イヨト

- Action: (Precondition, Postcondition)
- Precondition: What the world must be like to execute action

- Action: (Precondition, Postcondition)
- Precondition: What the world must be like to execute action
- Postcondition: Immediate consequences resulting from action

- Action: (Precondition, Postcondition)
- Precondition: What the world must be like to execute action
- Postcondition: Immediate consequences resulting from action
- Using updates:
  - Postcondition = New knowledge
  - Preconditions = Current KB
## Reasoning About Action (Winslett)

- Action: (Precondition, Postcondition)
- Precondition: What the world must be like to execute action
- Postcondition: Immediate consequences resulting from action
- Using updates:
  - Postcondition = New knowledge
  - Preconditions = Current KB
  - The effect on KB  $\psi$  of performing action  $(\alpha,\beta)$  is

$$\begin{cases} \psi, & \text{if } \psi \neq \alpha \\ \psi \diamond \beta, & \text{otherwise} \end{cases}$$

Katsuno, Mendelzon (NTT, Toronto)

• We could refine the model by revising or updating the KB in more complicated ways in case

- We could refine the model by revising or updating the KB in more complicated ways in case
  - the action is carried out,

- We could refine the model by revising or updating the KB in more complicated ways in case
  - the action is carried out,
  - the precondition is found false or

- We could refine the model by revising or updating the KB in more complicated ways in case
  - the action is carried out,
  - the precondition is found false or
  - the truth of the precondition cannot be determined.

- We could refine the model by revising or updating the KB in more complicated ways in case
  - the action is carried out,
  - the precondition is found false or
  - the truth of the precondition cannot be determined.
- Maybe (?) as follows:

$$\begin{cases} (\psi \circ \alpha) \diamond \beta, & \text{if } \psi \to \alpha \\ \psi \circ \neg \alpha, & \text{if } \psi \to \neg \alpha \\ \psi \bullet \alpha, & \text{if } \psi \neq \alpha \text{ and } \psi \neq \neg \alpha \end{cases}$$

• is **contraction** to be discussed next.

• **Contraction**: Change of belief or knowledge state induced by the loss of confidence in some sentence.

3

- 4 目 ト 4 日 ト

- **Contraction**: Change of belief or knowledge state induced by the loss of confidence in some sentence.
- $\psi \bullet \mu$ : New knowledge base obtained from old KB  $\psi$  by contracting  $\mu$ .

- **Contraction**: Change of belief or knowledge state induced by the loss of confidence in some sentence.
- $\psi \bullet \mu$ : New knowledge base obtained from old KB  $\psi$  by contracting  $\mu$ .

Rationality Postulates for Contraction (Alchourrón et al.)

- **Contraction**: Change of belief or knowledge state induced by the loss of confidence in some sentence.
- $\psi \bullet \mu$ : New knowledge base obtained from old KB  $\psi$  by contracting  $\mu$ .

Rationality Postulates for Contraction (Alchourrón et al.)

C1  $\psi$  implies  $\psi \bullet \mu$ ;

< ロ ト < 同 ト < 三 ト < 三 ト - 三

- **Contraction**: Change of belief or knowledge state induced by the loss of confidence in some sentence.
- $\psi \bullet \mu$ : New knowledge base obtained from old KB  $\psi$  by contracting  $\mu$ .

Rationality Postulates for Contraction (Alchourrón et al.)

C1  $\psi$  implies  $\psi \bullet \mu$ ;

C2 If  $\psi$  does not imply  $\mu$ , then  $\psi \bullet \mu$  is equivalent to  $\psi$ ;

< ロ ト < 同 ト < 三 ト < 三 ト - 三

- **Contraction**: Change of belief or knowledge state induced by the loss of confidence in some sentence.
- $\psi \bullet \mu$ : New knowledge base obtained from old KB  $\psi$  by contracting  $\mu$ .

Rationality Postulates for Contraction (Alchourrón et al.)

- C1  $\psi$  implies  $\psi \bullet \mu$ ;
- C2 If  $\psi$  does not imply  $\mu$ , then  $\psi \bullet \mu$  is equivalent to  $\psi$ ;
- C3 If  $\mu$  is not a tautology, then  $\psi \bullet \mu$  does not imply  $\mu$ ;

- **Contraction**: Change of belief or knowledge state induced by the loss of confidence in some sentence.
- $\psi \bullet \mu$ : New knowledge base obtained from old KB  $\psi$  by contracting  $\mu$ .

Rationality Postulates for Contraction (Alchourrón et al.)

C1  $\psi$  implies  $\psi \bullet \mu$ ;

- C2 If  $\psi$  does not imply  $\mu$ , then  $\psi \bullet \mu$  is equivalent to  $\psi$ ;
- C3 If  $\mu$  is not a tautology, then  $\psi \bullet \mu$  does not imply  $\mu$ ;
- C4 If  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$ , then  $\psi_1 \bullet \mu_1 \leftrightarrow \psi_2 \bullet \mu_2$ ;

- **Contraction**: Change of belief or knowledge state induced by the loss of confidence in some sentence.
- $\psi \bullet \mu$ : New knowledge base obtained from old KB  $\psi$  by contracting  $\mu$ .

Rationality Postulates for Contraction (Alchourrón et al.)

C1  $\psi$  implies  $\psi \bullet \mu$ ;

- C2 If  $\psi$  does not imply  $\mu$ , then  $\psi \bullet \mu$  is equivalent to  $\psi$ ;
- C3 If  $\mu$  is not a tautology, then  $\psi \bullet \mu$  does not imply  $\mu$ ;
- C4 If  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$ , then  $\psi_1 \bullet \mu_1 \leftrightarrow \psi_2 \bullet \mu_2$ ;
- C5  $(\psi \bullet \mu) \land \mu$  implies  $\psi$ .

#### Contraction

## Contraction and Revision

Theorem (Alchourrón et al.)

Katsuno, Mendelzon (NTT, Toronto)

## Contraction and Revision

#### Theorem (Alchourrón et al.)

$$\psi \bullet \mu \leftrightarrow \psi \lor (\psi \circ \neg \mu),$$

then the operator • satisfies C1-C5.

# Contraction and Revision

#### Theorem (Alchourrón et al.)

$$\psi \bullet \mu \leftrightarrow \psi \lor (\psi \circ \neg \mu),$$

then the operator • satisfies C1-C5.

② Given a contraction operator • that satisfies C1-C4, if we define a revision operator ∘ by

$$\psi \circ \mu \leftrightarrow (\psi \bullet \neg \mu) \land \mu,$$

then the operator  $\circ$  satisfies R1-R4.

• Erasure is to contraction as update is to revision.

- Erasure is to contraction as update is to revision.
- Erasing  $\mu$  from  $\psi$ : Add models to  $\psi$ ; for each model I of  $\psi$  we add those models closest to I in which  $\mu$  is false.

- Erasure is to contraction as update is to revision.
- Erasing μ from ψ: Add models to ψ; for each model I of ψ we add those models closest to I in which μ is false.
- Given update ◇, erasure ◆ is defined by

$$\psi \bullet \mu \leftrightarrow \psi \lor (\psi \diamond \neg \mu)$$

- Erasure is to contraction as update is to revision.
- Erasing μ from ψ: Add models to ψ; for each model I of ψ we add those models closest to I in which μ is false.
- Given update ◇, erasure ◆ is defined by

$$\psi \bullet \mu \leftrightarrow \psi \lor (\psi \diamond \neg \mu)$$

If  $\diamond$  satisfies U1-U4 and U8,  $\bullet$  satisfies

- Erasure is to contraction as update is to revision.
- Erasing μ from ψ: Add models to ψ; for each model I of ψ we add those models closest to I in which μ is false.
- Given update ◇, erasure ◆ is defined by

$$\psi \bullet \mu \leftrightarrow \psi \lor (\psi \diamond \neg \mu)$$

### If $\diamond$ satisfies U1-U4 and U8, $\bullet$ satisfies

E1  $\psi$  implies  $\psi \bullet \mu$ ;

- Erasure is to contraction as update is to revision.
- Erasing μ from ψ: Add models to ψ; for each model I of ψ we add those models closest to I in which μ is false.
- Given update ◇, erasure ◆ is defined by

$$\psi \bullet \mu \leftrightarrow \psi \lor (\psi \diamond \neg \mu)$$

## If $\diamond$ satisfies U1-U4 and U8, $\bullet$ satisfies

```
E1 \psi implies \psi \bullet \mu;
```

E2 If  $\psi$  implies  $\neg \mu$ , then  $\psi \bullet \mu$  is equivalent to  $\psi$ ;

- Erasure is to contraction as update is to revision.
- Erasing μ from ψ: Add models to ψ; for each model I of ψ we add those models closest to I in which μ is false.
- Given update ◇, erasure ◆ is defined by

$$\psi \bullet \mu \leftrightarrow \psi \lor (\psi \diamond \neg \mu)$$

### If $\diamond$ satisfies U1-U4 and U8, $\bullet$ satisfies

- E1  $\psi$  implies  $\psi \bullet \mu$ ;
- E2 If  $\psi$  implies  $\neg \mu$ , then  $\psi \bullet \mu$  is equivalent to  $\psi$ ;
- E3 If  $\psi$  is satisfiable and  $\mu$  is not a tautology, then  $\psi \bullet \mu$  does not imply  $\mu$ ;

- Erasure is to contraction as update is to revision.
- Erasing μ from ψ: Add models to ψ; for each model I of ψ we add those models closest to I in which μ is false.
- Given update ◇, erasure ◆ is defined by

$$\psi \bullet \mu \leftrightarrow \psi \lor (\psi \diamond \neg \mu)$$

### If $\diamond$ satisfies U1-U4 and U8, $\bullet$ satisfies

- E1  $\psi$  implies  $\psi \bullet \mu$ ;
- E2 If  $\psi$  implies  $\neg \mu$ , then  $\psi \bullet \mu$  is equivalent to  $\psi$ ;
- E3 If  $\psi$  is satisfiable and  $\mu$  is not a tautology, then  $\psi \bullet \mu$  does not imply  $\mu$ ;
- E4 If  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$ , then  $\psi_1 \bullet \mu_1 \leftrightarrow \psi_2 \bullet \mu_2$ ;  $(\psi \bullet \mu) \land \mu$  implies  $\psi$ ;

- Erasure is to contraction as update is to revision.
- Erasing μ from ψ: Add models to ψ; for each model I of ψ we add those models closest to I in which μ is false.
- Given update ◇, erasure ◆ is defined by

$$\psi \bullet \mu \leftrightarrow \psi \lor (\psi \diamond \neg \mu)$$

### If $\diamond$ satisfies U1-U4 and U8, $\bullet$ satisfies

- E1  $\psi$  implies  $\psi \bullet \mu$ ;
- E2 If  $\psi$  implies  $\neg \mu$ , then  $\psi \bullet \mu$  is equivalent to  $\psi$ ;
- E3 If  $\psi$  is satisfiable and  $\mu$  is not a tautology, then  $\psi \bullet \mu$  does not imply  $\mu$ ;
- E4 If  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$ , then  $\psi_1 \bullet \mu_1 \leftrightarrow \psi_2 \bullet \mu_2$ ;  $(\psi \bullet \mu) \land \mu$  implies  $\psi$ ;
- E5  $(\psi \bullet \mu) \land \mu$  implies  $\psi$ ;

- Erasure is to contraction as update is to revision.
- Erasing μ from ψ: Add models to ψ; for each model I of ψ we add those models closest to I in which μ is false.
- Given update ◇, erasure ◆ is defined by

$$\psi \bullet \mu \leftrightarrow \psi \lor (\psi \diamond \neg \mu)$$

### If $\diamond$ satisfies U1-U4 and U8, $\bullet$ satisfies

- E1  $\psi$  implies  $\psi \bullet \mu$ ;
- E2 If  $\psi$  implies  $\neg \mu$ , then  $\psi \bullet \mu$  is equivalent to  $\psi$ ;
- E3 If  $\psi$  is satisfiable and  $\mu$  is not a tautology, then  $\psi \bullet \mu$  does not imply  $\mu$ ;
- E4 If  $\psi_1 \leftrightarrow \psi_2$  and  $\mu_1 \leftrightarrow \mu_2$ , then  $\psi_1 \bullet \mu_1 \leftrightarrow \psi_2 \bullet \mu_2$ ;  $(\psi \bullet \mu) \land \mu$  implies  $\psi$ ;
- E5  $(\psi \bullet \mu) \land \mu$  implies  $\psi$ ;
- E8  $(\psi_1 \lor \psi_2) \bullet \mu$  is equivalent to  $(\psi_1 \bullet \mu) \lor (\psi_2 \bullet \mu)$ .

• Erasing  $\mu$  means the world may have changed in such a way that  $\mu$  is not true.

- $\bullet\,$  Erasing  $\mu$  means the world may have changed in such a way that  $\mu$  is not true.
- Contracting  $\mu$  means our description of the set of possible worlds must be adjusted to the possibility of  $\mu$  being false.

- $\bullet\,$  Erasing  $\mu$  means the world may have changed in such a way that  $\mu$  is not true.
- Contracting  $\mu$  means our description of the set of possible worlds must be adjusted to the possibility of  $\mu$  being false.
- E2 is weaker than C2: Contraction of μ does not influence a KB ψ if ψ does not imply μ, but erasure of μ might modify ψ if ψ does not imply ¬μ.

- Erasing  $\mu$  means the world may have changed in such a way that  $\mu$  is not true.
- Contracting  $\mu$  means our description of the set of possible worlds must be adjusted to the possibility of  $\mu$  being false.
- E2 is weaker than C2: Contraction of  $\mu$  does not influence a KB  $\psi$  if  $\psi$  does not imply  $\mu$ , but erasure of  $\mu$  might modify  $\psi$  if  $\psi$  does not imply  $\neg \mu$ .
- Erasure needs the disjunctive rule E8, but contraction does not.

• 
$$\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$$

Ξ

(日) (四) (三) (三) (三)

- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- Suppose that satisfies  $\psi \not \to \mu$  implies  $\psi \bullet \mu \leftrightarrow \psi$

イロト 不得 トイヨト イヨト 二日

- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- $\bullet$  Suppose that  $\bullet$  satisfies  $\psi \not \to \mu$  implies  $\psi \bullet \mu \leftrightarrow \psi$
- Clearly,  $\psi \not\rightarrow b$ .

イロト 不得 トイヨト イヨト 二日

- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- $\bullet$  Suppose that  $\bullet$  satisfies  $\psi \not \to \mu$  implies  $\psi \bullet \mu \leftrightarrow \psi$
- Clearly,  $\psi \not\rightarrow b$ .
- Therefore  $\psi \bullet b \leftrightarrow \psi$ .

イロト 不得 トイヨト イヨト 二日

- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- Suppose that satisfies  $\psi \not \to \mu$  implies  $\psi \bullet \mu \leftrightarrow \psi$
- Clearly,  $\psi \not\rightarrow b$ .
- Therefore  $\psi \bullet b \leftrightarrow \psi$ .
- Intuitively, b is already questionable by  $\psi,$  so contracting b does not change  $\psi.$

(김德) 김 글 이 귀 글 이 글
• 
$$\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$$

臣

・ロト ・ 一下・ ・ ヨト・

- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- Suppose  $\psi \bullet \mu \leftrightarrow \psi \lor (\psi \diamond_{\text{pma}} \neg \mu)$

3

- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- Suppose  $\psi \bullet \mu \leftrightarrow \psi \lor (\psi \diamond_{\text{pma}} \neg \mu)$
- Then  $\psi \bullet b \leftrightarrow (b \land \neg m) \lor \neg b$ .

イロト 不得下 イヨト イヨト 二日

- $\psi \leftrightarrow (b \wedge \neg m) \vee (\neg b \wedge m)$
- Suppose  $\psi \bullet \mu \leftrightarrow \psi \lor (\psi \diamond_{\text{pma}} \neg \mu)$
- Then  $\psi \bullet b \leftrightarrow (b \land \neg m) \lor \neg b$ .
- Intuitively, ψ represents M<sub>1</sub> = {b, ¬m}, M<sub>2</sub> = {¬b, m}. When b is erased, M<sub>1</sub> changes to M<sub>1</sub> and M<sub>3</sub> = {¬b, ¬m}. On the other hand, M<sub>2</sub> stays fixed. Thus, we end up with {M<sub>1</sub>, M<sub>3</sub>, M<sub>2</sub>} which is described by ψ ◆ b.

Contraction and Erasure Erasure

Intuitive Difference Between Contraction and Erasure: Symmetric Erasure

• Contracting b means nothing has changed, but if you believed b, make sure it is contracted.

Contraction and Erasure Frasure

Intuitive Difference Between Contraction and Erasure: Symmetric Erasure

- Contracting b means nothing has changed, but if you believed b, make sure it is contracted.
- Erasing b means that if b held, then we are uncertain about b.

Contraction and Erasure Frasure

Intuitive Difference Between Contraction and Erasure: Symmetric Erasure

- Contracting b means nothing has changed, but if you believed b, make sure it is contracted.
- Erasing b means that if b held, then we are uncertain about b.
- Symmetric Erasure: Suppose the state has changed so that the location of the book is unpredictable. Symmetric Erasure allows us to update the knowledge base accordingly.

Contraction and Erasure Erasure

## Erasure and Update (By analogy with Revision and Contraction)

Theorem

Katsuno, Mendelzon (NTT, Toronto)

イロト イポト イヨト イヨト

Contraction and Erasure Erasure

## Erasure and Update (By analogy with Revision and Contraction)

#### Theorem

If an update operator ◇ satisfies U1-U4 and U8, then the erasure operator ◆ defined by ψ ◆ µ ↔ ψ ∨ (ψ ◇ ¬µ), satisfies E1-E5 and E8.

- 4 伺 ト 4 ヨ ト 4 ヨ ト - ヨ

# Erasure and Update (By analogy with Revision and Contraction)

#### Theorem

- If an update operator ◇ satisfies U1-U4 and U8, then the erasure operator ◆ defined by ψ ◆ µ ↔ ψ ∨ (ψ ◇ ¬µ), satisfies E1-E5 and E8.
- If an erasure operator ◆ satisfies E1-E4 and E8, then the update operator ◊ defined by ψ ◊ µ ↔ (ψ ♦ ¬µ) ∧ µ satisfies U1-U4 and U8.

# Erasure and Update (By analogy with Revision and Contraction)

#### Theorem

- If an update operator ◇ satisfies U1-U4 and U8, then the erasure operator ◆ defined by ψ ◆ µ ↔ ψ ∨ (ψ ◇ ¬µ), satisfies E1-E5 and E8.
- If an erasure operator ◆ satisfies E1-E4 and E8, then the update operator ◊ defined by ψ ◊ µ ↔ (ψ ♦ ¬µ) ∧ µ satisfies U1-U4 and U8.
- Suppose that an update operator  $\diamond$  satisfies U1-U4 and U8. Then we can define an erasure operator and, then, a new update operator. The resulting update is equal to the original update.

# Erasure and Update (By analogy with Revision and Contraction)

#### Theorem

- If an update operator ◇ satisfies U1-U4 and U8, then the erasure operator ◆ defined by ψ ◆ µ ↔ ψ ∨ (ψ ◇ ¬µ), satisfies E1-E5 and E8.
- If an erasure operator ◆ satisfies E1-E4 and E8, then the update operator ◊ defined by ψ ◊ µ ↔ (ψ ♦ ¬µ) ∧ µ satisfies U1-U4 and U8.
- Suppose that an update operator  $\diamond$  satisfies U1-U4 and U8. Then we can define an erasure operator and, then, a new update operator. The resulting update is equal to the original update.
- Suppose that an erasure operator 

  satisfies E1-E5 and E8. Then we can define an update operator and, then, a new erasure operator. The resulting erasure is equal to the original erasure.

イロト 不得 トイヨト イヨト 二日

Contraction and Erasure Erasure

### Symmetric Erasure (Forget (Winslett))

•  $(\psi \diamond \mu) \lor (\psi \diamond \neg \mu)$ 

Katsuno, Mendelzon (NTT, Toronto)

Updating vs. Revising a KB

October 12, 2008 27 / 28

イロト 不得 トイヨト イヨト 二日

#### Erasure

### Symmetric Erasure (Forget (Winslett))

- $(\psi \diamond \mu) \lor (\psi \diamond \neg \mu)$
- Someone, e.g. Giora, has picked up the book and unpredictably has decided to place it on the floor or on the table.

・ 同 ト ・ ヨ ト ・ ヨ ト …

### Symmetric Erasure (Forget (Winslett))

- $(\psi \diamond \mu) \lor (\psi \diamond \neg \mu)$
- Someone, e.g. Giora, has picked up the book and unpredictably has decided to place it on the floor or on the table.
- Symmetric Contraction can be defined similarly.

Contraction and Erasure Erasure

### Time Unifies Revision and Update

• 
$$\langle (b \land \neg m) \lor (\neg b \land m), 10 am \rangle$$

(日) (同) (日) (日) (日)

### Time Unifies Revision and Update

- $\langle (b \land \neg m) \lor (\neg b \land m), 10 am \rangle$
- Tell $(\mu, t)$ :  $\mu$  new formula, t time instant

3

< 同 ト < 三 ト < 三 ト

### <u>Time Unifies Revision and Update</u>

- $\langle (b \land \neg m) \lor (\neg b \land m), 10am \rangle$
- Tell( $\mu$ , t):  $\mu$  new formula, t time instant
- Apply Tell( $\mu$ , t') to  $\langle \psi, t \rangle$ :

$$\langle \psi, t \rangle \boxdot \operatorname{Tell}(\mu, t') = \begin{cases} \langle \psi \circ \mu, t \rangle, & \text{if } t = t' \\ \langle \psi \diamond \mu, t' \rangle, & \text{if } t' > t \end{cases}$$

Katsuno, Mendelzon (NTT, Toronto)

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

### Time Unifies Revision and Update

- $\langle (b \land \neg m) \lor (\neg b \land m), 10am \rangle$
- Tell( $\mu$ , t):  $\mu$  new formula, t time instant
- Apply  $\operatorname{Tell}(\mu, t')$  to  $\langle \psi, t \rangle$ :

$$\langle \psi, t \rangle \boxdot \operatorname{Tell}(\mu, t') = \begin{cases} \langle \psi \circ \mu, t \rangle, & \text{if } t = t' \\ \langle \psi \diamond \mu, t' \rangle, & \text{if } t' > t \end{cases}$$

• What happens if t' < t is left as a problem for future research.