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Abstract. Many industrial cyber-physical system (CPS) designs are too
complex to formally verify system-level properties. A practical approach
for testing and debugging these system designs is falsification, wherein
the user provides a temporal logic specification of correct system behav-
iors, and some technique for selecting test cases is used to identify behav-
iors that demonstrate that the specification does not hold for the system.
While coverage metrics are often used to measure the exhaustiveness of
this kind of testing approach for software systems, existing falsification
approaches for CPS designs do not consider coverage for the signal vari-
ables. We present a new coverage measure for continuous signals and a
new falsification technique that leverages the measure to efficiently iden-
tify falsifying traces. This falsification algorithm combines global and
local search methods and uses a classification technique based on sup-
port vector machines to identify regions of the search space on which to
focus effort. We use an industrial example from an automotive fuel cell
application and other benchmark models to compare the new approach
against existing falsification tools.

1 Introduction

Cyber-physical systems integrate heterogeneous components whose descriptions
in high level modeling languages involve a wide array of specification paradigms,
such as differential equations, difference equations, automata, and data flow
graphs. Although the behavior of individual cyber-physical components may be
amenable to rigorous mathematical reasoning and analysis, the complex inter-
actions between the components are still not well-understood and pose major
theoretical hurdles in formal reasoning. Also, the scalability of the existing for-
mal verification methods and tools (see [1,3,4,12,15,16,18,26] and references
therein) is still limited and therefore not suited for verifying industrial scale
cyber-physical systems. Testing is an alternate approach for detecting errors,
whose advantage over formal verification methods is that it can treat a system

c© Springer International Publishing AG 2017
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as a black box, meaning that no internal description of the system is required. In
black box testing, only an interface of the system with the external environment
is described. Although testing can be applied to large scale cyber-physical sys-
tems, as attested by its use in industry, it does not provide proofs of correctness.
In other words, black box testing can only detect bugs, and when it does so
successfully, it means that the system design has to be corrected. Nevertheless,
when the testing process does not find any bugs, we cannot draw any conclusion
about its correctness. If the falsification is unsuccessful, then information about
the potential validity of the correct behavior of the system would be of great
interest to the designer. This information can be provided in terms of a testing
coverage measure.

In the existing research on cyber-physical systems testing, the focus was
generally on state-coverage measures, that is measures to characterize the portion
of the state space covered by a test suite. An example is star discrepancy [6,11],
a notion borrowed from statistics that indicates how equi-distributed are a set
of tested points in the state space. Some other measures are dispersion [13],
which indicates the size of the largest unexplored areas, and grid-cell count [25].
Although these state-coverage measures can serve as a possible means to compare
coverage of testing data generated by different algorithms, these measures exhibit
the following drawbacks. Typically, a test generation algorithm guided by a state
coverage measure tries to sample test cases in the areas that are not well explored;
however, in industrial scale system models describing interactions among a large
number of heterogeneous components, information about the state can be hard
to obtain. Additionally, such systems can have low controllability, meaning that
it is difficult or impossible to reach some regions of the state space. In such a
case, the algorithms can expend a large amount of time attempting to explore
unreachable regions. So, state coverage measures are not appropriate for analysis
or guidance of the testing effort on many cyber-physical systems.

The present work addresses the shortcomings of the state-coverage-based
techniques by instead focusing on coverage of input signal spaces. We develop a
new test generation technique that is based on covering the input signal space
rather than the state space. Previous test generation methods have considered
coverage of a parameter space (such as in [9]); the way that we handle input
signals is directly related, as we consider the class of finitely parameterized input
signals.

While coverage is important during testing for providing confidence in cor-
rectness of the system behavior, bug detection is still an important goal of
testing. Usually, there is a mutual tradeoff between satisfying the two criteria.
Achieving good coverage entails exploring a large portion of the search space,
most of which would correspond to correct behaviors. Whereas, the objective
of a falsification procedure is to find incorrect behaviors, which would require
focusing on behaviors close to incorrectness. Most falsification methods are based
on minimizing the behavioral robustness with respect to a property under test;
the robustness measure here indicates how far the behavior is from violating
the property. A common drawback of such falsification methods is that the



Classification and Coverage-Based Falsification 485

optimization procedures can spend a significant amount of computing time near
local optima that may not correspond to a false behavior. Therefore, a crite-
rion like coverage can help overcome this drawback, since seeking to improve
the global coverage would drive the search process out of the areas of local
optima. One way to achieve a good compromise between coverage-driven and
local search-driven testing is to initiate the search procedures from points that
are separated by some threshold distance. This insight was used previously in the
tabu search method, which ensures that all the starting points are well separated
[7]; however, apart from ensuring that the starting points are well separated, it
is also desirable that they are chosen in regions in which one can reasonably
expect to find an incorrect behavior. That is, heuristically speaking, a starting
point should have a low robustness value.

Based on the above observations, in this work we present a falsification algo-
rithm that combines the following three essential ideas:

– Defining a coverage measure for quantifying the exploration of input signal
space during testing.

– Guiding a randomized global search procedure by performing robustness clas-
sification: the classification divides the search space into regions with differ-
ent potentials of falsification characterized by the robustness of evaluated test
cases. Our classification is inspired from linear support vector machines [8,17].

– Using local search in regions classified as less robust. The above-mentioned
global search together with an iterative classification procedure does converge
towards an incorrect behavior, if it exists. However, to speed up the conver-
gence, instead of continually classifying, we can use the information obtained
from classification to efficiently initialize a local search within each classified
region. Note that in general, local search with arbitrary initialization can
perform poorly. Therefore, by alternating classification and local search we
can achieve a better convergence while assuring a good coverage of the input
signal space (because in general local search does not take into account this
coverage criterion).

Before proceeding further, we note that our idea of combining global and local
search for black box falsification is independent of the work [22] that is concerned
with falsification based on state trajectories. In the latter work [22], although the
motivation is to combine local and global search, the state trajectories have to be
computed, in which case the system is not a black-box. On the other hand, our
work is concerned with black-box kind of systems, i.e., complex systems where
the information about the state of the system is very hard, if not impossible, to
know.

For implementation and evaluation purposes, for local search we use a
method, called the CMA-ES (Covariance Matrix Adaptation Evolution Strat-
egy) [21], also used by the tool Breach [9]. The CMA-ES algorithm is considered
as the state-of-the-art in evolutionary computation and has been used for indus-
trial optimization applications. The experimental results obtained using a MAT-
LAB implementation of our falsification algorithm on some benchmark systems
demonstrate its good performance and, in addition, its efficiency improvements
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over search algorithms like the CMA-ES. Indeed, our algorithm was tested on a
difficult property of the PTC benchmark [11] and could falsify in all the tested
random seeds while the methods based on pseudo-random sampling or only on
the CMA-ES could not. Also, we demonstrate that the technique can be suc-
cessfully applied to industrial problems by presenting results for a prototype
automotive hydrogen fuel cell application.

Our approach draws inspiration from the approaches implemented in the
tools S-Taliro [2] and Breach [9]. These approaches seek the worst case behaviors
using the notion of robustness metrics, which are defined with respect to prop-
erties specified using the languages MTL (Metric Temporal Logic) [14] and STL
(Signal Temporal Logic) [10], respectively. The tools identify property violations
by employing global optimization methods to search for behaviors that minimize
robustness, where negative robustness values correspond to property violations.
Robustness-based approaches can be seen as complementary to coverage-based
approach, since the former try to find a worst case behavior while the latter tries
to cover a large number of possible behaviors. When a robustness-based approach
cannot find an erroneous behavior due to the limitations of global optimization
algorithms, the observed error absence cannot be used as a formal correctness
proof; in this case good coverage would be desirable to enhance the confidence
that the system is free from errors. By combining robustness-based and coverage-
guided explorations, our approach enhances the overall testing effectiveness by
providing confidence that important or representative behaviors are tested.

2 Preliminaries

We consider system models defined by a mapping from parameters and input
signals to output signals,

y = Φ(v, u), (1)

where v ∈ V is a valuation of a finite collection of parameters, and u ∈ U is
an input signal used to simulate the system. In this setting, v could contain a
set of system initial conditions as well as some finite set of system parameters.
Each input signal u ∈ U is a function Iu �→ U , where Iu is an interval (either
discrete or continuous) from 0 to some finite value, and U is some metric space
of finite dimension. Similarly, we assume that each output signal y ∈ Y is a
function Iy �→ Y , where Iy is an interval (either discrete or continuous) from 0
to some finite value, and Y is some metric space of finite dimension. We assume
that V, U , and Y are metric spaces. Note that the system defined by (1) does
not explicitly model the behaviors of the internal system states. State behaviors
could be modeled using this framework by ensuring that v includes the system
state and all of the states map to system outputs, but we do not require this.

We assume that signals are finitely parameterized, i.e., an input signal u
can be uniquely determined by a finite set of m parameters, whose valuation
û is a in a subset ̂U of an m-dimensional metric space. For example, a right-
continuous piecewise constant input signal u : Iu → R, where Iu = [0, T ], with
discontinuities occurring at monotonically increasing instants τ1, . . . , τm, where
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0 = τ1 < τm < T , can be uniquely defined by the m values u(τi). Subsequently,
our system can be defined as a mapping from a finite set of parameters to the
output signals, as follows:

y = ̂Φ(v, û), v ∈ V and û ∈ ̂U (2)

We call V the space of nominal parameters and ̂U the space of input signal
parameters.

Signal Temporal Logic. To specify correct behavior of a system defined by (1),
we use signal temporal logic (STL) [23]. STL can capture behaviors of real valued
signals over discrete or dense time. We present here an informal description of
STL (see [23] for more details). A formula in STL consists of atomic predicates,
Boolean, and temporal operators. Atomic predicates are inequalities over signal
values, as in μ = f (y(t)) ∼ 0, where f is a scalar-valued function over the signal
y evaluated at time t, and ∼∈ {<,≤, >,≥,=, �=}. Temporal operators “always”
(�), “eventually” (♦), and “until” (U) have the usual meaning and are scoped
using intervals of the form (a, b), (a, b], [a, b), [a, b], (a,∞), or (a,∞), where
a, b ∈ R≥0 and a < b. If I is such an interval, then the language of STL is given
by the following grammar:

ϕ := 
 | f(y(t)) ∼ 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 : ∼∈ {<,≤, >,≥,=, �=} (3)

The ♦ and � operators are defined as follows: ♦Iϕ � 
UIϕ, �Iϕ � ¬♦I¬ϕ.
When omitted, the interval I is assumed to be [0,∞). The semantics are
described informally as follows. The signal u satisfies f(u) > 0 at time t if
f(u(t)) > 0. It satisfies ϕ = �[0,1)(f(u) = 0) if for all time 0 ≤ t < 1,
f(y(t)) = 0. The signal satisfies ϕ = ♦[1,2)f(u) < 0 iff there exists a time t
such that 1 ≤ t < 2 and u(t) < 0. The two-dimensional signal y = (y1, y2)
satisfies the formula ϕ = (y1 > 0)U[2.3,4.5](y2 < 0) iff there is some time t where
2.3 ≤ t ≤ 4.5 and y2(t) < 0, and ∀t′ in [2.3, t), y1(t′) is greater than 0.

Quantitative Semantics for STL. The quantitative semantics of STL tells
how far a signal is from satisfying a formula. In this respect, we use the quan-
titative interpretation presented in [10], which we describe informally as fol-
lows. The semantics relies on a function ρ such that a positive sign of ρ(ϕ, y, t)
indicates that (y, t) satisfies ϕ, and its absolute value estimates the robustness
of this satisfaction. If φ is a simple inequality of the form f(y) > b, then
its robustness is ρ(ϕ, y, t) = f(y(t)) − b. For the conjunction of two formulas
ϕ := ϕ1 ∧ ϕ2, we have ρ(ϕ, y, t) = min (ρ(ϕ1, y, t), ρ(ϕ2, y, t)), while for the dis-
junction ϕ := ϕ1 ∧ ϕ2, we have ρ(ϕ, y, t) = max (ρ(ϕ1, y, t), ρ(ϕ2, y, t)). For a
formula with until operator as ϕ := ϕ1UIϕ2, the robustness is computed as
ρ(ϕ, y, t) = maxt′∈t+I

(

min
(

ρ(ϕ2, y, t),mint′∈[t,t′] (ρ(ϕ1, y, t′′))
))

.
Since the output signal is determined by the set of nominal parameters and

input signal parameters according to the mapping ̂Φ, we can define a robust-
ness function over the space of parameters, called parametric robustness, as
ρ̂(ϕ, v, û, t) = ρ

(

ϕ, ̂Φ (v, û) , t
)

.



488 A. Adimoolam et al.

Falsification. Finding a counterexample of ϕ means finding a parameter value
v ∈ V and an input parameter value û ∈ ̂U such that y �|= ϕ, where y = ̂Φ(v, û).
Equivalently, the counterexample is identified when its parametric robustness is
less than zero, i.e., ρ̂(ϕ, v, û, t) < 0 for some time point t in the time horizon of
the signal. We call any v ∈ V and û ∈ ̂U for which y �|= ϕ a counterexample and we
call this task of finding a counterexample as a falsification problem. We say that a
counterexample y (that is y �|= ϕ) is robust if there exists a neighborhood around
y, Ny, such that for all y′ ∈ Ny, y′ �|= ϕ. We call a corresponding neighborhood
Ny a robustness neighborhood of counterexample y. If a counterexample has a
robustness neighborhood that contains a closed ball of radius ε, then we say that
the counterexample is ε-robust .

Continuity of Robustness. Recall that our input signals are assumed to be
finitely parametrized and correspondingly we defined the parametric robustness
function. If we assume that the predicates of an STL formula are defined by
functions f in (3) which are continuous w.r.t. the value of y at any time t, and
the mapping Φ defining the system dynamics is continuous w.r.t. the parameter
and input signal, then we can prove that the parametric robustness is continuous
w.r.t. v and û. Indeed, for any atomic predicate ϕ = f (y(t)) ∼ 0, the parametric
robustness ρ̂ (ϕ, v, û, t) is continuous because f and ̂Φ are continuous. Next, for
any general formula as defined in (3), the robustness is computed by a composi-
tion of min and max operators of subformulas. By using induction we thus can
deduce that the parametric robustness, given the aforementioned assumptions,
is continuous in the input parameter û and the nominal parameter v.

3 Input Space Coverage - Cell Occupancy

This section presents a metric that we use to measure the coverage of signal
spaces. The notion is intended to be used to define the coverage of input signals
used to stimulate a dynamical system. We define a measure called cell occupancy,
which has the following desirable properties:

– The measure is monotonic, in the sense that it is guaranteed not to decrease
in value when new signals are added to an existing set;

– The measure permits computation with efficient algorithms;
– The measure provides numbers in reasonable ranges, in the sense that, for

both low dimension and high dimension problems, the measure results in val-
ues that are neither too large nor too small so as to be accurately represented
with standard floating point numbers.

Henceforth, we define a measure called cell occupancy as follows. Let M be
a set of signals, which corresponds to a set of parameter vectors XM . We call
elements of XM points. We use p to denote the size of sets M and XM .

Choose a partition of X, ω = {ωi|i = 1, . . . , l}. For now, we assume that each
partition element, which we call a cell, is rectangular, with each side of equal
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length, Δ, called grid cell size1. A vector that indicates how many points are in
each cell is called a distribution, D = (n1, . . . , nl), where each ni indicates how
many points are located in cell i. Cell occupancy is based on the relative number
cells occupied by points, compared to the total number of cells. Consider the
total number of occupied cells, that is, the number of cells that contain at least
one point, i.e., Nc =

∑l
i=1 gi where gi = 1 if ni ≥ 1, and gi = 0 otherwise. Then,

the proposed cell occupancy measure is given as

Hc(D) =
log Nc

log l
.

Logarithm functions are used due to the fact that the total number of cells
could be very large as compared to the number of occupied cells. The logarithms
provide two key features for the cell occupancy measure: (1) they maintain the
monotonicity of the measure, and (2) they result in reasonable measure values
even for cases where the dimension m is large.

Guarantee for Finding Counterexample. We consider here falsification algo-
rithms based on an iterative search on the nominal parameter and input signal
parameter spaces. We assume that the functions in the atomic predicates of STL
formulas are continuous in the value of the output signal at any fixed time point.
Also, the system mapping ̂Φ is assumed to be continuous w.r.t. the input signal
parameters and nominal parameters. In this case, if a falsification algorithm is
such that the cell occupancy is guaranteed to increase after a finite number of
robustness evaluations for any partition, then because of the continuity of para-
metric robustness (explained in Sect. 2), there exists a sufficiently small upper
bound on the grid cell size below which, the algorithm is guaranteed to find a
counterexample. This is summarized by the following lemma. However, note that
in general such falsification algorithms may be used for non-continuous systems
as well. The following lemma gives a theoretical insight about why coverage may
be taken into account for designing efficient falsification algorithms.

Lemma 1. Given a falsification algorithm and a partition ω with l grid cells
of size Δ > 0, let D(κ,Δ) denote the cell distribution after κ robustness eval-
uations by the algorithm. Let us consider that there exists α ∈ Z>0 for which
the algorithm guarantees that ∀κ ∈ Z≥0 Hc (D(κ + α,Δ)) > Hc (D(κ,Δ)). Let
us also consider that the system mapping ̂Φ is continuous and an STL formula
ϕ is formed by continuous predicates with respect to the signal value at a fixed
time. In this case, if an ε-robust counterexample of ϕ exists, then there exists an
upper bound Δ > 0 on the grid cell size of ω such that ∀Δ < Δ, the algorithm
finds a counterexample after a finite number of robustness evaluations.

1 We note that in the setting in which we intend to apply the following coverage
metrics, we will expect to select points in X that are no closer than some ε distance
from each other, based on some metric between signals, but this rectangularity will
not be exploited in the following. Further, we assume that ε � Δ.
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4 Falsification Techniques

We use the term sampling a point to mean selecting a parameter vector x in
the parameter set XM , to uniquely define an input signal in M . Such signals
are then used as stimuli to simulate the system and determine the robustness
values of the corresponding output traces. For simplicity of notation, for a given
sampled parameter vector x, we write ρ(x) to denote the robustness value of
the corresponding output trace. And for a set S of sampled parameter vectors,
ρ(S) = min{ρ(x) | x ∈ S}. A parameter vector x is called a falsifier if ρ(x) < 0.

A rudimentary approach to search for a falsifier is repeatedly select randomly
an unoccupied cell with uniform probability distribution and evaluate one point
inside it. This way, we ensure that the cell occupancy always keeps increasing
until we eventually find a robust bug, if it exists (see Lemma 1); however, this
approach may not be efficient because the uniform search does not differentiate
regions that are more likely to contain an input that falsifies from those that are
less likely. Therefore, we propose to enhance it using two concepts:

1. Using classification to bias random search. We use robustness based classifi-
cation to classify less falsifiable regions from more falsifiable regions. Then,
the probability distribution of random samples is biased according to the
coverage and robustness information in different regions.

2. Combining global search and local search. Local search approaches (such as
Hill climbing, Gradient methods, Simulated annealing, Genetic algorithms)
(see for example [19,24]) can be very efficient if the search procedures are
appropriately initialized. Finding good initializations constitutes a major dif-
ficulty that limits the efficiency of these approaches. In our framework, the
classification based global search provides useful hints at appropriate ini-
tializations for the local search. Indeed, the least robust points in regions
with high potential of falsification can be used to initialize a number of local
searches.

Thus, our falsification algorithm involves two phases. The first phase is a global
search guided by hyperplane classifiers, coverage and the robustness information.
Next is a local search phase which runs a number of local searches initiated at
the least robust points of different regions formed by the classification process
during the global search. We now explain the aforementioned ingredients of the
algorithm.

4.1 Classification Using Hyperplane Subdivision

In the following, we say that two regions are separate if their intersection can only
lie on their boundaries. Our classification problem can be intuitively described
as follows: given a rectangle R representing a search space and a set S of sampled
points in R, iteratively subdivide it, according to the robustness values of the
sampled points, to obtain a rectangular partition, the elements of which have
different average robustness levels. We define the average robustness of the set of
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samples S in R as μ =
∑

x∈S ρ(x)
|S| . Our objective is thus to separate a region of

R having higher potential of containing low robustness samples. To this end, we
define a hyperplane, in view of separating samples below the average robustness
μ from those above μ. Obviously, such a hyperplane does not always exist, and
we therefore choose a hyperplane that does this separation as best as possible.
To address this problem, we draw inspiration from soft margin support vector
machines [5], where hyperplanes are determined so that the misclassification
error is minimized. In general, a misclassification error is defined according to
the locations of the misclassified samples; however, in our approach we define
a misclassification error that gives weightage to the robustness values of the
misclassified samples in addition to their locations. Furthermore, since it is easy
to sample uniformly in rectangles, we only use axis-aligned hyperplanes, which
generate only rectangular subregions. Otherwise, when allowing non-axis aligned
classifiers, we generate polyhedral regions in which uniform random sampling as
well as partition manipulation could be more expensive.

To explain the essence of our classification method, let us consider one rec-
tangle R in the partition as the product of intervals R = [a1, b1] × . . . × [an, bn].
Let S be the set of samples in R. We denote an axis-aligned hyperplane inside
R by a tuple (d, r) where d ∈ {1, . . . , n} is the axis normal to the separat-
ing hyperplane, while r ∈ [ad, bd] is a coordinate at which the hyperplane is
drawn. The hyperplane (d, r) subdivides R into two subrectangles A−(R, d, r)
and A+(R, d, r) such that A−(R, d, r) = [a′

1, b1] × . . . × [a′
n, bn] where a′

j = r if
j = d, and a′

j = aj otherwise; and A+(R, d, r) = [a1, b
′
1] × . . . × [an, b′

n] where
b′
j = r if j = d, and b′

j = bj otherwise (Fig. 1).

Fig. 1. Classification by subdivision. The samples in a 2-dimensional rectangle R are
represented by black points labeled with their robustness values; R is divided by the
hyperplane (d, r) where the axis is d = 1, to minimise the misclassification error. This
division produces two subrectangles A−(R, d, r) (on the left) and A+(R, d, r) (on the
right).

An ideal separation of samples below the average robustness from those above
the average robustness by the hyperplane can be described in one of the follow-
ing scenarios, identified by the following notion of polarity. Hyperplane (d, r)
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has polarity p = 1 w.r.t. S, if the left subrectangle A−(R, d, r) contains all sam-
ples below the average μ, while the right subrectangle A+(R, d, r) contains all
samples above the average μ. Similarly, (d, r) has polarity p = −1 w.r.t. S, if
A+(R, d, r) contains all samples below μ, while A−(R, d, r) contains all samples
above μ. When an ideal separation as above is not feasible, we identify misclas-
sified samples as follows.

Definition 1. A point x ∈ R is misclassified w.r.t. a hyperplane (d, r), polarity
p ∈ {−1, 1} and the sampled set S, if sgn (p (ρ(x) − μ) (xd − r)) = 1 where xd is
the dth coordinate of x, and sgn denotes the sign function.

For a misclassified sample, the misclassification error is measured according
to its location and robustness value. If a misclassified sample is farther from the
hyperplane, it is considered to entail a higher misclassification error. Also, since
the classification is based on the average robustness, samples with robustness
values farther from the average get higher weightage in measuring the misclas-
sification error. Accordingly, we define the misclassification error for a point
x ∈ R w.r.t. a hyperplane (d, r), polarity p ∈ {−1, 1}, and a set of samples S as
ed,r(x,R, S, p) = max {p(ρ(x) − μ)(xd − r), 0}. Then the total misclassification
error is the sum of the misclassification errors of all the samples:

Γd,r(R,S, p) =
∑

x∈S

ed,r(x,R, S, p). (4)

An appropriate hyperplane (d∗, r∗) traversing the rectangle R, chosen for the
desired separation of S, is one that minimises the total misclassification error
for either a positive or negative polarity, i.e.,

(

dR,S
∗ , rR,S

∗
)

= argmin
r∈[ad,bd],d∈[n]

(min {Γd,r(R,S,−1), Γd,r(R,S, 1)}) . (5)

We denote A−
∗ (R,S) = A−(R, dR,S

∗ , rR,S
∗ ) and A+

∗ (R,S) = A+(R, dR,S
∗ , rR,S

∗ ) as
the subrectangles formed by dividing R by the above optimal hyperplane.

It is important to remark that in order for the classification to reflect the
robustness distribution over the whole dense space, the number of samples should
be sufficiently large. Henceforth, only rectangles in which the number of samples
is not smaller than a (user-defined) threshold number, are subdivided as above.
The classification procedure takes as input a partition encoded as a list of k
rectangles and the set of points in each respective rectangle. For each rectangle
if the number of points is not smaller than the threshold Kc, the rectangle is
subdivided by a hyperplane that minimizes the classification error. The rectangle
is replaced by the left subrectangle and the right subrectangle is added to the
list of rectangles. After all rectangles are considered for subdivision, the samples
inside them are updated.

4.2 Global Search

Each iteration of the global search performs 3 successive procedures:
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1. Classification using hyperplanes, the goal of which is to partition the state
space into regions with different robustness levels.

2. Coverage and robustness guided sampling of input signal parameters.
3. Singularity based sampling of input signal parameters inside rectangles con-

taining very low robust samples. Here, we use singularity to refer to a partition
element that contains a point in a low robustness range with low frequency
of occurance.

Note that the term sampling in the description of our method refers to the con-
secutive execution of three steps (1) defining the input signals from the sampled
parameters, (2) simulating the system under the defined input signals, and (3)
evaluating the robustness of the corresponding simulated output traces.

Coverage and Robustness Based Sampling. We randomly select a number
of unoccupied cells, such that the probability of picking a cell in each rectangle
is based on two components: coverage based probability and robustness based
probability. Then the probability of cell sampling is determined as a weighted
sum of the former components. Once a cell is sampled, a point is selected by a
uniform sampling inside the cell.

Coverage Based Probability Distribution. Let {R1, . . . , Rk} be the set of rectan-
gles of a partition of the parameter space. We now consider the collection of
grid cells intersecting with Ri, that is {ωj : ωj ∩ Ri �= ∅}, and we index them as
βi =

{

βi
1, . . . , β

i
qi

}

where qi is the number of such cells. Let D(Ri, Si) be the vec-
tor denoting the distribution of samples Si in cells of βi, that is ∀j ∈ {1, . . . , l} (l
is the total number of grid cells), the jth component Dj(Ri, Si) =

∣

∣Si ∩ βi
j

∣

∣. Then
the coverage based sampling probability in Ri is proportional to the number of
unoccupied cells in this rectangle:

P i
c =

1 − Hc (D(Ri, Si))
∑m

j=1(1 − Hc (D(Rj , Sj))
, (6)

where Hc (D(Ri, Si)) is the local cell occupancy of Ri, i.e., Hc (D(Ri, Si)) =
log(Nci)
log(li)

. where li is the number of grid cells intersecting with Ri and Nci is the
number of unoccupied cells intersecting with Ri.

Robustness Based Probability Distribution. A probability distribution takes into
consideraton the average robustness as well as the potential reduction in robust-
ness below the average. The potential reduction in robustness below the average
is defined as λi = 1

|Si|
∑

x∈Si
max(μi − ρ(x), 0). Then a potentially reduced

robustness value below the average is θi = μi − λi. Then we define a robustness
based probability in a rectangle Ri as inversely proportional to θi, as follows.

P i
r =

1
θi

∑m
j=1

1
θj

. (7)
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Sampling Probability Distribution. The probability distribution for sampling is
a weighted sum of the probability based on robustness and the probability based
on coverage. The weightage given to either probability is a user defined constant.
Let the weight assigned to the robustness based probability be denoted by wr

such that wr ∈ [0, 1]. Then, the overall probability of sampling in rectangle Ri is

P i
t = wrP

i
r + (1 − wr)P i

c . (8)

Singularity Based Sampling. Certain rectangles may contain samples whose
robustness is very low compared to the lowest robustness values in other rec-
tangles. We refer to them as singular samples, which we heuristically define as
follows.

Let γ = {γ1, . . . , γk} be the vector of lowest robustness values in
each rectangle, defined as γi = minx∈Si

ρ(x). The mean of γ and the

average deviation below the mean are respectively defined as μγ =
∑k

i=1 γi

k
and

λγ =
∑k

i=1 max (0, (μγ − γi))
k

. If the robustness of a sample is less than λ then it
is an indication that the sample may be close to a counterexample. Also, samples
with very low frequency and sufficiently low robustness are also considered singu-
lar. To select such rare samples, we use the following heuristic. If γ were a large set
of random samples selected from a normal distribution, then less than 15% of the
samples tend to lie below the value μγ − 3λγ . Although the actual set of samples
in γ may not follow the pattern of a normal distribution, this also can be used as
a heuristic to define a singular sample.

Definition 2. A point x ∈ ⋃k
i=1 Si for which ρ(x) ≤ max (μγ − 3λγ , λ) is called

a singular sample.

We call the rectangles containing singular samples as singular rectangles.
Since the frequency of singular samples can be very small, the robustness based
probability in (7) may not give adequate weightage to singular rectangles. So,
we have to perform additional sampling in the singular rectangles.

Overall Global Search. Suppose that we have a partition of rectan-
gles R1, . . . , Rk containing sets of samples S1, . . . , Sk, respectively. Let Ci

be the set of unoccupied cells intersecting with a rectangle Ri, i.e., Ci =
{ωj ∈ ω : ωj ∩ Ri �= ∅ ∧ ωj ∩ Si = ∅} . Let N be the number of samples to be
added during probabilistically biased random sampling. We compute the prob-
ability distribution of sampling among different rectangles P t, where the user
defines a weightage wr given to the robustness based probability distribution
P r. Then we select (min{max{1, �P t

i N�}, |Ci}) number of cells among Ci and
sample one point in each cell. Note that if there is an unoccupied cell in a rec-
tangle, then at least one sample is added to each rectangle irrespective of the
probability P t

i . Then update the sets of samples S1, . . . , Sk by adding the new
samples and also the sets of unoccupied cells Ci ∀i ∈ {1 . . . k}.
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Next, we perform sampling in each of the singular rectangles as follows. Let
Rj be a singular rectangle, currently containing the set Sj of samples and a
set Cj of unoccupied cells. Then we select min {max {Kc − |Sj |, 0} , |Cj |} cells
among the unoccupied cells Ci. Therefore, in the next iteration Rj contains at
least Kc samples (if it has unoccupied cells) and is consequently subdivided. The
procedure is repeated in each iteration until the time limit T g on global search
is reached. Alternatively, we can also set a limit on the total number of samples
for which robustness is evaluated. If we have not falsified yet, then we perform
a number of local searches initialized at the lowest robustness samples of all the
separate subrectangles, as described below.

4.3 Local Search

Suppose that we have K subrectangles R1, . . . , RK after running global search
for T g time. Let L be the set of the lowest robustnes points of different rec-
tangles. If the property is not yet falsified, then we use the lowest robustness
points of different rectangles to initialize a local search based falsification algo-
rithm. In our implementation, we used the state-of-the-art Covariance matrix
adaptive evolutionary search (CMA-ES) algorithm [21] in the local search phase.
The essence of the CMA-ES algorithm can be briefly described as follows. It is
a randomized black box method which selects samples based on a multivari-
ate normal distribution having a mean and a covariance matrix as parameters.
Based on the robustness of a population of points evaluated in an iteration,
the mean and covaraiance matrix of the search distribution are updated for the
next sampling iteration. The procedure generally coverges to a locally optimum
point or finds a counterexample. It may happen that the set of sampled points
do not contain enough information to derive a reliable estimation of a covari-
ance matrix for an efficient update. Therefore, good initializations of the mean
and covariance matrix are crucial. In our algorithm, the global search provides
initialization guidance as follows. We have a number of subrectangles formed
by classification, that contain sets of samples. So, we can initialize in one the
following ways: (1) Each of the lowest robustness points of different rectangles,
i.e., the points in L can be selected for initialization with covariance as identity
(the order of selection is according to their robustness values, with the lowest
robustness tested first); (2) The mean and covariance are initialized as that of
those points in L whose robustness is less than the average robustness of samples
in L. (3) The mean and covariance are initialized as that of all the points in L.
With such initialization guidance from our global search procedure described
earlier, this local search procedure can become more effective in falsification.

4.4 Overall Falsification Algorithm

The overall falsification algorithm consists of iteratively doing global search for a
threshold time and then doing local search. We give an outline of the algorithm
below.
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– Step 1: Initialization. In the first step, we evaluate the robustness of N uni-
formly selected points in the search space R and store them as a set of samples
S.

– Step 2: Global search phase: We perform a number of global search iterations
until a time limit is attained. Each global search iteration consists of the
following three steps executed one after the other. (i) The first step is classifi-
cation, where new rectangles are constructed by classifying and consequently
subdividing the existing rectangles that contain more than a threshold Kc

of samples. (ii) The second step involves probabilistically biased sampling
based on the coverage and robustness values of samples in different rectan-
gles. The specific procedure is explained earlier in the Section on overall global
search. (iii) The third step is singularity based sampling. This procedure is
also explained earlier in the Section on overall global search.

– Step 3: Local search phase. If no counterexample is found in the global search
phase, then we perform the local search based on the set of low robustness
points in different rectangles. The specific procedure is explained earlier in
the Section on local search.

– Step 5: If not falsified during local search, then continue global search itera-
tions i.e. go to Step 3.

– Step 6: If not falsified, then alternate with local search, i.e. go to Step 4.

We can now state an important completeness property of our overall falsifi-
cation algorithm for the class of the systems (2) satisfying the assumption that
the mapping ̂Φ is continuous in the nominal parameters and the input signal
parameters.

Theorem 1. If an ε-robust counterexample exists, then there exists a grid cell
size Δ and a global search time T g so that our algorithm finds a counterexample.

Sketch of proof. The theorem can be directly established from Lemma 1. Indeed,
the condition in this lemma is always satisfied by our algorithm since, by
construction, after each iteration the cell occupancy of the samples always
strictly increases. So, for sufficient T g, the falsification is guaranteed if an
ε-robust counterexample exists.

5 Experimental Results

In our experiments, we compare the performance of a MATLAB implementa-
tion2 with the following standard approaches: CMA-ES, Simulated Annealing,
Global Nelder-Mead algorithm implementations (integrated in Breach [9]), and
the S-TaLiRo tool [2] by setting Simulated Annealing as optimization algorithm3.

2 We use the robustness evaluation function from the Breach toolbox available in Octo-
ber 2016, on the site https://people.eecs.berkeley.edu/∼donze/breach page.html.

3 We used the latest version available in October 2016, on the site https://sites.google.
com/a/asu.edu/s-taliro/home.

https://people.eecs.berkeley.edu/~donze/breach_page.html
https://sites.google.com/a/asu.edu/s-taliro/home
https://sites.google.com/a/asu.edu/s-taliro/home
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Experiments were performed on a computer with 1.4 GHz processor with 4 GB
RAM, running MATLAB R2015 64-bit version. Also, we compare with a random
sampling method, where in each iteration a pseudo-randomly selected point is
tested only if it falls in a grid cell wherein no other point has been previously
tested. The grid used in this method is the same as the grid chosen in our falsi-
fication approach. We will call this method as grid based random sampling, for
the sake of reference during comparison.

5.1 Automative Powertrain Control

We consider a Simulink model of a closed loop of an Automative Powertrain
Control subsystem (PTC). The model contains a representation of an internal
combustion engine and an embedded software controller for the air-to-fuel ratio
within the engine (see [11] for more details). Here, we focus on the input-output
behavior, considering the internal model as a blackbox. The model has three
input signals, Pedal Angle Engine Speed and Sensor Offset. The air-to-fuel (A/F)
ratio, denoted by η, is an output signal for which the following safety requirement
was stated in [11]: φ = �[5,10] (η < 0.5).

Input Signal Settings. Compared to [11], we consider a smaller input range
for the Pedal Angle as [0, 40] and fix the Engine Speed and Sensor Offset as 1000
and 1, respectively. Reducing the ranges makes the properties more robust and
consequently difficult to falsify. The time horizon is 50s. We use piecewise con-
stant signal for testing, where the Pedal Angle is parameterized by 10 uniformly
spaced control points in the time horizon. Thus, we have a 10 dimensional search
space X.

Algorithm Setting. For our algorithm, the threshold number of samples for
hyperplane classification Kc is 100. The global search time is T g = 2000s. The
local search is initialized with the lowest robustness point found during global
search and allowed to run until falsification. Cell partitioning ω consists of hyper-
cubes of side length ε = 4. We consider equal weightage for robustness based
probability and coverage based probability for sampling during global search,
i.e., wr = 0.5.

Results. Our algorithm (classification guided global search + local search) suc-
cessfully found a counterexample in less than 3000s for all seeds. As an esti-
mate of the classification frequency, the final number of separate rectangles con-
structed for while testing the first seed were 30. In comparison, the tool S-TaLiRo
could falsify but took 4481s. The grid based random sampling found a falsifier
for only the seeds 15000 and 20000, but failed to do so on the other seeds before
maximum time limit was reached. The other methods were not successful in
finding a falsifier within the default stopping time of 5000s. Both the CMA-ES
and Nelder-Mead became stuck without reduction in robustness value until the
default stopping time was reached. The results are presented in Table 1. We note
that for any fixed seed for random sampling, these results are reproducible.
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5.2 Automatic Transmission

We consider the benchmark model of an Automatic Transmission control sys-
tem, which appeared in [20]4. The system has two input signals, called throt-
tle and break, respectively, and two output signals, called the engine speed,
denoted w (RPM), and the vehicle speed, denoted v (mph). The property
states that if the engine speed stays below a value w, then the vehicle speed
v does not exceed a threshold v within 10s. We specify the values of w and
v to be 2520 and 50, respectively, which gives the following STL property:
φ = ¬ ((

♦[0,10]v > 50
) ∧ (�w ≤ 2520)

)

[20].

Input Signal and Parameter Settings. Initially, the vehicle is at rest, when
v = 0 and w = 0. For the input signals, we consider smaller ranges than specified
in [20], which makes the property φ more robust. Henceforth, the throttle signal
is allowed to vary between [35, 100] and the break is allowed to vary between
[0, 40]. The time horizon is set to 30s. We use piecewise constant input signals
for testing, where the throttle signal is parametrized by 7 control points and
the break has 3 control points. Thus, we have a 7 + 3 = 10 dimensional search
space. φ.

Algorithm Setting . For our algorithm, the threshold number of samples of
hyperplane classification Kc is 70. The global search time is T g = 500s, while
maximum time for local search is τ l = 2000s. Cell partitioning ω consists of
hypercubes of side length ε = 4. We consider equal weightage for robustness
based probability and coverage based probability for sampling during global
search, i.e., wr = 0.5.

Results. Our algorithm (classification guided global search + local search) suc-
cessfully found a counterexample in less than 2000s for all tested seeds. As an
indication of the number of classification operations that occurred, the final
number of separate rectangles constructed for while testing the first seed were
31. In comparison, the CMA-ES found a falsifier for two seeds 5000 and 15000
within 2000s but failed to do so on the other seeds. The other methods were
not successful in finding a falsifier within the default stopping time of 3000s. For
this example, S-TaLiRo became stuck around a local optimum without any sig-
nificant reduction in robustness value. The results are presented in Table 1. We
note that for any fixed seed for random sampling, these results are reproducible.

5.3 Industrial Example

We present results for an air path controller for an automotive fuel cell (FC)
application. The system contains an FC stack that generates electrical power
to provide torque to the vehicle drivetrain. The system is composed of an air
compressor and the air path through the FC stack. The system takes as input

4 The model and property description of this benchmark is available at the site of the
workshop Applied Verification for Continuous and Hybrid Systems, ARCH 2014–
2015, http://cps-vo.org/node/12116.

http://cps-vo.org/node/12116
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Table 1. Experimental results

Solver Seed Computation time (secs) Falsification

PTC Aut. Trans PTC Aut. Trans

Hyperplane
classification +
CMA-ES-Breach

0 2891 996 � �
5000 2364 1382 � �
10000 2101 1720 � �
15000 2271 1355 � �

CMA-ES-Breach 0 T.O. (5000) T.O. (2000)

5000 T.O. (5000) 1302 �
10000 T.O. (5000) T.O. (2000)

15000 T.O. (5000) 1325 �
Grid based
random sampling

0 T.O. (5000) T.O. (2000)

5000 T.O. (5000) T.O. (2000)

10000 3766 T.O. (2000) �
15000 268 T.O. (2000) �

S-TaLiRo (Simulated Annealing) 4481 T.O. (3000) �
S-TaLiRo (Simulated Annealing) 4481 Default stopping

(3300)
�

T.O.: Exceeded indicated time out limit.
Seed : Index for a sequence of random numbers in MATLAB. Solver : Algorithm used
for falsification. Computation time: Amount of time (in seconds) until falsification or
default stopping after the time limit in parentheses. Computation time is reported for
a computer with 1.4 GHz processor and 4 GB RAM, running MATLAB R2015 64-bit
version. Falsification: Boolean variable indicating whether the algorithm could falsify
the property.

requested current from the stack and ambient temperature. The outputs are
desired air flow rate and the measured air flow rate through the FC stack. The
goal is for the stack air flow rate to maintain accurate regulation when current
request “disturbances” are presented to the system. System performance (called
responsiveness) crucially depends on accurate and timely regulation of the air
flow to the commanded reference. The corresponding specification for the system
can be described informally as follows: when there is a step input of current
request, there is a rise-time requirement on the output air flow that should be
satisfied. Details about the system and the specifications are proprietary and so
are suppressed here.

We analyze a Simulink model of the FC system, which contains represen-
tations of the FC system along with its controller. The model is complex, con-
taining several thousands of Simulink blocks; simulations over the selected time
horizon are expensive to perform, each taking approximately 1 to 2 min. The
MATLAB implementation of the hyperplane classification algorithm with local
search is applied to the model, and the results are compared to the same algo-
rithms used in Sects. 5.1 and 5.2.
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For our method, we performed the tests using two different cell partitions.
Cell partition A is large and corresponds to a small number of grid elements; cell
partition B is smaller (each dimension of the search space is 1/5 the size of the
grid elements in partition A). Thus, partition B corresponds to a significantly
larger number of grid elements.

Table 2 provides the results. As can be seen in the table, using cell partition
A with our method performs much better than with partition B. This can be
attributed to the fact that, for partition A, the classification phase of the search
spends less time in regions close to regions that have already been explored, as
compared to partition B. This demonstrates that the selected cell partition size
has a significant impact on the performance of our technique.

Table 2. Results for fuel cell example.

Solver Seed Computation time (sec.) Falsification

Hyperplane classification +
CMA-ES-Breach (cell
partition: A)†

1 406 �
2 1383 �
3 T.O.

4 794 �
Hyperplane classification +
CMA-ES-Breach (cell
partition: B)†

1 409 �
2 T.O.

3 T.O.

4 T.O.

CMA-ES Breach† 1 314 �
2 1418

3 T.O.

4 1316 �
Uniform random† sampling 1 396 �

2 786 �
3 2241 �
4 T.O.

S-TaLiRo (Simulated Annealing)‡

sampling
1 310 �
2 T.O.

3 671 �
4 T.O.

Global Nelder-Mead-Breach† 1501 �
T.O.: Exceeded time out limit of 2700 s.
†: Times reported are from machines running Dell Precision, with a Xeon processor
(2.13 GHz), with 24 GB of RAM, running a 64 bit version of Windows 7 Ultimate,
SP1.
‡: Times reported are from machines running Dell Precision, with a Xeon processor
(2.3 GHz), with 64 GB of RAM, running a 64 bit version of Windows 7 Ultimate, SP1.
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Also, the table shows that the CMA-ES fails to find falsifying behaviors in 2
of the 4 cases, which demonstrates better performance than our technique using
partition B but poorer performance than our technique using partition A. The
uniform random sampling approach is able to find falsifying traces in all but
one case, and the computation times for the successful cases are comparable to
our technique using partition A, though we note that the computation times for
our technique are lower than the uniform random method, for the cases where
falsifying traces are found. The S-TaLiRo approach fails to find falsifying traces
in 2 of the 4 cases, which is less than the number of times our technique is
successful, using partition A. The Nelder-Mead algorithm is able to identify a
falsifying trace in about 25 min, which is longer than the 3 successful cases of
our technique, using partition A.

The above results show mixed results for our technique for this example,
as compared to the other falsification approaches. This could be due to any of
several factors. We observe that for this example, comparing against the falsifi-
cation techniques that we selected, only a relatively small number of simulations
are required to find falsifying traces, when they are found at all. This may sug-
gest that either the model is not robust, in the sense that there may be many
disconnected regions in the search space that correspond to falsifying behaviors,
or that the robustness function is rather monotone or simple. It may be that
for systems with these qualities, the benefits provided by the hyperplane clas-
sification approach are outweighed (or at least offset) by the overhead that it
requires.

6 Conclusions

We have presented a novel falsification algorithm that maintains a balance
between convergence towards low robustness points and enhancing global cover-
age. We accomplish this by intelligently subdividing the search space and sub-
sequently biasing the density of random sampling in different sub-regions. For
the subdivision, we use hyperplane classifiers akin to support vector machines,
which tries to focus effort on low robustness regions of the search space. We
demonstrated the efficiency of our algorithm by falsifying properties on bench-
mark examples, which other approaches failed to falsify. Also, we demonstrated
that the approach could be applied to industrial systems by describing a suc-
cessful application on an automotive hydrogen fuel cell example. Future work
includes investigating new coverage measures, such as the combinatorial entropy
notion from the domain of physics to measure the degree of randomness in the
distribution of points. In addition, global search and local search can be done
in a multi-resolution manner, that is if local search leads to a promising region,
global search can then be done within the region using a more refined grid.
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