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1 Introduction

transyt is a BDD-based tool specifically designed for the verification of timed
and untimed asynchronous concurrent systems. transyt system architecture is
designed to be modular, open and flexible, such that additional capabilities can
be easily integrated. A state of the art BDD package [1] is integrated into the
system, and a middleware extension [2] provides support complex BDD manip-
ulation strategies.

tsif (Transition System Interchange Format) is the main input language of
transyt. tsif is a low-level language for describing asynchronous event-based
systems, although synchronous systems can be also covered. Many formalisms
can be mapped onto it: digital circuits, Petri nets, etc. transyt integrates spe-
cialized algorithms for untimed reachability analysis based on disjunctive Transi-
tion Relation (TR) partitioning, and relative-time verification for timed systems.
Invariant verification for both timed and untimed systems is fully supported,
while CTL model checking is currently supported for untimed systems. tran-
syt provides orders of magnitude improvement over general untimed verification
tools like NuSMV [3] and VIS [4], and expands the horizon of timed verification
to middle-size real examples.

2 System Functionalities

We provide here a high-level overview of the the most relevant features of tran-
syt. Details of the architecture and algorithms will be provided in Section 3.

User Interaction. transyt works with an interactive shell, processing systems
according to command-line options. The user can activate all phases of the ver-
ification process (file parsing, system construction, reachability analysis, model
checking, simulation, counter-example generation, etc.) with full control of all
available options. On top of the interactive shell, a limited but under expansion
GUI front-end offers access to all interactive commands, as well as an improved
visualization of the systems and the properties under analysis.
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System Description. transyt can process hierarchical systems formalized
(using the tsif format) as a set of variables to encode the state and events
to describe the “actions” that the system can execute. Systems can be simul-
taneously coordinated by variable interchange or event synchronization. Other
formalisms can be encoded and easily mapped onto tsif. Currently we offer a
front-end for BLIF [4] and Petri nets [5], and we are working toward a new SMV
front-end.

Reachability Analysis. Implements specialized reachability schemes based on
disjunctive TRs and uses a mixed BFS/DFS traversal that schedules the ap-
plication of the TR parts in order to maximize the state generation ratio and
minimize BDD peaks. These algorithms have demonstrated orders of magnitude
improvement over existing BFS / conjunctive TR traversal schemes (e.g. [3])
when applied to asynchronous concurrent systems. State-of-the art conjunctive
TR traversal schemes are also available to efficiently manipulate mixed syn-
chronous/asynchronous systems.

Model Checking. transyt implements fair CTL model checking as defined in
[6], and also offers specialized on-the-fly invariant verification. The tool can be
configured to detect a minimum number of failures in a single traversal. Failing
states are stored to allow selective counter-example generation for all of them.

Semi-formal Verification. In addition to classical reachability analysis, tran-
syt offers an automated two-phase simulation-verification hybrid scheme. Sim-
ulation follows a branching scheme that generates traces as divergent as possible
(interleaved traces will be rejected). Traces are stored for further analysis. The
second phase will select a number of simulation traces as seed of a guided-
traversal algorithm. Guided-traversal exploits the behavioral information in the
traces to efficiently identify additional states. On-the-fly invariant verification
can be carried out during both phases.

Relative-time Verification. transyt offers invariant verification of timed
systems based on the relative-timing paradigm. tsif events can be annotated
with min-max delays. If it exists, the tool provides a timed counter-example.
Otherwise, transyt provides a set of graphic structures that inform the user
about how the execution of events is ordered due to timing. Note that not all
existing orderings are provided, but just those that are relevant to prove the
invariants under verification.

3 Tool Architecture and Algorithms

This section describes the main functional modules in transyt (see Figure 1),
the peculiarities of the algorithms implemented in them and their interrelations.

The System Instantiation and Boolean Model Construction provides support
for creating the internal representation of the tsif format. The system is mapped
onto a Boolean model after an encoding process, in which TRs, properties, etc.
are constructed. Once TRs are built, their causal interrelations can be analyzed
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Fig. 1. transyt modular architecture

in order to determine if the application of a TR part may trigger the execution
of other TRs. The granularity of the TR partition is decided here depending on
TR size, number of parts and detected causality. Different partition schemes can
be used according to these parameters.

The BDD-based verification module is the core of transyt. It implements
highly efficient traversal schemes based on mixed BFS/DFS algorithms that
schedule the application of the disjunctive TR parts. New states generated by
one part are immediately reused as source for following parts. If causality is taken
into account, this simple scheme provides orders-of-magnitude improvement over
BFS traversal. Based on BFS/DFS traversal, on-the-fly invariant verification and
fair CTL model checking can be performed on the selected design. Once failures
are detected, counter-example traces can be generated and stored —associated
to each failing property— for both further manipulation or visualization.

An alternative invariant verification approach, combining simulation and
guided-traversal, is provided. Simulation can be executed following a branch-
ing strategy that resembles partial-order verification. At each visited state the
causality between enabled events is analyzed. In case of detecting concurrent
events, only one of the execution traces is followed. In case of conflict (i.e. a
choice in the execution path) both execution traces are explored. Exploration
continues until no additional states are available or until a certain number of fail-
ures have been identified. Causality information can be extracted from traces.
Given a trace, its associated causality can be extracted and directly applied to
a guided-traversal process. Guided-traversal executes a BFS/DFS reachability
analysis applying events in the best order as indicated by causality.

transyt extends symbolic invariant verification to timed systems. The use of
relative timing [7] eliminates the need to compute the exact timed state space.
Instead, the timed behavior of events is captured by means of partial orders
that represent relative temporal relations. Timed systems provide delays for all
the events in the system; however, many of the constraints imposed by such
delays are not actually required. transyt only considers timing information
in an on-demand basis, as long as it is required to prove a given property.
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Moreover, the timing analysis is performed over the subset of events involved in
such proof by any external timing analysis algorithm. As a result, the untimed
state space of the system is refined incrementally. The tool not only proves
or disproves the correctness of the system with respect to a set of invariants,
but also provides a set of sufficient relative-time relations that guarantee such
correctness or demonstrate a counterexample.

4 Results and Future Directions

transyt is a well-structured platform for the verification of asynchronous con-
current systems. The tsif front-end provides a flexible entry point for most
specification languages relevant to the area. Additional functionalities and al-
gorithms for each phase of the verification flow can be easily integrated. The
performance of the tool is satisfactory due to the BDD package and its specific
algorithms. Additional information about transyt is available at

http://research.ac.upc.es/VLSI/transyt/transyt.html.

transyt has been successfully used to analyze a number systems, both in the
timed and untimed domain. Extensive comparisons have been carried out with
the state generation engines in NuSMV [3] and VIS [4]. In both cases, orders
of magnitude improvements have been obtained [8]. Complex timed systems
have been also analyzed using transyt. In particular, several interface FIFO
implementations (IPCMOS by S. Schuster and STARI by M.R. Greenstreet)
connecting different clock domains have been successfully verified.

Currently, several new functionalities are under development. A mixed con-
junctive/disjunctive TR construction and scheduling scheme is being imple-
mented for complex Globally Asynchronous Locally Synchronous (GALS) sys-
tems. The CTL verification algorithm is being upgraded to exploit the same
causality information used during the reachability process. A restricted version of
timed-CTL is being developed to be integrated with the relative-time verification
engine. On the user’s side, better feedback visualization is being implemented
through more powerful visual libraries.
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