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Abstract. The bondage number b(G) of a nonempty graph G is defined to be the cardinality of
the smallest set E of edges of G such that the graph G − E has domination number greater than
that of G. In this paper we present a simplified proof that b(G) ≤ min{8, ∆(G) + 2} for all planar
graphs G, give examples of planar graphs with bondage number 6, and bound the bondage number
of directed graphs.

1. Introduction

Given a nonempty graph G, a set D of its vertices is a dominating set if every vertex of G is in
D or adjacent to a vertex in D. The dominating number γ(G) of a graph G is defined to be the
minimum size of a dominating set of G. We may further define the bondage number of a graph,
denoted b(G), to be the cardinality of a smallest set of edges E in G such that γ(G− E) > γ(G).

The bondage number was first introduced by Bauer et al. [1] in 1983. The two main outstanding
conjectures on bondage number were posed by Teschner [8].

Conjecture 1 (Teschner [8]). If G is a planar graph, then b(G) ≤ ∆(G) + 1.

Conjecture 2 (Teschner [8]). For any graph G, we have b(G) ≤ 3
2∆(G).

In 2000, Kang and Yuan [6] showed that b(G) ≤ min{8, ∆(G) + 2} for any planar graph; in
Section 2 we will present a simpler proof of this fact.

In [3], Fischermann, Rautenbach, and Volkmann ask whether there exist planar graphs of
bondage number 6, 7, or 8. In Section 3, we show that the corona G = H ◦K1 satisfies b(G) =
δ(H)+ 1, where δ(H) is the minimum degree in H . In particular, this construction gives us a class
of planar graphs with bondage number 6.

In [2], it was originally conjectured that Conjecture 1 held for any graph G; however, Teschner
disproved this claim in [7], and Hartnell and Rall [5] showed that for the cartesian product Gn =
Kn×Kn, n > 1, we have b(Gn) = 3

2∆(Gn). This led to the formulation of Conjecture 2. Teschner [8]
proved that Conjecture 2 holds when γ(G) ≤ 3. In Section 4, we define the bondage number for
directed graphs and prove that the directed graph analogue to Conjecture 2 holds.

Throughout the paper, all graphs will be considered finite and nonempty. Furthermore, all
undirected graphs will be simple. We denote the vertex set and edge set of a graph G by V (G) and
E(G) respectively. We denote the degree of a vertex u ∈ G by d(u), the maximum degree of any
vertex in G by ∆(G), and the minimum degree by δ(G). The distance between two vertices u and
v is denoted d(u, v).

2. A simple proof that b(G) ≤ min{8, ∆(G) + 2} for G planar

In this section we present simple proofs of two theorems originally proved by Kang and Yuan [6].
These proofs rely on a simple application of Euler’s formula, and are much shorter than the originals.

We will use the following simple lemmas to bound the bondage numbers of planar graphs.
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Lemma 3 (Hartnell and Rall [5]). If G is a graph, then for every pair of adjacent vertices u and v
in G, b(G) ≤ d(u) + d(v)− 1− |N (u)∩N (v)|. In particular, this implies b(G) ≤ δ(G) + ∆(G)− 1.

Lemma 4 (Euler’s Formula). Suppose that G is a connected graph which can be embedded on the
oriented surface of genus g. Then |V (G)| − |E(G)| + |F (G)| = 2− 2g, where F (G) is the face set
of any embedding of G on the surface of genus g.

We specifically note that planar graphs are those which can be embedded on the sphere, the
oriented surface of genus 0. Thus, for planar graphs, we have |V (G)| − |E(G)| + |F (G)| = 2.

Theorem 5 (Kang and Yuan [6]). Let G be a connected planar graph. Then b(G) ≤ ∆(G) + 2.

Proof. Suppose that G is a planar graph. By Lemma 3, if G has any vertices of degree 3 or
less, we have δ(G) ≤ 3, and Theorem 5 holds. Thus, we can assume ∆(G) ≥ δ(G) ≥ 4. For
the sake of contradiction, assume b(G) ≥ ∆(G) + 3. To each edge ei = xy in E(G), we assign
variables vi = 1

d(x) + 1
d(y) and fi = 1

a1

+ 1
a2

, where a1 and a2 are the numbers of edges comprising

the faces which ei borders. It is clear that
∑

vi = |V (G)| and
∑

fi = |F (G)|, so we have∑
(vi + fi − 1) = |V (G)| + |F (G)| − |E(G)| = 2, by Lemma 4.
But now, for each i, consider the quantity vi + fi − 1. If either d(x) or d(y) is equal to 4, by

Lemma 3 the other must be equal to ∆ ≥ 4 and x and y can have no common neighbors, so that a1

and a2 are both at least 4. This yields vi + fi − 1 ≤ 0. Suppose one of d(x) and d(y), without loss
of generality d(x), is equal to 5. If d(y) = ∆− 1 = 4, then we are in the previous case. Otherwise,
we have d(y) = ∆ ≥ 5, and at most one of a1 and a2 equal to 3, so we again get vi +fi−1 ≤ 0. The
only remaining case is d(x), d(y)≥ 6, but as a1, a2 ≥ 3, in any case we again obtain vi + fi− 1 ≤ 0.
But then summing over all i yields

∑
(vi + fi − 1) ≤ 0, which contradicts Euler’s formula. �

Considering planar graphs as those which can be embedded on a sphere, it is natural to consider
the generalization to graphs which we can embed on surfaces of higher genus. This works for
graphs we can embed on the torus, for which |V (G)| − |E(G)| + |F (G)| = 0. However, the proof
method does not generalize to all graphs, as it relies on the fact that the sphere and the torus have
nonnegative Euler numbers.

Theorem 6. Let G be a connected graph which can be embedded on a torus. Then b(G) ≤ ∆(G)+3.

Proof. Suppose that G is a graph which can be embedded on a torus. By Lemma 3, if G has any
vertices of degree 4 or less, we have δ(G) ≤ 4, and Theorem 5 holds, so we can assume ∆(G) ≥ δ ≥ 5.
For the sake of contradiction, assume b(G) ≥ ∆(G) + 4. Using the notation of the previous proof,
we should have

∑
(vi + fi − 1) = |V (G)| + |F (G)| − |E(G)| = 0, by Lemma 4.

For each i, consider the quantity vi + fi− 1. If either d(x) or d(y) is equal to 5, by Lemma 3 the
other must be equal to ∆ ≥ 5 and x and y can have no common neighbors, so a1 and a2 are both
at least 4. This yields vi + fi − 1 < 0. Suppose one of d(x) and d(y), without loss of generality
d(x), is equal to 6. If d(y) = ∆ − 1 = 5, then we refer to the previous case. Otherwise, we have
d(y) = ∆ ≥ 6, and at most one of a1 and a2 equal to 3, so again we have vi + fi − 1 < 0. The only
remaining case is d(x), d(y)≥ 7, but as a1, a2 ≥ 3 in any case we again obtain vi + fi − 1 < 0. But
then summing over all i yields

∑
(vi + fi − 1) < 0, a contradiction to Euler’s Formula. �

We can use a similar technique to prove that b(G) ≤ 8, a result also due to Kang and Yuan [6].
We will employ the following lemma in addition to those above.

Lemma 7 (Hartnell and Rall [5] and Teschner [7]). If u and v are two vertices of a graph G with
d(u, v)≤ 2, then

b(G) ≤ d(u) + d(v)− 1.

Theorem 8 (Kang and Yuan [6]). If G is a connected planar graph, then b(G) ≤ 8.
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Proof. Suppose we have b(G) ≥ 9; we note that by Lemma 3, each edge xy must have d(x)+d(y) ≥
10. Using the same notation as before, consider for each edge ei the quantity vi + fi − 1. In
calculating our fi, we will disregard any pendant edges in determining the number of sides of a
face. For example, we will consider a triangle with a pendant edge in the middle to have three
sides, not five. Furthermore, if ei is an edge with one endpoint of degree 1, we will set a1 = a2 =∞
and fi = 0.

Because of the proscription of Lemma 3, the only allowable quadruples (d(x), d(y), f1, f2) with
vi + fi − 1 > 0 (up to interchange of x and y and a1 and a2) are as follows:

(1, k,∞,∞), where k ≥ 9, and 0 < vi + fi − 1 ≤ 1
9 ;

(2, k, 3, 4), where k ≥ 9, and 0 < vi + fi − 1 ≤ 7
36 ;

(3, k, 3, 3), where k ≥ 9, and 0 < vi + fi − 1 ≤ 1
9 ;

(3, k, 3, 4), where k = 8, 9, 10, or 11, and 0 ≤ vi + fi − 1 < 1
24 ;

(4, k, 3, 3), where k = 8, 9, 10, or 11, and 0 ≤ vi + fi − 1 < 1
24 ; and

(5, 7, 3, 3), where vi + fi − 1 = 1
105.

We will call such edges problem edges and let P (G) be the set of problem edges in G. For each
vertex x, we define

α(x) =
∑

ei=xy∈P (G)
d(x)>d(y)

(vi + fi − 1) +
∑

ei=xy/∈P (G)

1

2
(vi + fi − 1).

Now, applying Euler’s Formula, we should have
∑

v∈V (G)

α(v) =
∑

ei∈E(G)

(vi + fi − 1) = 2.

However, we claim that the sum α(x) at each vertex is nonpositive. Clearly, if a vertex x has no
problem edges, then α(x) ≤ 0. Now, when a vertex x has a problem edge assigned to it, we have
d(x) ≥ 7.

If d(x) = 7, then each problem edge must be of the form (5, 7, 3, 3), with vi + fi − 1 = 1
105 . The

endpoints of each problem edge share two neighbors u and v, whose degrees must be at least 7, by
Lemma 3. The edges xu and xv have values vi + fi − 1 ≤ −1

21 , so each contributes at most −1
42 to

α(x). Since there is at least one of these edges for each problem edge, we obtain α(x) < 0.
If d(x) ≥ 8, then we have at most one problem edge, since each problem edge in this category

has an endpoint of degree at most 4, and having two such vertices at distance two would imply
b(G) ≤ 7, by Lemma 7.

When x has one neighbor y of degree 1, 3, or 4, it must have at least seven neighbors each of
degree at least 6, by Lemma 7. Each of the edges between x and a high degree neighbor y satisfies
vi + fi − 1 ≤ 1

24 , since d(x) = 8, d(y) ≥ 6, and a1, a2 ≥ 3. Since none of these are problem edges,

they each contribute half their values to α(x). Our problem edge contributes at most 1
9 to α(x), so

we obtain α(x) ≤ 1
9 −

7
48 < 0.

If our problem edge has an endpoint y of degree 2, then d(x) ≥ 9. Applying Lemma 7, it must
have at least eight neighbors each of degree at least 8. Each of the corresponding edges to x
contributes at most −7

144 to α(x), and xy contributes at most 7
36 . So, α(x) ≤ 7

36 −
7
18 < 0.
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�

Here we note that it is sufficient to prove these results for connected graphs, since the bondage
number of a disconnected graph is simply the minimum of the bondage numbers of its components.

3. Some planar graphs with bondage number 6

It is not known whether Theorem 8 is tight. In fact, there were previously no known examples
of planar graphs with bondage number greater than 5. Here we use the corona graph operation to
demonstrate a class of planar graphs with bondage number 6.

In [4], Frucht and Harary define the corona of two graphs G1 and G2 to be the graph G = G1◦G2

formed from one copy of G1 and |V (G1)| copies of G2, where the i-th vertex of G1 is adjacent to
every vertex in the i-th copy of G2. In particular, we are concerned with the corona G = H ◦K1,
the graph formed by adding a new vertex vi and the pendant edge uivi for every vertex ui in H.

Theorem 9. Let G be a graph of the form G = H ◦K1. Then b(G) = δ(H) + 1.

Proof. Let {ui} be the vertices of H and {vi} be the corresponding vertices added in the construction
of the corona. That is, for each i, the vertex ui is adjacent to vi. Then it is clear that γ(G) =
|G|/2 = |H |. In particular, all minimal dominating sets of G are of the following particular form.
For each vertex ui in H , any minimal dominating set of G will contain exactly one of the vertices
ui and vi.

To increase γ(G), we must remove enough edges so that for some i, both ui and vi must be in
every dominating set on the resulting graph. Clearly, removing any set of edges consisting only
of edges in the original graph H will not change γ(G), since the pendant edges uivi are the only
edges essential for domination, as indicated by the structure of our dominating sets. Thus, we must
remove at least one edge uivi. Doing so requires us to include vi in any dominating set on the
resulting graph. However, ui still has dG(ui)−1 = dH(ui) neighbors, so we must remove that many
edges to force ui to be in every dominating set. Applying this technique at a vertex of minimal
degree in H yields b(G) = δ(H) + 1, as desired. �

Corollary 10. There exist planar graphs with bondage number 6.

We note that there exist planar graphs H with δ(H) = 5. Taking the corona G = H ◦ K1

gives a planar graph with b(G) = 6. One such example is the corona of K1 and the graph of the
icosahedron.

4. A bound on the bondage number of directed graphs

The notion of bondage is equally apt in the case of directed graphs, although to date no research
has been done on this concept. We will use the following notation in dealing with directed graphs.

If G is a directed graph, we denote the in-degree of a vertex u by
←−
d (u) and its out-degree

by
−→
d (u). The maximum in-degree (respectively out-degree) of any vertex in G is denoted by

←−
∆(G) (respectively

−→
∆(G)); the minimum in-degree (respectively minimum out-degree) is denoted

by
←−
δ (G) (respectively

−→
δ (G)). The directed distance between u and v is denoted by

−→
d (u, v).

We define
←−
N (v) (respectively

−→
N (v)) to be the set of all vertices u for which there exists an edge

−→uv (respectively −→vu). We define the neighborhood of v to be N (v) =
←−
N (v)

⋃−→
N (v). For a set S

of vertices, we set
←−
N (S) = ∪v∈S

←−
N (v), and similarly for

−→
N (S) and N (S). Given an undirected

graph G, we define the corresponding directed graph (which we will also call G) by replacing each
undirected edge with a pair of directed edges.
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For a directed graph G, we say a set D is a dominating set if V (G)−D ⊂
−→
N (D). Then, just as

for undirected graphs, γ(G) is the minimum size of a dominating set, and b(G) is the smallest size
of a set of edges E such that γ(G−E) > γ(G).

Lemma 3 allows us to calculate an upper bound on bondage number, which is a global property
based on local properties of the graph. It has the following natural extension to directed graphs,
with a proof essentially identical to that of Hartnell and Rall [5].

Lemma 11. If G is a directed graph, then for every pair of vertices (u, v) in G for which there
exists an edge from u to v,

b(G) ≤ d(v) +
←−
d (u)− |

←−
N (u) ∩

←−
N (v)|.

Proof. Consider the set T consisting of all edges incident to v and all edges terminating at u. From
this set, remove those edges −→wu for which the edge −→wv also occurs in G, and let S be the resulting

set. By construction, |S| = d(v) +
←−
d (u) − |

←−
N (u) ∩

←−
N (v)| . To prove the lemma, we need only

to show that γ(G − S) > γ(G), or, equivalently, that no minimal dominating set for G can also
dominate G − S. Suppose that D were such a set. Then as v is isolated in G − S, the set D
must contain v. Now, either u ∈ D or w ∈ D with −→wu existing in G − S; by choice of S, either

of these conditions implies v ∈
−→
N (D − {v}) in G. As v is an isolated vertex in G − S, we have

V (G)−{v} ⊂ (D−{v})∪
−→
N (D−{v}) in G−S and therefore G. But this means that D−{v} is a

dominating set for G, contradicting the assumption that D is a minimal dominating set for G. �

Lemma 11 then yields the following immediate corollary.

Corollary 12. If G is a directed graph, b(G) ≤
←−
δ (G) + ∆(G).

As we have
←−
δ (G) ≤ 1

2∆(G), this in turn yields the desired result, proving Conjecture 2 in the
case of directed graphs.

Corollary 13. If G is a directed graph, b(G) ≤ 3
2∆(G).

Unlike the case of undirected graphs, however, it is no longer clear whether or not the bound in
Corollary 13 is sharp. Consider the aforementioned family of graphs Gn = Kn ×Kn, which estab-
lishes the sharpness of Conjecture 2 in the case of undirected graphs. If we take the corresponding
directed graph, we have ∆(Gn) = 4(n − 1); the domination number of Gn is still n. However,
label the vertices of Kn with the set {0, 1, . . . , n− 1}, and consider the set S consisting of all edges
terminating at (0, 0), all edges from (0, 0) to (0, j), all edges from (1, j) to (1, 0), and the single edge
from (0, 0) to (1, 0). Clearly, any dominating set D for Gn − S must contain (0, 0) as well as some

other (i, 0). Furthermore, (Gn − S)− {(0, 0), (i, 0)}−
−→
N (0, 0)−

−→
N (i, 0) is isomorphic to Gn−1 and

thus has dominating number n−1, and it is easy to see that we cannot find a set of fewer than n−1
elements which dominates this set in the larger graph Gn − S. Therefore, D must contain at least
n + 1 elements, so γ(Gn − S) > γ(Gn). By definition, we then have b(Gn) ≤ |S| = 4(n − 1) + 1.
In particular, this family of graphs does not prove that Corollary 13 is sharp.

Indeed, the following conjecture, discredited in the case of undirected graphs, is resurrected here
in the case of directed graphs.

Conjecture 14. If G is a directed graph, then b(G) ≤ ∆(G) + 1.

This bound, if true, is shown to be sharp by the same class of examples as in the undirected
case. Specifically, we have the following result.

Theorem 15. Let Kn be the directed complete graph on n vertices, and let Gn = Kn ×Kn. Then
b(Gn) = 4(n− 1) + 1 = ∆(Gn) + 1.
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Proof. We have already shown that b(Gn) ≤ 4(n − 1) + 1. To show the reverse implication it
suffices to show that for every set S ⊂ E(Gn) with |S| = 4(n− 1), there exists some dominating
set of Gn − S with size n. We call the set {i, k} for constant i and variable k the ith row of
Gn, and {k, j} for constant j and variable k the jth column of Gn. We divide the edge set of
Gn into column edges, which connect two elements of the same column, and row edges, which
connect two elements of the same row. For a given set S, we say that a vertex v dominates its
row (respectively, column) if none of the row edges (respectively, column edges) emanating from v
are in S. We call a row (respectively, column) a problem row (respectively, problem column)
if it contains no vertex dominating it. Note that each vertex in such a row or column must have
at least one row or column edge emanating from it in S, and so each problem row or column must
have n corresponding row or column edges in S.

Fix S with |S| = 4(n − 1). Without loss of generality, assume S contains at most 2(n − 1)
column edges. If each column has a dominating vertex, we can take the union of these vertices to
form a dominating set for Gn−S of size n. Otherwise, S has exactly one problem column; assume
without loss of generality that this is the 0th column.

Now, there exists some (k, 0) with only one column edge emanating from it in S, as |S| < 2n.
Without loss of generality let this edge go from (1, 0) to (0, 0). If there exists some j for which (0, j)
both has an edge to (0, 0) and dominates its column, we can pick the set {(1, 0), (0, j), vt)} where
vt dominates column t, t 6= 0, j; this set will then dominate Gn− S and be of size n. Therefore, we
can assume that for every j, either the edge from (0, j) to (0, 0) or some column edge emanating
from (0, j) is in S. This specifies an additional n−1 edges of S. We now consider the column edges
emanating from (0, 0).

Claim 16. Suppose that there are m column edges in S emanating from (0, 0); let {ki} be the set of
rows containing a terminal vertex of one of these edges. Then one of the following two statements
must hold:

(i) We can find n−m edges of S and a row i 6= 0 such that each edge is either a column edge or
lies in row i and terminates at (i, 0), or

(ii) We can find distinct ji 6= 0 such that (ki, ji) both has an edge to (ki, 0) and dominates its
column in Gn − S.

Proof. The proof is by induction. If m = 1, then unless (ii) is true, for each j we have emanating
from (k1, j) either an edge to (k1, 0) or a column edge in S; since this must be the case for 1 ≤ j ≤
n− 1, we obtain n − 1 edges all either column edges or contained in row k1.

If m > 1, then we apply the claim to the first m − 1 of these edges. If (i) is true, we can find
n −m + 1 edges of S satisfying the constraint in question, so we can certainly find n −m edges
satisfying it. If (ii) is true, consider all j 6= 0, j1, . . . , jm−1. If any j dominates its column and has
an edge to (km, 0), we can set jm = j and satisfy condition (ii). If this is not the case, then for any
j either the edge from (km, j) to (km, 0) lies in S or some column edge containing (km, j) lies in S,
and we can take the subset of S consisting of all such edges. This set has cardinality n −m and
contains only column edges or edges in row km terminating at (km, 0), hence satisfies condition (i)
as desired. �

If (ii) holds, then we can take our dominating set to be {(0, 0), (ki, ji), vt} where i ranges from 1
to m and the vt dominate column t, t 6= 0, ji.

On the other hand, (i) implies the existence of n −m edges which are either column edges not
in column 0 or contained in a given row i. Furthermore, we know now that S contains at least
n + m − 1 edges in column 0, for the original count of n included only one edge emanating from
each vertex and we now know that m edges emanate from (0, 0). This brings our total number of
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edges shown to be in S up to 3n−2. Note that these edges are all either in column 0 or have initial
vertex in row 0 or row i and not in column 0.

Now, let l be the total number of row edges in S emanating from (0, 0) and (i, 0). The proof of
the following claim is identical to that of Claim 16, and will be omitted.

Claim 17. Suppose there are l row edges in S, each emanating from (0, 0) or (i, 0); let {kt} be the
set of all columns containing a terminal vertex of one of these edges. Then one of the following
two statements holds:

(i) We can find a set of n− l − 1 edges in S not previously enumerated, or
(ii) We can find distinct jt 6= 0, i such that (jt, kt) has edges to (0, kt) and (i, kt) and dominates

its row in G− S.

However, (i) is impossible, as adding these edges and the l row edges in S to the previously
enumerated edges of S yields |S| ≥ 4n − 3, a contradiction. Furthermore, if (ii) is true, the set
{(0, 0), (i, 0), (jt, kt), vs} dominates S, where vs dominates row s, s 6= 0, i, jt. Note that such vs

must exist, as for the specified values of s, the previously enumerated 3n− 2 edges of S contain no
edges of row s, so that only n − 2 edges of row s can occur in S and row s cannot be a problem
row. �
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