
An Inexpensive BDRF Modelfor Physically-Based RenderingChristophe SchlickLaBRI 1351, cours de la Lib�eration33405 Talence (FRANCE)schlick@labri.greco-prog.frAbstract : A new BRDF model is presented which can be viewed as an kind of intermediary model betweenempirism and theory. Main results of physics are observed (energy conservation, reciprocity rule, microfacettheory) and numerous phenomena involved in light reection are accounted for, in a physically plausible way(incoherent and coherent reection, spectrum modi�cations, anisotropy, self-shadowing, multiple reection,surface and subsurface reection, di�erences between homogeneous and heterogeneous materials). The modelhas been especially intended for computer graphics applications and therefore includes two main features :simplicity (a small number of intuitively understandable parameters controls the model) and e�ciency (theformulation insures adequation to Monte-Carlo rendering techniques and/or hardware implementations).Keywords : Physically-Based Rendering, Bidirectional Reectance Distribution Function, Optimization1 IntroductionComputation of a reectance model is the heart of every rendering method because it provides theillumination of objects in the scene, and therefore the color of pixels in the image. Reectance modelscurrently in use can be divided in two main families : empirical models and theorical ones. Empiricalmodels [12, 3, 6] are computationally e�cient but are lacking of physical validity (energy conservationlaw, for instance) and thus do not provide plausible values of energy or intensity. In fact, they are gener-ally only used to create bright spots on surfaces in order to add some tridimensional information whichhelps to understand the image. Therefore they are limited to applications where good-looking picturesare su�cient (computer generated imagery for movies or commercials). On the other side, theoreticalmodels [5, 9, 20] involve higher computational costs but provide quantitative values that have shownto be in good adequation with experimental data. Therefore they are well adapted to applications forwhich physically-based rendering is essential (simulation for lighting industry or architecture).This paper proposes a kind of intermediary model between empirical and theoretical models. InSection 2, simple notations are presented and used to reformulate several existing reectance models.Section 3 focuses on some unsatisfactory points that can be �nd in these models. In Section 4,a general purpose optimization technique is detailled and several low-cost alternatives to expensiveterms involved in existing models are proposed. Finally, Section 5 presents the new reectance model,which uses that optimization technique to combine several interesting features of previously disjointedwork into an inexpensive formulation well-suited to computer graphics.2 BackgroundThe interaction of light with a surface is described by relating incoming and outcoming radiancesat a given point P on the surface. This expression usually involves a function R�(P; V; V 0) calledbidirectional reectance distribution function (BRDF, for short) :L�(P; V ) = ZV 02V R�(P; V; V 0) L�(P;�V 0) (N �V 0) dV 0 (1)1Laboratoire Bordelais de Recherche en Informatique (Universit�e Bordeaux I and Centre National de laRecherche Scienti�que). The present work is also granted by the Conseil R�egional d'Aquitaine.1



where� L�(P; V ) is the reected radiance leaving point P in direction V� L�(P;�V 0) is the incident radiance reaching point P from direction �V 0� R�(P; V; V 0) is the BRDF of the surface at point P between directions V and V 0� V is the set of possible directions for incident light (ie hemisphere above the surface)� dV 0 is a di�erential solid angle surrounding direction V 0� V , V 0 and N are unit vectors so (N �V 0) is the cosine of the angle between N and V 0The reected radiance is the integral, for all possible directions, of incident radiances scaled by theBRDF and the projected solid angle. It should be noted that such a formulation is well adaptedto rendering algorithms (radiosity, path tracing, two pass methods) that perform e�ectively a trueintegration and for which the solid angle information is available. Other rendering algorithms (directillumination methods, ray tracing) consider only a discrete sum of light contributions, and thereforeare unable to provide close simulation of real phenomena as required by physically-based rendering.Equation 1 is a monochromatic equation expressed for a given wavelength �. In the present paper, weuse the following notation convention : every term that is function of the wavelength will be subscriptedby �. Such a term has to be de�ned and/or computed, theoretically for every wavelength of the visiblespectrum, and practically for a given number of samples (three in trichromatic models, up to twentyin spectral models [6]).The BRDF has got two important properties that result directly from physics of light [2]. First, dueto the Helmholtz Reciprocity Rule, R� is symmetric relative to V and V 0 :8 V 2 V 8 V 0 2 V R�(P; V; V 0) = R�(P; V 0; V ) (2)Second, due to the Energy Conservation Law, R� has to ful�ll the normalization condition :8 V 2 V ZV 02V R�(P; V; V 0) (N �V 0) dV 0 � 1 (3)V � ��N V 0H
H� �0T P'

V = Outcoming direction of lightV 0 = Incoming direction of lightN = Surface normal vectorT = Surface tangent vectorH = Bisector vector of V and V 0H = Projection of H ? N� = < H;N > t = cos�� = < V;H > u = cos �� = < V;N > v = cos ��0 = < V 0; N > v0 = cos �0' = < H;N > w = cos'Figure 1 : Angles and vectors for de�nition of BDRF2



According to the shape of the BRDF, two kinds of surfaces are traditionally distinguished :Di�use surfaces : The light is reected in every direction. The limit case | perfectly di�use surfacesor Lambert surfaces | is obtained when the BRDF becomes a constant function (ie the light isequally reected in every direction).Specular surfaces : The light is reected only in a small area around the mirror direction. The limitcase | perfectly specular surfaces or Fresnel surfaces | is obtained when the BRDF becomes aDirac function (ie the light is reected in a single direction).Figure 1 presents the notations that will be used to formulate BRDF models throughout the paper. Acomplete review of all the models that have been proposed in the litterature is out of scope here (theinterested reader may refer to [17] where such a survey has been done), we will focus especially on thethree theoretical models that have been used to de�ne our new model.2.1 The Cook-Torrance ModelThe �rst theoretical reectance model has been introduced in the computer graphics �eld by Cook &Torrance [5] using work previously done in physics by Beckmann & Spizzichino [2] and Torrance &Sparrow [19] about the reection of electromagnetic waves on rough surfaces. In that model, a surfaceis supposed to be composed of so-called microfacets which are small smooth planar elements. Onlymicrofacets whose normal vector is in the direction H (see Figure 1) contribute to the reection betweenV and V 0. The BDRF depends on �ve di�erent angles and is expressed as a linear combination of adi�use reector and a specular one :R�(�; �; �; �0; ') = d� C� + s4�vv0 F�(�) G(�; �0) D(�; ') with d+ s = 1 (4)where� d (resp. s) 2 [0; 1] is the ratio of the surface behaving as a di�use (resp. specular) reector� C� 2 [0; 1] is the ratio of light at wavelength �, reected by the di�use reector (a complete setof C�, one for each wavelength sample, enables to de�ne the color of the di�use reector)� D(�; ') 2 [0;1) is the microfacets slope distribution function which de�nes the fraction of thefacets that are oriented in direction H� F�(�) 2 [0; 1] is the Fresnel factor which de�nes the ratio of light at wavelength �, reected byeach microfacet (a complete set of F� gives the color of the specular reector)� G(�; �0) 2 [0; 1] is the geometrical attenuation coe�cient which expresses the ratio of light thatis not self-obstructed by the surfaceOne important point to notice is that Equation 4 is only valid when it ful�lls the normalizationcondition (Equation 3). Therefore, it implies a condition on the slope distribution function [2] :Z �=20 Z 2�0 D(�; ') cos� sin� d� d' = � (5)If we assume an isotropic behaviour of the surface (ie the BDRF is invariant by rotation around thenormal vector) then Equation 5 becomes :Z �=20 D(�) 2 cos� sin� d� = 1 (6)3



Moreover, if we express the angular dependence of the three factors (D, F and G) in terms of theircosines, Equation 6 may be rewritten as : Z 10 2t D(t) dt = 1 (7)and �nally Equation 5 becomes :R�(t; u; v; v0) = d� D� + s4�vv0 F�(u) G(v; v0) D(t) (8)2.2 The He-Torrance-Sillion-Greenberg ModelA more complete model for BRDF has been proposed by He et al. [9] which accounts comprehensivelyfor every physical phenomena (polarization, di�raction, interference, conductivity, e�ective and appar-ent roughness...) involved in light reection on rough surfaces. When restricted to unpolarized light(the usual case in computer graphics), it can be rewritten in a form that mimics Equation 8 :R�(t; u; v; v0) = d� C� + s4�vv0 F�(u) G(v; v0) D(t) + sv0 dV 0 F�(v) G(v; v0) A(v; v0) � (9)Such a formulation hides the complexity of the model (for instance, the expression of the slope dis-tribution function D(t) has discouraged many potential users to implement it) but lets clearly appearone of the main di�erence with the Cook-Torrance model : there is an additional term in the linearcombination which corresponds to coherent reection on the mean plane of the surface (ie not themicrofacets). Coherent reection has been used for years in computer graphics (it is the fundamentalprinciple of recursive ray tracing) but only for perfectly specular surfaces; He et al. have shown thatthis term exists also for non-smooth surfaces, though it decreases rapidly when the roughness increases,due to the presence of the roughness attenuation coe�cient A(v; v0).2.3 The Ward ModelRelatively few reectance models have been proposed for anisotropic reection (ie the BRDF is functionof angle ' and thus of its cosine w) and usually they involve high computational costs [10, 4, 13]. Wardhas presented a simple model [20] in which the rotational symmetry of isotropic BRDF is replaced byan elliptical asymmetry of varying excentricity :R�(t; v; v0; w) = d� C� + s4�pvv0 C0� D(t; w) with D(t; w) = 1mn e t2�1t2 ( w2m2 + 1�w2n2 ) (10)Intuitively, the model considers scratches on the surface (oriented along the tangent vector of the localframe) leading to di�erent roughnesses (de�ned by m and n) when considering directions parallel orperpendicular to the scratches : the more m and n are di�erent, the more anisotropy is created.3 Unsatisfactory PointsBy examinating existing reectance models, one can �nd several points that appear somewhat unsatis-factory. For instance, the BRDF is formulated as a linear combination with constant weights betweena di�use part and a specular one. The justi�cation usually given by the authors is that, for a large classof materials, di�use and specular components come from di�erent physical phenomena, and thus theymay have di�erent colors. One classical example is a plastic surface on which light can be reectedeither by the uncolored substrat in a coherent way (ie surface reection is specular) or by the coloredpigments beneath the surface in an incoherent way (ie subsurface reection is di�use) [5].4



But, as noticed by Shirley [15], such a linear combination with constant weights is incorrect becauseproportions of di�use and specular components are usually not constant but function of the incidentangle. Taking the example of a varnished wood oor (see Figure 2), one can see that, according tothe Fresnel law, for large incident angles most light is reected specularly by the varnish, whereas forsmall incident angles, most light penetrates the varnish before beeing reected di�usely by the wood.
Figure 2 : Inuence of the incident angle on surface and subsurface reectionBeside these heterogeneousmaterials, there are a lot of homogeneous ones, for which the di�use/speculardistinction is unnecessary. For such materials (metals, for instance) there is rather a kind of continuumbetween perfect di�use and perfect specular behaviours (see Figure 3) according to the roughness ofthe surface. Therefore a linear combination with constant weights is inadequate again.Figure 3 : Continuum between di�use and specular for surface reectionAnother weak point in existing models appears when light reaches or leaves a rough surface whereself-obstruction (from one microfacet to another) occurs. Usually, a geometrical attenuation coe�cient(G in Equation 8) is used as a multiplicative factor to express the ratio of light that is not subject tothat obstruction. But in real life, the remainder of the light (ie 1�G) is reected in other directionsand not simply blocked. Currently, none of the existing reectance models does correctly account forthat reemission of self-obstructed light.The last | and perhaps the most | unsatisfactory point is about the accuracy/cost ratio. As said,empirical reectance models are inexpensive but their lack of physical validity prevents their use in anyphysically-based rendering system. On the other hand, theoretical models are physically accurate butinvolve complex mathematical expressions which are computationally expensive and preclude hardwareimplementations. Moreover, when including such a reectance model in an image synthesis software,the error generated by other stages of the rendering pipeline (tessellation for geometrical modeling,spectral sampling for optical modeling, directional sampling for global illumination, interpolation atalmost every steps) does usually totally cancel the bene�t of greater accuracy. In other words, thereis no need to compute BDRF at a precision of 0.1%, if directional sampling is only done at 5% andspectral sampling at 15%. A possible solution could be to replace expensive formulas in theoreticalreectance models by some well-chosen low-cost alternative functions. In Section 4, we present a newtechnique which enables to �nd such approximations.4 Optimization by Rational Fraction ApproximationOne classical optimization technique (which has been applied several times in computer graphics) tospeed up an algorithm that involves the computation of a complex function is to store many sample5



values of the function in a table, and compute missing values by interpolation (usually linear or cubic).Implementing a whole theoretical reectance model which such a technique would require numeroustables (in order to account for various surface properties and illuminating conditions) which meanshigh memory costs and di�culties to switch to hardware implementations.A well-known technique in mathematics is to replace such a function by its Taylor expansion, givinga polynomial that can be computed with a handful of multiplications and additions by Horner's rule.Unfortunately a Taylor expansion is only valid nearby the origin ; therefore the approximation isusually only accurate in such a neighbourhood. To overcome this limitation, a possible solution is touse piece-wise Taylor approximants. But creating large ranges of values where the approximation isaccurate implies to use many pieces, for which continuity in their derivatives cannot always be insured.Another classical technique (which exists since the beginning of the century and has been applied tonumerous scienti�c �elds) is to use Pad�e approximants [1] in which a rational fraction is generatedaccording to the Taylor expansion of the function. Compared to pure polynomial approximations,Pad�e approximants have usually a much better accuracy when leaving the neighbourhood of the origin.Piece-wise Pad�e approximants have also been proposed but rarely used in practice because insuringcontinuity of the derivatives becomes almost impossible.The previous approximation methods, which deal all with Taylor expansions, have got two stronglimitations. First, the Taylor expansion of the function has to be known, this is not always possibleeven with numerical techniques. Second, speci�c properties of the function are generally not preserved.For instance, if we want to approximate a statistical distribution function f on a range [a; b] (which byde�nition has to ful�ll R ba f(t)dt=1) by one of the previous approximation techniques, the approximanthas virtually no chance to ful�ll that condition too, giving something that is mathematically incorrect.4.1 PrincipleWe propose here another method that we simply call rational fraction approximation. This methoddi�ers from the Pad�e approximation technique by the fact that we do not use Taylor expansions to�nd the coe�cients of the numerator and denominator polynomials. The idea is to study the functionthat we want to approximate, in order to �nd what we call kernel conditions.A kernel condition can be any intrinsic characteristic of the function : value at a given point eitherof the function or of one of its derivative, integral or di�erential equation it obeys to... The detectionand the choice of kernel properties can be done in several ways, by using its mathematical de�nition,by picking some of its remarkable values or even by plotting the function and examinating the graph.In fact, the only generic method for �nding kernel conditions is to answer the question : \For me whatare the characteristics of the function that every approximation should ful�ll ?"Once the kernel conditions have been found, coe�cients of the rational fraction are simply obtainedby identifying the function and its approximation for each kernel condition. This gives a system of nequations and n unknowns where n is the number of conditions.For instance, let's suppose that we want to approximate the function f(x) = sinx on the range [0; �=2].By plotting the corresponding curve or by speci�c knowledge on the function, we can �nd at least fourcharacteristics that appear to be essential for every approximation function :f(0) = 0 f 0(0) = 1 f(�=2) = 1 f 0(�=2) = 0Because there are four kernel conditions, we search for a rational fraction containing four independentparameters (a; b; c and d). For instance :8x 2 [0; �=2] f (x) = x2 + ax+ bcx+ d (11)6



When we express the kernel conditions with that function2 , it leads to a system of four equations :8>><>>: b = 0 (condition 1)a = d (condition 2)a+ �=2 = c+ 2a=� (condition 3)c�2 + 4�a+ 4a2 = 0 (condition 4)giving �nally the following approximation of f(x) = sinx :8x 2 [0; �=2] f (x) = x u+ xu+ vx with u = ��2=4 and v = � + u (12)Plotting the original function and the approximation (see Figure 4) enables to control visually thesimilarities between the curves. In order to test our approximations in a quantitative way, we havealso developped a statistical test (evaluation of the function and its approximation for one millionrandom values) which provides two measures : " = relative error and  = speed-up factor (see [16] formore complete testing results). For instance, with our sine example, we have obtained " = 1:4% and = 230%
Figure 4 : f(x) = sinx where x 2 [0; �=2]left : True function right : Rational approximation4.2 Approximation of the Fresnel FactorThe Fresnel factor F�(u) expresses the reection of light on the well-oriented microfacets (ie the facetswhose normal vector is H). For a non-polarized electromagnetic wave, its formulation is [15] :F�(u) = 12 (a � u)2 + b2(a + u)2 + b2 � (a+ u� 1=u)2 + b2(a� u+ 1=u)2 + b2 + 1� (13)a2 = 12 �q(n2� � k2� + u2 � 1)2 + 4n2�k2� + n2� � k2� + u2 � 1�b2 = 12 �q(n2� � k2� + u2 � 1)2 + 4n2�k2� � n2� + k2� � u2 + 1�where n� is the ratio of the refraction indices above and below the surface and k� is the extinctioncoe�cient of the surface. An interesting characteristic of the Fresnel factor is that F� = 1 at a grazingincidence (� = �=2 so u = 0) whatever the wavelength �.2Notice that the fraction (ax+ b)=(cx+ d) does not have four independent parameters, because one of them can beeliminated by simultaneous division of the numerator and the denominator.7



One di�culty that precludes a general use of F� in every rendering environment comes from the factthat n� and k� are seldom known. Some experimental values exist [11] but usually one can only �nda single value n and k for a wavelength in the middle of the visible spectrum. On the other hand, adata which has been measured for thousands of materials is the spectral distribution f� of the Fresnelfactor at normal incidence (� = 0 so u = 1). When n, k and f� are the only known data, Cook &Torrance have proposed the following approximation [5] :� Compute F (u) and f = F (1) with n and k, using Equation 20� For each wavelength �, compute F�(u), using Equation 21F�(u) = f� + (1� f�) F (u)� f1� f (14)This approximation not only solves the lack of experimental data, but also speeds-up the calculationbecause the complete expression of F�(u) is evaluated only once, for an average n� and k�. But even so,the computation of the Fresnel factor remains expensive and further optimization should be possible.By examinating Figure 5, one can see that the shape of the curves does not vary very much according tothe kind of material. The main di�erence is the value f� where the curve arrives at u = 1. Therefore, astep further in the approximation process could be to make F�(u) only dependent on f�. By choosingthe following kernel conditions :F�(0) = 1 F�(1) = f� F 0�(1) = 0 F 00� (1) = 0we have found F�(u) = f� + (1 � f�) (1� u)5 (15)which costs only 4 multiplications and 2 additions in an optimized implementation. Our statisticaltesting process shows that the approximation can be computed almost 32 times faster with less than1% error : " = 0:6% and  = 3180%
Figure 5 : F�(s) by Fresnel for diamant, glass, copper and goldleft : True function right : Rational approximation4.3 Approximation of Geometrical Attenuation Coe�cientSeveral expressions for the geometrical attenuation coe�cient G(v; v0) have been proposed in physics[19, 18, 14]. In their original paper, Cook & Torrance used the formulation derived in [19] :G(t; u; v; v0) = min�1; 2 tvu ; 2 tv0u � (16)8



This expression results from coarse approximations about the surface geometry and therefore does notmeet experimental results : its �rst derivative is not continuous, it is not invariant by rotation aroundthe normal vector and it is independent of the surface roughness. The formulation proposed by Smith[18] (introduced in the computer graphics �eld by [9]) is not subjected to these restrictions and hasbeen experimentally validated. Moreover, it depends only on v and v0, and is separable in v and v0 :G(v; v0) = G(v) G(v0) (17)After several equivalences, the original expression of G(v) can be written more compactly :G(v) = gg + 1 with g = ph� (2� erfcph) and h = v22m2 (1� v2) (18)where m is the root mean square (rms) slope of the microfacets (theoretically m 2 [0;1) but in fact,it almost never exceeds 0.5 for real surfaces). Despite its complicated form, the shape of the function(see Figure 6) is quite simple. To characterize it, we choose the following kernel conditions :G(0) = 0 G(1) = 1 G0(0) =r �2m2that leads to a very simple expression :G(v) = vv � kv + k with k =r2m2� (19)By precomputing k and 1�k, G(v) needs only 1 division, 1 multiplication and 1 addition. Except fora small neighbourhood of v = 1, the two curves on Figure 6 are very similar. That visual feeling iscon�rmed by the testing process : " = 1:8% and  = 2870%
Figure 6 : G(v) by Smith for m = 0:01; 0:05; 0:1;0:25;0:5left : True function right : Rational approximation4.4 Approximation of Slope Distribution FunctionAmong the di�erent formulations of the slope distribution function that exist in the litterature [2, 19, 3],only the one proposed by Beckmann ful�lls Equation 7. Moreover, compared to others, this formulationdepends only on the rms slope m of the microfacets and does not introduce any arbitrary constant :D(t) = 1m2t4 e t2�1m2t2 (20)When the surface is rough (large values for m), orientations of microfacets are very dispersed. Whenthe surface is smoother (small values for m) microfacet normals H come closer to the average normalN . And for perfectly smooth surfaces (m is null) D(t) becomes a Dirac function (see Figure 7).9



The normalization condition (Equation 7) is an obvious kernel condition for D(t). Another importantcharacteristic (already noticed by Beckmann) is that D(t) is almost null for t < 1�m. And �nally,D(1) gives a last kernel condition :8t 2 [0; 1�m] D(t) = 0 D(1) = 1m2 Z 10 D(t) 2t dt = 1Having an integral equation as a kernel condition complicates somewhat the process of �nding a goodapproximation. A solution that works well for many cases is to search a rational fraction having au0=u2 form, for which an analytic integration can be done. Therefore, we propose :8t 2 [1�m; 1] D(t) = m3xt (mx2 � x2 +m2)2 with x = t+m� 1 (21)An optimized implementation of D(t) costs only 1 division, 4 multiplications and 2 additions. Thecurves drawn in polar coordinates are shown on Figure 7. The quantitative results are somewhat lessgood than for the two other approximations but still interesting : " = 2:7% and  = 1650%
Figure 7 : D(t) by Beckmann for m = 0:01; 0:05; 0:1;0:25;0:5left : True function right : Rational approximationWhen collecting the results of Equations 15, 19 and 21, one gets a kind of approximated/optimizedCook-Torrance model (more than 20 times faster with less than 3% error3 compared to an imple-mentation using the true formulas). Because it uses only basic arithmetic operations (+ � �=) theapproximated model is well-suited to hardware implementation and constitutes a possible answer tothe accuracy/cost ratio inadequacy of current BRDF models (see Section 3).5 A New BDRF ModelThe rational fraction approximation scheme enables to speed-up the computation of reectance modelsbut does not provide a solution for the other unsatisfactory points discussed in Section 3. With regardsto that discussion, an appealing BRDF model should include the following features :� Main results of physics (Energy Conservation Law, Helmholtz Reciprocity Rule, Fresnel Equation,Microfacet Theory) should be ful�lled to enable physically-based rendering� A continuum between lambertian and smooth surfaces should be provided3In fact, it is much more precise than the original Cook-Torrance implementation in which Equation 16 is used forG, giving an error of " = 53% with our statistical test. 10



� A distinction between homogeneous and heterogeneous materials should be made� Both isotropic and anisotropic behaviours should be accounted for� Only a small number of simple and meaningful parameters should control the model� Only expressions with low computational costs should be usedA new model which includes all these features is presented here and can be viewed as an intermediarymodel between empirism and theory. Before giving the formulation of the BRDF, let's examine howwe modelize optical properties of surfaces. In fact, two di�erent kinds of materials single/doubleare distinguished in opposition to the classical di�use/specular separation4 :� single : Materials having homogeneous optical properties (metal, glass, rough paper, tissue)� double : Materials having heterogeneous optical properties (plastic, skin, strati�ed or varnishedor painted surfaces) usually composed of a transparent layer over an opaque one, each of thembeing single materials.We propose to characterize a single material by a set of parameters (C�; r; p) and a double materialby two sets (C�; r; p) and (C 0�; r0; p0), one for each layer :� C� 2 [0; 1] : Reection factor at wavelength �� r 2 [0; 1] : Roughness factor (r = 0 : perfect specular, r = 1 : perfect di�use)� p 2 [0; 1] : Isotropy factor (p = 0 : perfect anisotropy, p = 1 : perfect isotropy)The choice of these parameters was motivated mainly by two of there characteristics. First, the roleof every parameter can be understood intuitively and therefore easily de�ned by a non-physician user.Second, the parameters can also be assigned according to experimental data [11]. Indeed, C� can beviewed as the reectivity at normal incidence f� (see Equation 14), r can be related to the RMS slopem of the surface (see Equation 20), and p is in fact the ratio of the RMS slopes m=n between the scratch(' = 0) and the ortho-scratch (' = �=2) directions for an anisotropic surface (see Equation 10).5.1 FormulationWhen only geometrical optics is involved (an hypothesis made by almost every rendering technique),the spectral and the directional behaviours of the BDRF can be separated (ie rays are reected in thesame direction, whatever their wavelength) in two multiplicative factors S� and D. According to thekind of material, we propose the following expression :� single : R�(t; u; v; v0; w) = S�(u) D(t; v; v0; w)double : R�(t; u; v; v0; w) = S�(u) D(t; v; v0; w) + [1�S�(u)] S0�(u) D0(t; v; v0; w) (22)Spectral factorThe simplest expression for the spectral factor is to consider it as a constant function :S�(u) = C� (23)But in fact, S�(u) depends on the incident angle and should obey to the (approximated) Fresnel law :S�(u) = C� + (1� C�) (1 � u)5 (24)4This idea of a layered surface model has appeared several times in physics (but has never been completely invasti-gated) as well as in a very recent paper by Hanrahan & Krueger in computer graphics [8].11



Directional factorFollowing a similar derivation as in [2], one can imagine a straigthforward formulation for the directionalfactor (extended to anisotropy), in which the dependence on the zenith angle � and on the azimuthangle ' can be separated and expressed by two factors Z(t) and A(w) :D(t; v; v0; w) = 14�vv0 Z(t) A(w) (25)D(t; v; v0; w) in only valid when the product Z(t)A(w) obeys to Equation 5. If we suppose an identicalanisotropic behaviour in all four quadrants around the normal vector, Equation 5 can be rewritten as :Z �=20 Z(�) cos� sin� d� = 12 and Z 2�0 A(') d' = 4Z �=20 A(') d' = 2� (26)and thus Z 10 2t Z(t) dt = 1 and Z 10 1p1� w2 A(w) dw = �2 (27)Using Equation 27 as kernel conditions, as well as other characteristics, we have found simple ex-pressions for Z and A, which are in fact polar equations of ellipses (the former with the pole on theboundary, the latter with the pole in the middle) :Z(t) = r(1 + rt2 � t2)2 and A(w) =r pp2 � p2w2 + w2 (28)When looking at the resulting curves (see Figure 8), one can notice that when r = 1, Z(t) is a constantfunction (perfect di�use) and when r = 0, Z(t) becomes a Dirac function (perfect specular). Thesame remark can be made for A(w) which varies continuously between a constant function when p = 1(perfect isotropy) and a Dirac function when p = 0 (perfect anisotropy).Adequation to Monte-Carlo TechniquesOne main feature of the expressions for Z(t) and A(w) is that they are well-suited to Monte-Carlorendering methods [15, 20]. Indeed, a usual technique for a Monte-Carlo process is to generate astochastic importance sampling to improve the convergence [7]. Such an importance sampling for �and ' (limited to the �rst octant but easily generalized by duplication) can be simply obtained fromtwo uniform random variables (a; b) 2 [0; 1]2 with :� = acos r ar � ar + a and ' = �2 s p2b21� b2 + b2p2 (29)
Figure 8 : Directional factor in logarithmic polar coordinatesleft : Zenith angle dependence Z(t) for r = 0:01; 0:05; 0:2;0:5; 1:0right : Azimuth angle dependence A(w) for p = 0:01; 0:05;0:2; 0:5;1:012



As in [18], self-obstruction can be included by a geometrical attenuation factor G(v)G(v0) where G(v)(resp. G(v0)) expresses the ratio of reected (resp. incident) non-obstructed light. But, as discussed inSection 3, we want to account for reemission of self-obstructed light (ie 1�G). Because of the stochasticorientation of microfacets, the direction of light after several reections is essentially random, thereforeit seems logical to reemit the light with Z(t) = A(w) = 1 :D(t; v; v0; w) = G(v)G(v0)4�vv0 Z(t) A(w) + 1�G(v)G(v0)4�vv0 (30)As with the Fresnel factor, the approximated formulation of the Smith factor is used :G(v) = vr � rv + v and G(v0) = v0r � rv0 + v0 (31)Di�use-Specular ContinuumDue to the presence of v and v0 on the denominator, Equation 25 does not provide a complete transitionfrom perfect di�use to perfect specular. A classical result in physics [2, 8] says that there exists no mi-crofacets con�guration (even a constant slope distribution function) that provides a Lambert reector.Similarly, because coherent reection is not considered, Equation 25 cannot provide a Fresnel reector(even with a Dirac slope distribution function). Again, we propose a kind of empirical/theoreticalsolution, inspired by Equation 9, to create a continuum between these limit situations. The directionalfactor is de�ned as a sum of three di�erent reectors (Lambert, Beckmann, Fresnel), each of themhaving a speci�c weight (l; b; f) :D(t; v; v0; w) = l� + b4�vv0 B(t; v; v0; w) + fv0 dV 0 � with l + b+ f = 1 (32)where B(t; v; v0; w) is the anisotropic Beckmann-like factor given either by Equation 25 or 29 and � isa Dirac fonction (equal to 1 in dV 0 and 0 otherwise). The weights (l; b; f) could be speci�ed directlyby the user, but it would represent three additional parameters per material. We propose rather a(physically plausible) automatic generation scheme which provides a quadratic interpolation betweenthe three fundamental behaviours of a surface, according to the roughness factor.if (r < 0:5) then fb = 4r(1�r) ; l = 0 ; f = 1�bg else fb = 4r(1�r) ; f = 0 ; l = 1�bg (33)5.2 PicturesIn order to show various illumination e�ects (incidence angles ranging from grazing to normal andvarying either fast or slow) a simple test scene similar to [9] has been chosen. Every cylinder onthe pictures has been rendered individually at a 256x512 resolution using Monte-Carlo ray-tracing.Picture 1 (resp. Picture 2) illustrates the continuum that is provided between di�use (resp. isotropic)and specular (resp. anisotropic) reection by taking four di�erent values for r (resp. p) from 1 to 0.05.To achieve a better understanding of the behaviour of the new model, only direct illumination from asingle light source put at the view point is shown. In order to exhibit anisotropy, the cylinder is madeof brushed metal, having concentric circular scratches on its top and parallel horizontal scratches onits body. Picture 3 is similar to Picture 2, but indirect specular illumination is shown this time.Picture 4 presents a set of disks on which circular scratches have created a characteristic butterypattern due to anisotropy. The inuence of the light source position is shown : on the top row, thesource is rotated around the disk and one can see that the pattern \follows" the light, one the bottomrow, the source is translated from almost grazing to almost normal incidence and one can see that thepattern grows up and �nally �ts the whole disk. Such e�ects appear very familiar because brushedmetal disks are common objects in our life (e.g. reverse side of a watch).13
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Picture 1 : Continuum between di�use and specular reection (direct illumination)
Picture 2 : Continuum between isotropic and anisotropic reection (direct illumination)
Picture 3 : Continuum between isotropic and anisotropic reection (indirect illumination)



Picture 4 : Inuence of the light position on anisotropic reection
Picture 5 : Inuence of the Fresnel factor on double materials


