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Abstract. During post-silicon validation, manufactured integrated circuits are
extensively tested in actual system environments to detect design bugs. Bug
localization involves identification of a bug trace (a sequence of inputs that
activates and detects the bug) and a hardware design block where the bug is
located. Existing bug localization practices during post-silicon validation are
mostly manual and ad hoc, and, hence, extremely expensive and time consuming.
This is particularly true for subtle electrical bugs caused by unexpected interac-
tions between a design and its electrical state. We present E-QED, a new
approach that automatically localizes electrical bugs during post-silicon valida-
tion. Our results on the OpenSPARC T2, an open-source 500-million-transistor
multicore chip design, demonstrate the effectiveness and practicality of E-QED:
starting with a failed post-silicon test, in a few hours (9 h on average) we can
automatically narrow the location of the bug to (the fan-in logic cone of) a handful
of candidate flip-flops (18 flip-flops on average for a design with *1 Million
flip-flops) and also obtain the corresponding bug trace. The area impact of E-QED
is *2.5%. In contrast, determining this same information might take weeks
(or even months) of mostly manual work using traditional approaches.

1 Introduction

For complex integrated circuits (ICs), difficult design flaws (bugs) increasingly escape
pre-silicon design verification and are only detected during post-silicon validation when
manufactured ICs are extensively tested in actual system environments (Foster 2015).
Design bugs can be broadly classified into logic bugs that are caused by (logic) design
errors and electrical bugs that are caused by unexpected interactions between a design
and its electrical state. Examples include errors introduced by crosstalk, power-supply
noise, thermal effects or process variations. Traditional pre-silicon verification is slow;
but, more importantly, it is generally incapable of detecting electrical bugs that appear
only after ICs are manufactured. This paper focuses on electrical bugs.

Typical post-silicon validation involves: 1. bug detection by applying a variety of test
stimuli (e.g., random instruction tests, end-user applications) at various voltage,
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temperature, and clock frequency corners; 2. bug localizationwhich identifies a bug trace
(a sequence of inputs that activates and detects the bug) and a hardware design block
where the bug is located; and, 3. bug fixing using techniques such as software patches,
clock frequency/operating voltage selection, or silicon respin. Existing post-silicon
validation and debug practices are mostly manual and ad hoc, and, hence, very expensive
(Mishra et al. 2017). The effort to localize bugs from observed system failures (e.g.,
crashes, output errors) dominates the overall cost (Dusanapudi et al. 2015; Friedler et al.
2014; Nahir 2014). For example, it might take weeks (or even months) of (manual) work
to localize a single bug (Dusanapudi et al. 2015; Reick 2012; Vermeulen and Goossens
2014).

Post-silicon bug localization is difficult because of long error detection latencies.
Error detection latency is the time elapsed between when a test activates a bug and
creates an error and when that error manifests as an observable failure (e.g., system
crash). Error detection latencies of difficult bugs can exceed several millions or even
billions of clock cycles (Hong et al. 2010; Lin et al. 2014). It is extremely difficult to
trace that far back into the history of system operation for complex ICs. In addition, IC
design size and complexity pose major challenges. Full-chip simulation to obtain
expected responses (for various internal states, not just software-visible states) is
several orders of magnitude slower than actual silicon and may be impractical. Formal
analysis and Boolean Satisfiability techniques can be severely limited by design size.
System-level failure reproduction, which involves returning the system to an error-free
state and re-running the system (perhaps with some modifications) to reproduce the
“exact” failure, is difficult (due to non-deterministic behaviors such as asynchronous
I/Os and multiple-clock domains). In order to limit the number of cycles that must be
traced and analyzed during bug localization, techniques such as Quick Error Detection
(QED (Lin et al. 2014)) that ensure short error detection latencies are crucial. An
overview of existing bug localization approaches is presented in Sect. 4.

New techniques are essential to overcome post-silicon bug localization challenges.
There have been some recent publications that address detection and localization of
logic bugs (e.g. (Lin et al. 2015)) during pre-silicon and post-silicon validation. Here,
we present E-QED, a new technique to automatically localize electrical bugs during
post-silicon validation and debug. Key features of E-QED are: 1. It is broadly appli-
cable to most digital designs. 2. It can localize electrical bugs inside processor cores as
well as in uncore components (interconnection networks, cache controllers, memory
controllers) that occupy large portions of System-on-Chip (SoC) designs. 3. It does
not require manual intervention during design or during post-silicon validation and
debug. 4. It does not rely on full system-level simulation. 5. It scales to large designs.

We demonstrate the effectiveness and practicality of E-QED using OpenSPARC
T2, a 500-million-transistor open-source SoC. Our results (details in Sect. 3) show that:
1. E-QED correctly and automatically localizes electrical bugs in a few hours (between
7–13 h). Such bugs would generally take weeks (or even months) of manual work to
localize using traditional approaches. 2. E-QED achieves very fine-grained electrical
bug localization. For each localized electrical bug, using formal analysis, E-QED
automatically generates a small list of candidate flip-flops (FFs) that might have
captured error(s) caused by the bug. For the OpenSPARC T2 SoC with *1 Million
FFs, E-QED automatically localizes electrical bugs to only 18 candidate FFs on
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average. Thus, E-QED achieves a localization factor (total number of FFs in a design
divided by the total number of candidate FFs that an electrical bug is localized to) of
over 50,000. 3. For each localized electrical bug, E-QED automatically generates a
short bug trace using formal analysis. 4. E-QED incurs only a small area overhead
(*2.5% for OpenSPARC T2) and has practically no clock-speed impact. 5. E-QED
enables flexible trade-offs between area overhead, electrical bug localization granu-
larity, and bug localization runtime. For example, with 1.5% area overhead (vs. 2.5%)
the average FF candidate count increases only by a factor of 3 (i.e., E-QED still
achieves a localization factor of four orders of magnitude).

E-QED uses the following three steps that work together in a coordinated fashion to
overcome electrical bug localization challenges: 1. Low-cost hardware structures called
E-QED signature blocks are automatically inserted during the design phase (Sect. 2.1).
2. QED tests that achieve short error detection latencies are run during post-silicon
validation.1 3. Formal techniques are used to reason about the signatures collected by
the E-QED signature blocks, automatically localizing bugs to a handful of candidate
FFs (Sects. 2.2–2.4).

Motivating Example
Consider the following electrical bug example for the OpenSPARC T2 SoC

(OpenSPARC), shown in Fig. 1. Suppose that a bug occurs during the following
sequence of events: (1) Processor core 0 writes the value 0 to the crossbar (in order to
store the value 0 in address [C]); (2) the entry corresponding to address [C] in L2 cache
bank 0 is updated with value 0 (from the crossbar); (3) in response to a request to load

Fig. 1. An example of an electrical bug corrupting the value (corresponding to address [C])
stored by processor core 0 to L2 cache bank 0 (steps 1–2) as it passes through the arbitration logic
of the crossbar (steps 3–5) while being loaded by processor core 3 (step 6). The bug is detected
by a QED test (step 7).

1 We use Quick Error Detection (QED) tests that typically achieve error detection latencies of 1,000
clock cycles or fewer (Lin et al. 2014); however, our approach can work with other tests that achieve
similar error detection latencies.
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from address [C] by processor core 3, the cached value corresponding to address [C] is
written into the crossbar; (4) when this value passes through the crossbar arbitration
logic, (5) an electrical bug causes a single-bit error to be captured in the output register
of the crossbar arbiter; (6) the corrupted value is loaded into core 3; and then, (7) the
corrupted value is detected by a QED test.

Note that without QED, the error may not be detected by the post-silicon validation
test or the error detection latency can be millions of clock cycles; e.g., the error may be
detected during an end-result check (which checks for expected output values upon test
completion). Using a QED test, the error detection latency improves (i.e., reduces) to
only a few hundred cycles. This drastically reduces the amount of data that needs to be
analyzed to localize the bug. However, upon error detection by the QED test in pro-
cessor core 3, it is impossible to directly determine where the error actually occurred
and consequently how to localize the bug to a specific design block. An error in the
datapath during any of steps 1–6 (in processor core 0, the crossbar, L2 cache bank 0, or
processor core 3) would have been detected in the same way by the QED test running
on processor core 3 (using the QED check in Fig. 1, step 7).

E-QED automatically localizes this bug not only to the crossbar (containing 40,000
of the nearly 1 million FFs in the design), but to a subset of 8 candidate FFs within the
crossbar that could have captured this single-bit error. The 8 candidates include the FF
in the output register that did capture the actual error. E-QED also provides a 544-Kbit
bug trace, the sequence of inputs to the crossbar that triggered the bug during
post-silicon validation. The total runtime required to obtain this result by running
E-QED is 488 min, and the hardware area overhead is 2.5%.

In contrast, traditional post-silicon bug localization approaches would require
significant manual effort, additional hardware (e.g., trace buffers, details in Sect. 4)
with significantly higher area overhead, or both. For example, even if the bug was
detected quickly using a QED test, saving a full trace of all inputs and outputs of the
crossbar alone (instead of using E-QED signature blocks, details in Sect. 2.1) for just
1,000 cycles would require over 34 Mbits of data.

The rest of the paper is organized as follows. Section 2 presents our new E-QED
technique. Results are then presented in Sect. 3, followed by related work in Sect. 4. We
conclude in Sect. 5. An extended version of this paper appears in (Singh et al. 2017).

2 Electrical Bug Localization Using E-QED

E-QED relies on several steps that are summarized in Fig. 2. During the chip design
phase, E-QED signature blocks are automatically inserted (details in Sect. 2.1). These
E-QED signature blocks are used during post-silicon validation to capture and com-
press the logic values of selected signals (signatures). During post-silicon validation, a
suite of tests is run—it is crucial to run tests with short error-detection latencies (e.g.,
QED tests (Lin et al. 2014)). When an error is detected by such a test, the test is
immediately halted, and all the captured signatures are scanned out (using on-chip scan
chains (Abramovici et al. 1990)). In the last phase, formal analysis, the collected
signatures are analyzed by a Bounded Model Checking (BMC) tool to first identify
which design block produced the error(s), and then to find the FFs in that block that
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could have captured the error(s), and finally to narrow this list even further by checking
for consistency with signatures captured by neighboring design blocks. We explain
each of these steps in more detail below.

2.1 Automatic Insertion of E-QED Signature Blocks

E-QED relies on being able to use a formal tool to perform bug localization after error
detection by a post-silicon validation test. If the entire design can be loaded into the
formal tool and analyzed, then this requirement can be satisfied by externally tracing
the design’s inputs and outputs during post-silicon testing (i.e., by saving all the signals
at the external design interface). In this case, no additional internal hardware is
required. However, most designs (particularly large SoCs) cannot be analyzed by
existing formal tools without being partitioned into smaller blocks. In order to be able
to analyze these smaller design blocks, we insert additional hardware (E-QED Sig-
nature Blocks) to capture logic values of signals at the boundaries of these smaller
design blocks.

Design Partitioning. As mentioned above, unless it is possible to fit the full design
into a formal tool, the design must be divided into smaller blocks. We use a simple
algorithm that builds a list of design blocks by recursively descending through the
design hierarchy. At each step, the current design block is tested to see if it can be
loaded into the formal tool. If so, the recursion terminates and the block is added to the
list. The result is a partition of the design into design blocks, each of which can be
analyzed by the formal tool. Next, input and output signals for each block are grouped
into interfaces as follows. For each design block A, the set of output signals driven by
A and captured by the same design block B (or the same set of design blocks in the case
that the signals fan out to more than one design block) are grouped into a single
interface. In addition, if a design block C receives inputs from a design block in a

Fig. 2. An overview of E-QED.
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different clock domain, then all such input signals for design block C are also grouped
into a separate interface. Each interface gets a single E-QED Signature Block (ex-
plained next) as illustrated in Fig. 3. As explained above, the primary inputs and
outputs are traced externally.

In our evaluation in Sect. 3, we explored one further enhancement beyond this
algorithm. We observed that uninitialized memory arrays contributed too many degrees
of freedom during formal analysis. To overcome this issue, we inserted additional
signature blocks. Specifically, we added signature blocks to the signals between each
cache bank and the cache controller logic and to the signals between the instruction
cache and the instruction fetch unit for each thread on each processor core. This
provided additional information on the data values being stored and loaded in the
caches and the instructions being executed by the processors. As shown in Fig. 12 (in
Sect. 3.2), this significantly improves the precision of E-QED.

E-QED Signature Block Design. E-QED Signature Blocks store logic values called
signatures that represent a (lossy) compression of the sequence of logic values for a set
of signals over time. We use multiple-input signature registers or MISRs (which have
been extensively used for circuit test response compaction (Saxena and McCluskey
1997)) for this purpose. A MISR is a shift-register in which certain bits are XORed and
fed back into the first bit, and, at the same time, a set of input signals are XORed with
the values being shifted. An example of a 6-bit MISR is shown in Fig. 4.

Fig. 3. Insertion of E-QED Signature Blocks. A and B use the same clock, so they can share
signature blocks S1 and S2 at their interfaces. Since C is in a separate clock domain, the
interfaces between B and C require separate signature blocks within each clock domain. Each
signal from C captured in signature block S8 fans out to both D and E.

Fig. 4. An example of a 6-bit Multiple Input Signature Register (MISR) with 3 input signals and
feedback generated from bits 5 and 6.
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If a MISR has been operating for N cycles since reset, we refer to the number N of
captured cycles as the capture window of theMISR. For post-silicon bug localization, it is
crucial that the capture window is long enough to include the point when a bug gets
activated and an error is created. However, the capture windowmust also not be too long,
since the design behavior over the entire window is analyzed using the formal tool (see
Sects. 2.2–2.4). IfN is too large, the formal tool will fail as the unrolled design grows too
large to analyze. This is why tests with short error detection latencies are necessary, and
QED in particular enables our E-QED approach. For most cases, QED ensures that
capturing the last 1,000 cycles prior to error detection is sufficient to also capture the point
of bug activation. In our experiments (Sect. 3), we set N to 1,024. Since post-silicon
validation tests run longer than 1,024 cycles, each MISR will be reset to a known state
periodically to maintain the capture window length (1,024 cycles in this case).

In choosing the MISR size, we select the number of bits K to be at least equal to the
number of signal bits being captured (M). K should also be large enough such that the
MISR has more states than the capture window length (i.e., K must be greater than
log2(N)). For M signal bits over N cycles, a complete trace would require M*N bits.
Thus, if K is M*b (can be viewed as b MISR bits per input signal), the parameter
b decides the compression ratio N/b.

Based on empirical analysis (discussed in Sect. 3.2), we used b = 8 for all the
blocks in the OpenSPARC T2 design except for inside the processor core, where we
used b = 4. After selecting the MISR size, the choice of which bits to use as feedback
can be made based on extensive existing work which optimizes for various good
properties of MISRs (e.g. (Bardell et al. 1987)).

As mentioned above, we periodically reset each MISR to a known state (to mark the
start of a capture window). However, this raises the possibility that the error might be
captured right after theMISR is reset, in which case the number of cycles captured will be
much less than our targetN (and the point when the bug got activatedmay not be included
in the capture window as a result). To avoid this situation, in our E-QED Signature Block
(shown in Fig. 5), we use twoMISRs (operating in parallel) for each signature block. The
two MISRs are paired with a counter, and they are reset (the MISRs to a defined starting

Fig. 5. The complete E-QED Signature Block design, with M interface signals generating a K-
bit signature and the reset logic shown with the FFs of a C-bit counter (detailed counter
implementation and MISR feedback not shown).
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state and the counter to 0) when the design is powered on with a global reset. After that,
the counter repeatedly counts to 2N, alternately resetting one of the MISRs (to its starting
state) every N cycles (waveforms in Fig. 6). This ensures that at the instant an error is
detected, at least one of the MISRs has captured a signature covering at least N (and no
more than 2N) cycles. By setting N to a value greater than the expected error detection
latency (e.g., 1,000 cycles for typical QED tests), we can ensure that with high likelihood,
at least one signature covers the entire period between bug activation and error detection.
The counter is sized to C, the ceiling of log2(2N). The logic values in the MISRs and the
counter can be scanned out when an error is detected by the QED test.

2.2 Bug Localization to a Design Block

We now explain how our design partitioning approach in Sect. 2.1 supports the first step
in the electrical bug localization process: isolating an error detected by a post-silicon
validation test to a specific design block. Following the detection of an error by QED
tests, the logic values captured in the counters and MISRs are scanned out from each
E-QED signature block. Formal analysis of the signature values is then performed using
BMC (Clarke et al. 2001). BMC works by taking a model of the system (e.g., Verilog
RTL), unrolling it some fixed number of time steps, and employing iterative time frame
expansion to model sequential operation over this window of time. Then, automated
tools such as Boolean Satisfiability solvers are used to check whether a set of constraints
on the unrolled design is consistent. Constraints can be placed on any part of the
unrolled design, commonly including the initial state, the inputs, and the final state.

Recall that when an error is detected, at least one of the two MISRs in each E-QED
signature block has captured at least N cycles. Let T be the larger of the two capture
windows (obtained from the counter in the E-QED signature block). For each design
block B to be analyzed, we set up a BMC problem over T unrolled cycles (time frames),
where T is the larger of the two windows captured by the E-QED Signature Blocks for
the interfaces associated with B (i.e., signals that are either inputs or outputs for B).2 In
the BMC problem, we constrain the appropriate MISR (the one capturing T cycles) in
each signature block to be equal to its scanned-out value in the final state following
error detection, and also to be equal to its reset value at the beginning of the capture

Fig. 6. Reset of MISR 1 and MISR 2, each resetting every 2N cycles. Note that at any instant,
one MISR has captured data covering at least N cycles.

2 We assume that all interfaces for a design block are in the same clock domain and thus all have the
same value of T. This assumption can easily be satisfied by modifying the design partitioning
algorithm to continue its recursive descent if the current design block uses more than one clock
domain.
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window (T cycles before the final state). This corresponds to whether the design can
satisfy the following property:

MISR reset = 1
##<T> 
Input MISRs = <Input Signatures> && Output MISRs = <Output Signatures> 

If the BMC tool is able to solve these constraints (note that, the initial state of the
design block is not specified and so can be chosen arbitrarily by the BMC tool), we
conclude that no bug occurred in this particular design block during the captured
cycles. The solution produced by BMC also provides one possible error free T-cycle
trace for the design block consistent with the signatures. On the other hand, if BMC is
unable to find a solution, this means that the actual signals observed by the E-QED
signature blocks are not consistent with the design logic, indicating that an electrical
bug must have occurred within the block.3 Because this process identifies the buggy
design block, it can already produce a significant degree of bug localization. Note that,
it is theoretically possible for all design blocks to pass the BMC test, either because
(i) the bug triggered (and produced error) outside the capture window; or (ii) some
valid trace shares the same set of signatures as the actual captured buggy trace (because
of lossy compression by E-QED signature blocks); or (iii) the symbolic initial states
(corresponding to internal flip-flops in the design block where E-QED signature blocks
are not inserted) introduce too many degrees of freedom. However, in our simulations
based on injected errors (see Sect. 3), using QED tests and N = 1024, we did not
encounter any such scenario: we always found exactly one block that failed the BMC
test. These points are discussed in more detail in (Singh et al. 2017).

We illustrate the analysis above through a simple example, shown in Fig. 7. The
inputs and outputs are both compressed using the 6-bit MISR shown in Fig. 4. For the
Input MISR, its inputs, signals 1, 2, and 3 (corresponding to Fig. 4), are B, A, and 0
respectively. For the Output MISR, signals 1, 2, and 3 are Z, Y, and X respectively.
During cycle 1, the MISRs are at their initial state (000001) and the circuit inputs A and
B are 1 and 0. The initial outputs at cycle 1 are the contents of F6, F7 and F8 (011), and
they are compressed into the output MISR on the next clock edge. A transient electrical
bug occurring somewhere in the circuit results in the output X having the incorrect
value 1 at cycle 5. At cycle 6, the error is captured in the output MISR signature,
making it 110010 (instead of the correct output MISR signature 110000). A BMC run
for this design over the 6 cycles (based on the captured output MISR signature 110010
and the captured input MISR signature 111010) reports unsatisfiable, indicating that an
error has occurred in the circuit4.

3 As an optimization, in this case, we also run the BMC analysis with the smaller value of T for the
block. If this analysis is also inconsistent, it provides a much shorter window in which the bug
occurred.

4 E-QED uses symbolic initial values for FFs. To keep this example simple, we set the initial values of
the FFs as shown in Fig. 7.
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2.3 Single-Cycle FF Error Analysis with Bounded Model Checking

After the electrical bug has been localized to a single block (recall that in Sect. 2.1, we
choose block sizes based on what fits within the BMC tool), E-QED performs further
localization within the block by using an error model. In this paper, we use a single-cycle
FF error model, which assumes that the electrical bug causes a transient error that affects
one (arbitrary)flip–flop in the design during a single (arbitrary) cycle. Such an errormodel
has been commonly used in the literature (e.g. (McLaughlin et al. 2009)) for electrical
bugs. Our E-QED approach can be extended to include other models as discussed in
(Singh et al. 2017). To demonstrate how error analysis can find a list of candidates, one of
which corresponds to the FF and cycle that captured the single-cycle error due to an
electrical bug, consider the earlier example of Fig. 7 presented again in Fig. 8.

For simplicity, let us first assume that we can directly observe all of the inputs and
outputs on every cycle (we will consider the case where we have only the MISR
signatures next). Recall that the expected output at cycle 5 is XYZ = 011, but we
observe: XYZ = 111; i.e., the value of X is incorrect. In this simple example, there are
only three FFs along the path to the X output; F1, F3 and F6. According to our error
model, an electrical bug could have caused an error in any one of them, and all three
could have potentially caused the observed error at X; so there are three possible error
scenarios. In the first, the error causes F6 to capture a 0 instead of a 1 in cycle 4 (due to
an electrical bug along the path from F3 to F6). In the second, the error causes F3 to
capture a 0 instead of a 1 in cycle 3 (due to an electrical bug along the path from F1 to
F3). This error then propagates to F6 and then to X. In the third, the error causes F1 to
capture a 0 instead of a 1 in cycle 2 (due to an electrical bug along the path from FA to
F1). But notice that in this case, the input to F4 in cycle 3 would then change to 0, and
crucially, the input to F7 in cycle 4 would also change to 0, and therefore output Y
would be 0 in cycle 5. Since the error did not affect Y, this third scenario is not

Inputs
Cycle 1 2 3 4 5 6

A 1 0 0 1 1 0
B 0 1 0 0 0 1

Initial Values
F1 F2 F3 F4 F5 F6 F7 F8
0 1 1 0 0 0 1 1

Outputs
Cycle 1 2 3 4 5 6

X 0 0 1 1 (1) 0
Y 1 1 0 0 1 1
Z 1 0 1 1 1 0

Initial State (Cycle 1) 
for both Input and 

Output MISRs
000001

Final Signatures (Cycle 6)
Input MISR 111010

Output MISR 110010

Fig. 7. A simple design block, a sequence of inputs and outputs, the initial values in the FFs and
MISRs, the final signature captured by the Input MISR and the expected and captured (corrupted)
signature in the Output MISR.
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consistent with the observed outputs, leaving only errors in FFs F3 and F6 as viable
candidates. Importantly, observe that, given our error model, this is an exhaustive list of
the potential sources of the error observed at X in cycle 5.

Now, consider the case where we do not have direct access to the input or output
signals, but only to the compressed 6-bit MISR signatures. Figure 8 once again lists the
captured Output MISR signatures in sequence ending at cycle 6. The two candidate FFs
that were identified as possible sources of the error above both generate the captured
erroneous output signature by recreating the exact output sequence (corresponding to
Trace 1) that was captured due to the error. However, there are also other traces that can
be created with different candidates that end with the same final signatures in the
MISRs. We call these aliased FF candidates and traces. An example is shown as Trace
2 in Fig. 8. Aliasing occurs due to lossy compression in the MISRs: errors introduced
into the output MISR at different times can result in the same final signature. Observe
from the output sequences in Fig. 8 that for Trace 2, the erroneous candidate FFs cause
an output error at Y in cycle 3. This error shifts through the output MISR (as shown in
the MISR sequence for Trace 2) to still match the final captured output MISR signature.
Since in practice we do not have the actual output signals, but only work with the
MISR signatures, aliasing can increase the number of candidate FFs and traces returned

Inputs
Cycle 1 2 3 4 5 6

A 1 0 0 1 1 0
B 0 1 0 0 0 1

Outputs
Cycle 1 2 3 4 5 6 

X 0 0 1 1 (1) 0
Y 1 1 0 0 1 1
Z 1 0 1 1 1 0

Input Sequence
(A B)

(Erroneous) Output Sequence 
(X Y Z)

10, 01, 00, 10, 10, 01 011, 010, 101, 101, (111), 010 Trace 1
10, 01, 00, 10, 10, 01 011, 010, (111), 101, 011, 010 Trace 2

Trace Single-Cycle FF Error Candidates
1 Cycle 3 FF3, Cycle 4 FF6
2 Cycle 1 FF4, Cycle 2 FF7

Trace Input MISR Signature Sequence (Cycle 1 to Cycle 6)
1 000001, 101000, 110100, 011010, 100101, 111010
2 000001, 101000, 110100, 011010, 100101, 111010

Trace Output MISR Signature Sequence (Cycle 1 to Cycle 6)
1 000001, 001000, 001100, 100100, 110000, 110010
2 000001, 001000, 001100, 101100, 110100, 110010

Fig. 8. The results of single-cycle FF error analysis for the example from Fig. 7. Each candidate
(cycle and FF pair) has the property that if an error occurs at the input of the candidate FF at the
candidate cycle (captured in the following cycle), it would result in the captured Output MISR
signature at cycle 6. Note that, the candidates that generate Trace 1 match the actual sequence but
the candidates that generate Trace 2 are aliased candidates in that they correspond to a different
output sequence but result in the same final output MISR signature.
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by the formal analysis, reducing the resolution of the bug diagnosis. We discuss a
technique for significantly improving (i.e., reducing and potentially eliminating) these
aliased candidates in the next section.

We use BMC to systematically compute all candidate FFs consistent with the
signature values for the interfaces of the buggy design block. To do this, we first
modify the design (this modification is only to support the formal analysis at this step;
the actual manufactured design is not affected). In the modified design, a two-input
multiplexer is added before the data input of every FF in the design (Fig. 9(a)). The
inputs to the multiplexer are the original data input to the FF and an inverted data input
value to help inject an error as needed. By setting the select line of the multiplexer, an
error is captured in the FF, matching the model for electrical bugs described earlier.

The select lines are all controlled by a decoder, allowing an error to be injected into
a single FF on exactly one cycle as shown in Fig. 9(b). The decoder inputs are left
unconstrained and provided to the BMC tool to control. The least significant output bit
is not used, so an input combination of all 0s to the decoder generates an output of all
0s (on decoder output bits 1…R), meaning no error is injected into the design on that
cycle. An additional FF (Fig. 9(b)) is added to ensure that only one single FF in the
design block is chosen to have an error for only one cycle during a single BMC run.
This additional FF (in Fig. 9(b)) is initially reset to 0 (reset is asserted at the start of
BMC) and is then set to 1 (and remains 1) once the decoder produces a non-zero value
on output bits 1…R. Once the value of this FF is 1, it forces the “Error Select” signals
to all be 0 for all remaining cycles.

Thus, the BMC, in its attempt to satisfy the error trace, can only inject an error into
a single FF in the design, and only in one cycle.

As before, a BMC problem is set up with an unroll limit of T cycles, and constraints
are added corresponding to the reset and final signature values. This time, however, the
BMC tool can additionally control the decoder so that it can attempt to satisfy the input
and output constraints by injecting a single error into a FF in the design block sometime
during the T cycles. If BMC finds a solution, it provides a candidate FF which could
(potentially) be the source of the erroneous bit flip (bug) that caused the error, together
with a trace of length T of the input and output signals that is consistent with the

Fig. 9. (a) The inserted multiplexer allows an error to be injected into FF L. (b) control logic to
inject an error during one cycle into the design when the BMC provides a FF index as input
“Select Error FF” to the decoder. No error is injected when P is all 0s. The first time a non-zero
input is provided, exactly one of the bits of the R “Error Select Lines” is set, causing the
corresponding FF to capture an error during the next cycle.
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MISR signatures. Of course, it is possible that there is more than one way to achieve
this. Therefore, the BMC tool is run repeatedly (each time with an added constraint to
rule out all previously found FF candidates) until no more candidate FFs can be found.

2.4 Neighbor Consistency Checking

As explained in the example in Sect. 2.3 above, a consequence of using compressed
signatures to constrain BMC is that aliasing can occur: different candidates for a single
FF error can lead to the same output signature. Aliasing can be reduced by increasing
the number of bits in the MISRs. However, in this section we introduce an alternative
technique for reducing aliasing that does not require longer MISRs. This technique,
which we call Neighbor Consistency Checking (NCC), checks whether the trace gen-
erated by BMC corresponding to a particular candidate FF is consistent with the
signatures captured in the MISRs at the interfaces of other blocks in the rest of the
design. Any inconsistency can rule out the candidate FF as the one which captured the
error, thereby improving diagnosis resolution.

The NCC strategy is as follows. Recall that for each FF candidate in the buggy
block, the BMC tool also returns a full sequence of input and output values for T cycles
(where T is the number of time frames analyzed). These values are applied as input or
output constraints, as appropriate, to each of the neighboring blocks. The BMC tool is
then used to check each neighboring block to see whether these newly-added con-
straints are consistent with the block’s logic and the signatures on its interfaces. Note
that, because the initial state of a neighboring block (initial states of FFs in the
neighboring block) is not known, these checks cannot be done using simulation.

If a neighboring block is consistent, then the BMC tool returns a trace for inputs
and outputs of that neighboring block. This sequence can then be recursively tested
against additional neighbors, continuing across the chip. The limit would be reaching a
clock domain boundary, where the interface is not shared directly with another block
(as discussed in Sect. 2.1). If the BMC tool reports an inconsistency while analyzing
the immediate neighbors of a buggy block, the trace under consideration (and the
corresponding candidate FFs) can be eliminated. If the analysis has progressed further,
then we backtrack to the previously analyzed neighbor and check to see if a different
trace can be found that is consistent with its signatures. We continue the analysis in this
way until either a fully consistent (across the whole design) set of traces is found or no
such set of traces can be found in which case the candidate trace is eliminated.

Let us return to our running example. This time, we add a small neighboring block
whose three inputs are driven by the three outputs (X, Y, Z) as shown in Fig. 10. The
outputs of this block are captured using another 6-bit MISR (identical to Output MISR
1, capturing U, V, W instead of X, Y, Z respectively). Recall from Sect. 2.3 (Fig. 8)
that there are 4 FF candidates and 2 traces consistent with the signature from Out-
put MISR 1 at cycle 6. If we now use those two traces as the input constraints on the
neighboring block, we can test if they are consistent with Output MISR 2. As seen in
Fig. 10, the output sequence for aliased Trace 2 (in Fig. 8) results in a different final
signature (at cycle 6) in Output MISR 2. This means it can be ruled out as a candidate,
narrowing the candidate FFs to those from Trace 1 (in Fig. 8).
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3 Results

In this section, we present simulation results demonstrating the effectiveness and
practicality of E-QED. For our simulations, we use the OpenSPARC T2 SoC (Open-
SPARC), an open-source version of the UltraSPARC T2 SoC (a 500-million-transistor
SoC with 8 processor cores with private L1 caches supporting 64 hardware threads, 8
banks of shared L2 cache memory using a directory-based cache coherence protocol, 4
on-chip memory controllers, and a crossbar-based interconnect). We used the following
design parameters for the E-QED Signature Blocks (Sect. 2.1): target capture window
N = 1,024 cycles, counter size C = 11 bits; MISR size K = M * b, where b = 8 for all
MISRs except those inside the processor core, where b = 4. A total of 118 E-QED
Signature Blocks were used, adding 185,057 FFs, with an area impact of 2.5%.

In addition to an overview of results (in Sect. 3.1) with the parameters listed above,
we also present an analysis of various trade-offs (in Sect. 3.2) that influence total area
impact (by varying the parameter b in various signature blocks and also the signature
block locations) and the granularity of electrical bug localization (in terms of candidate
FFs as well as the number of candidate traces). The results in this section are for the
single-cycle FF error model of electrical bugs (Sect. 2.3). We present an expanded set
of results in (Singh et al. 2017).

3.1 Overview of Results

We randomly injected single-cycle FF errors in the OpenSPARC T2 design (with
E-QED signature blocks inserted using our algorithm in Sect. 2.1) through RTL sim-
ulations (using Synopsys VCS). We ran 1,000,000 simulation runs, half with the
SPLASH-2 Fast Fourier Transform (FFT) benchmark (Woo et al. 1995) and the other
half with an in-house version of the Matrix Multiply (MMULT) benchmark. We ran
64-threaded versions of both benchmarks to ensure all threads on all processor cores of

Neighboring Block Output
Cycle 1 2 3 4 5 6

U 0 1 1 1 1 0 
V 0 1 0 1 1 1
W 1 1 0 0 0 1

Initial Values F9 F10 F11
0 0 1

Output MISR 2 Initial State 000001 
Output MISR 2 Signature (Cycle 6) 100010 

Trace Candidates 
Output MISR 2 

Signatures
Computed from 
Trace (Cycle 6)

1 Cycle 3 FF3, Cycle 4 FF6 100010
2 Cycle 1 FF4, Cycle 2 FF7 010011

Fig. 10. Example circuit (continuing from Fig. 8) demonstrating NCC.
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OpenSPARC were active. The single-cycle FF errors were injected into: the processor
core (all instances), crossbar, L2 cache controller (all instances) and the memory
control unit (all instances). For each simulation run, we ran both the original bench-
mark and the benchmark transformed using QED (EDDI-V and PLC transforms with
Inst_min and Inst_max set to 100, see (Lin et al. 2014)). During each simulation run,
the injected error was allowed to propagate until it either vanished (i.e., was masked
before impacting any program outputs) or resulted in observable failure (e.g., crash,
incorrect outputs, exception or error detection by QED versions of the benchmarks). As
soon as a QED test detected an error, we performed electrical bug localization using
E-QED (Fig. 2). E-QED results for errors that cause hangs and deadlocks are discussed
in (Singh et al. 2017) (they require QED tests with CFTSS-V transform (Lin et al.
2014)). For BMC, we used the Questa Formal tool (version 10.5) from Mentor
Graphics on an Intel Xeon E5-2640 with 128 GB of RAM.

Table 1 summarizes the results. The bug trace size is the number of signals for all
input and output interfaces captured in the signature blocks for that design block,
multiplied by the length of the trace generated by the BMC tool. Recall that this length
is determined by the counter value (T in Sect. 2.2) used to set up BMC analysis.

In Table 1, the “Number of Detected Errors” is the number of injected errors
detected by the corresponding validation test (deadlocks and hangs caused by either
test were not included). Note that, the vast majority of injected errors vanished (which
is consistent with published literature (Cho et al. 2015; Sanda et al. 2008)). QED tests
detected many more errors than the original tests (*4x more than original tests due to
fine-grained QED checks, which is also consistent with published literature (Hong et al.
2010; Lin et al. 2014)).

Table 1. Electrical bug localization results for 1,000,000 single-cycle FF error simulations in
the OpenSPARC T2 SoC.

Original tests (no
QED)

E-QED (after running QED
versions of the original tests)

Number of detected errors 2,832 12,555
Error detection latency
(cycles) [min, avg, max]

[2K, 976K, 8.8M] [19, 168, 763]

Number of FF candidates
[min, avg, max]

9.3 * 105 (*all
flip-flops in the design)

[5, 18, 36]

Number of candidate bug
traces [min, avg, max]

N/A [1, 1, 1]

Number of bits in a bug
trace [min, avg, max]

N/A [109k, 483k, 1.74M]

BMC runtime (minutes) N/A [420, 526, 772]
Total E-QED signature
block area impact

N/A 2.5%

Clock speed impact N/A *0%
Localization factor
[min, avg, max]

1x [25,837x, 51,674x, 186,025x]
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Observation 1: E-QED automatically localized every error detected by the EDDI-V
and PLC checks in the QED tests, and produced a list of 18 candidate FFs on average
(out of a total of close to a million FF candidates) – a localization factor of over four
orders of magnitude. These results were achieved with BMC runtime of 7–13 h. Very
importantly, in every case, E-QED was able to report a unique trace with an average
trace size of 483 kbits.

Table 2 shows the breakdown of results with respect to various design blocks of the
OpenSPARC T2 SoC and various techniques presented in Sects. 2.2, 2.3 and 2.4.

Table 2. Electrical bug localization results (similar to Table 1) with a detailed breakdown.

Design Block
localization
(Sect. 2.2)

Single-cycle FF error
localization (Sect. 2.3)

NCC
localization
(Sect. 2.4)

Processor core
(Core)

Number of traces [min,
avg, max]

N/A [1, 3, 8] [1, 1, 1]

Number of FF
candidates [min, avg,
max]

44,084 [11, 54, 91] [8, 16, 29]

Avg. localization factor 22x 17,224x 58,133x

BMC runtime (minutes)
[min, avg, max]

[62, 74, 77] [303, 416, 478] [49, 85, 114]

L2 cache (L2C) Number of traces [min,
avg, max]

N/A [2, 14, 19] [1, 1, 1]

Number of FF
candidates [min, avg,
max]

31,675 [28, 77, 154] [7, 19, 33]

Avg. localization factor 29x 12,080x 48,954x

BMC runtime (minutes)
[min, avg, max]

[51, 58, 64] [468,504,535] [42,187,242]

Crossbar
(CCX)

Number of traces [min,
avg, max]

N/A [2, 12, 17] [1, 1, 1]

Number of FF
candidates [min, avg,
max]

41,521 [31, 74, 130] [5, 23, 36]

Avg. localization factor 22x 12,569x 40,440x

BMC runtime (minutes)
[min, avg, max]

[53, 61, 72] [379,421,450] [54,142,205]

Memory
control unit
(MCU)

Number of traces [min,
avg, max]

N/A [3, 19, 24] [1, 1, 1]

Number of FF
candidates [min, avg,
max]

18,068 [21, 67, 143] [5, 11, 18]

Avg. localization factor 51x 13,882x 84,557x

BMC runtime (minutes)
[min, avg, max]

[35, 37, 41] [315,387,428] [78,163,251]

Total E-QED signature block area impact 2.5%

Clock speed impact *0%
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Observation 2: Signature-based electrical bug localization at the design block level
(Sect. 2.2) achieves a localization factor of 22–51x. Single-Cycle FF Error Localization
improves the localization factor by another 200–1,000x. Neighbor Consistency
Checking (NCC) further improves localization factor by another 5–10x (for an average
overall localization factor of 50,000x) and produces just a single candidate trace.

3.2 Design Trade-Offs

For the results in Tables 1 and 2, the total area impact of E-QED signature blocks is
2.5% (obtained through synthesis of the OpenSPARC T2 SoC using the Synopsys
Design Compiler with the Synopsys EDK 32 nm library for standard cells and
memories). In Fig. 11, we analyze the area impact vs. the granularity of electrical bug
localization. We vary the MISR parameter b (recall from Sect. 2.1 that the MISR size is
b*M, where M is number of signals captured by the signature) from 2 to 14.5 For the
entire design, this varies the total number of FFs in the signature blocks from 48,436 to
338,930. We use the number of candidate traces here for comparison since the primary
aim of NCC is to reduce the number of candidate traces found (ideally to 1). Reducing
the number of candidate traces also reduces the number of FF candidates.

Observation 3: Neighbor Consistency Checking is able to reduce the number of
candidate traces to just 1 when the area impact is 2.8% (this corresponds to a design
where MISRs are constructed with b = 8 for the entire design). The area impact can be
further reduced to 2.5% (while still ensuring only a single candidate trace is found) by
using a hybrid set of parameters (the parameters used in Sect. 3.1), namely b = 4
within the processor cores and b = 8 everywhere else.

Fig. 11. The maximum number of unique candidate traces observed, before and after Neighbor
Consistency Checking (NCC), for different area overheads, varied by changing the size of the
MISRs in the signature blocks (MISR size is b*M, where M is number of signals captured by the
signature).

5 Note that in our simulation experiments, above (in Sect. 3.1), we used different fixed values of b for
different parts of the design. In this section, we allow b to vary but all MISRs use the same value of b.
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As discussed in Sect. 2.1, we made two enhancements to our approach to signature
block insertion: signature blocks were added for signals around the L1 and L2 cache
memory array banks (adding 16,640 FFs for all L2 banks and 3,840 FFs for all L1
banks), and signature blocks were also added at the instruction fetch units of the
processors (adding 8,192 FFs across all 8 cores). As shown in Fig. 10, NCC analysis
with these additional E-QED signature blocks significantly reduces the number of
candidate traces for each value of b.

4 Related Work

Most existing publications on post-silicon bug localization (especially for electrical
bugs) focus on ways to improve observability as well as techniques for localizing bugs
inside the design (and combinations thereof). For example, many existing techniques
capture system behavior (logic values of various signals during post-silicon validation
runs) using trace buffers: small on-chip memories that record logic values of a selected
set of internal signals (Abramovici 2006; Anis and Nicolici 2007; Ma et al. 2015, and
many others). However, with typical long error detection latencies (millions or billions
of clock cycles) trace buffers can quickly become ineffective. E-QED leverages the
QED technique (Lin et al. 2014) to create post-silicon validation tests with sufficiently
short error detection latencies. (Other techniques that create tests with short error
detection latencies can also be used with E-QED). Even when tests with short error
detection latencies are available, inserting trace buffers for fine-grained electrical bug
localization still imposes unacceptably high area overheads. For example, as discussed
in Sect. 1, saving a full trace of all inputs and outputs of the crossbar block alone of the
OpenSPARC T2 SoC for just 1,000 cycles would require over 34 Mbits of data.

Fig. 12. The maximum number of unique candidate traces observed after performing NCC, with
and without the addition of extra signature blocks around the L2 and L1 caches and processor
instruction fetch unit, for different MISR parameters b (From Sect. 2.1, MISR size is b*M, where
M is number of signals captured).

E-QED: Electrical Bug Localization 121



Recorders that store microarchitectural information in processor cores (e.g. (Park et al.
2009, 2010)) require much less area. But they are applicable for processor cores only
(while uncore components and accelerators occupy large portions of complex SoCs).
Moreover, approaches in (Park et al. 2009, 2010) require manual analysis. Techniques
for compressing trace buffer contents generally provide limited benefits. Trace com-
pression techniques such as state restoration (Ko and Nicolici 2009)) (or related
approaches that use RTL simulation to restore signals from partial traces) cannot be
used for electrical bugs (because electrical bugs are not present in the RTL description).
(Vali and Nicolici 2016) presents a trace signal selection approach that directly tries to
improve the ability to diagnose FF errors caused by electrical bugs. However, the
reported improvements are modest.

Signature blocks used by E-QED overcome these limitations. Although MISRs
have been extensively used for manufacturing testing (e.g. (Saxena and McCluskey
1997 and numerous others)), E-QED does not require the generation of fault-free
signatures by simulating post-silicon validation tests (unlike manufacturing testing).
Instead, it uses formal techniques to reason about consistency between signatures
captured by E-QED signature blocks at the inputs and outputs of a design block, as well
as the logic inside the design block itself. While it may be possible to use
hardware-implemented assertions (e.g. (Bayazit and Malik 2005)) to enhance E-QED,
finding the “right” set of (hardware implementation-friendly) assertions remains a
major challenge for automatic assertion generation. Other observability techniques (e.g.
(DeOrio et al. 2011; Li et al. 2010)) can result in false positives.

The problem of electrical bug localization is similar to the classical fault diagnosis
problem in manufacturing testing (Abramovici et al. 1990). The use of Scan Design for
Testability makes the problem somewhat simpler for manufacturing testing vs.
post-silicon validation. Many publications have used formal techniques for these
purposes (e.g. (Larrabee 1992; Mangassarian et al. 2007, and others)). Similarly (Zhu
et al. 2011, 2014) use formal techniques, aided by backbones and a sliding window
approach, for electrical bug localization. Techniques such as BackSpace and its
derivatives (De Paula et al. 2008, 2011, 2012; Le et al. 2013; Sengupta et al. 2012) also
use formal methods for bug localization purposes. However, as explained in Sect. 2,
the biggest challenge is to create an automatic approach that scales for large SoCs
without incurring large area impact. Some of the above techniques attempt to overcome
the scalability challenge by “consistently” reproducing the buggy behavior over mul-
tiple runs; this can be very difficult for complex designs, as explained in (De Paula
et al. 2011). Our E-QED approach overcomes these challenges: E-QED signature
blocks enable scalability for large SoC designs with small area impact; short error
detection latencies of QED tests enable us to apply BMC in conjunction with the
E-QED signature blocks; and, E-QED analysis techniques in Sect. 2 enable us to
perform bug localization despite lossy compression by E-QED signature blocks (with
minimal reliance on consistent reproduction of buggy behaviors). Note that, the E-QED
Neighbor Consistency Checking technique in Sect. 2.4 is different from consistency
checking techniques presented in (Jones et al. 1996; Park et al. 2009, 2010, and others).

122 E. Singh et al.



5 Conclusion

E-QED overcomes electrical bug localization challenges during post-silicon validation
and debug. It automatically localizes electrical bugs and provides a comprehensive list
of components that may contain the bugs (together with corresponding bug traces). It is
an automatic approach which is highly effective and practical for large designs, as
demonstrated on the OpenSPARC T2 SoC: automatic electrical bug localization in a
few hours (9 h on average) that can narrow an electrical bug to a handful of candidate
flip-flops (18 flip-flops on average for a design with *1 Million flip-flops) and identify
a single candidate bug trace. The area impact of E-QED is *2.5%. In contrast, it might
take weeks (or even months) of mostly manual work (per bug) using traditional
approaches. E-QED is made possible through a unique combination of Quick Error
Detection techniques for bug detection, E-QED signature blocks that are automatically
inserted during design, and new consistency checking techniques enabled by formal
methods.

There are several future directions. E-QED can be extended to: 1. leverage
already-existing Scan Design for Testability techniques to further enhance bug local-
ization; 2. localize bugs in in analog and mixed-signal components of SoCs; 3.
understand the interplay between scalability of BMC tools for bug localization vs. error
detection latencies of QED tests vs. design of more sophisticated E-QED signature
blocks; 4. diagnose defects that are detected using system-level testing during manu-
facture; 5. enable full system-level (consisting of many ICs chips) bug localization;
and, 6. correct/fix bugs after manufacture.
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