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Abstract. We present a new algorithm for model counting of a class of
string constraints. In addition to the classic operation of concatenation,
our class includes some recursively defined operations such as Kleene clo-
sure, and replacement of substrings. Additionally, our class also includes
length constraints on the string expressions, which means, by requiring
reasoning about numbers, that we face a multi-sorted logic. In the end,
our string constraints are motivated by their use in programming for web
applications.

Our algorithm comprises two novel features: the ability to use a tech-
nique of (1) partial derivatives for constraints that are already in a solved
form, i.e. a form where its (string) satisfiability is clearly displayed,
and (2) non-progression, where cyclic reasoning in the reduction process
may be terminated (thus allowing for the algorithm to look elsewhere).
Finally, we experimentally compare our model counter with two recent
works on model counting of similar constraints, SMC [18] and ABC [5],
to demonstrate its superior performance.

1 Introduction

In modern software, strings are not only ubiquitous, they also play a critical part:
their improper use may cause serious security problems. For example, accord-
ing to the Open Web Application Security Project [20], the most serious web
application vulnerabilities include: (#1) Injection flaws (such as SQL injection)
and (#3) Cross Site Scripting (XSS) flaws. Both vulnerabilities involve string-
manipulating operations and occur due to inadequate sanitisation and inappro-
priate use of input strings provided by users.

The model counting problem, to count the number of satisfiable assignments
for a constraint formula, continues to draw a lot of attention from security
researchers. Specifically, model counters can be used directly by quantitative
analyses of information flow (in order to determine how much secret information
is leaked), combinatorial circuit designs, and probabilistic reasoning. For exam-
ple, the constraints can be used to represent the relation between the inputs
and outputs implied by the program in quantitative theories of information
flow. This, in turn, has numerous applications such as quantitative informa-
tion flow analysis [6,11,21,24], differential privacy [3], secure information flow
[22], anonymity protocols [10], and side-channel analysis [16]. Recently, model
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counting has also been used by probabilistic symbolic execution where the goal
is to compute the probability of the success and failure program paths [9,13].

Given the rise of web applications and their complicated manipulations of
string inputs, model counting for string constraints naturally becomes a very
important research problem [5,18]. There have been works on model counting
for different kinds of domains such as boolean [8], and integer domains [19]. But
they are not directly applicable to string constraints. The main difficulties are:
(1) string constraints need to be multi-sorted because we need to reason about
string lengths; and (2) each string length is either unbounded, or bounded by
a very large number. For example, we can represent a bounded string as a bit
vector and then employ the existing model counting for bit vector constraints
to calculate the number of solutions. However, as highlighted in [18], the bit-
vector representation of the regular expression S.match(“(a | b)�”) could grow
exponentially w.r.t. the length of S, and the tools which employ this approach
did not scale to strings of length beyond 20.

This work is inspired by two recent string model counters, SMC [18] and
ABC [5]1, which have achieved very promising results. However, in contrast to
these approaches, this paper directly addresses the two challenges of the string
domain, (1) which is a multi-sorted theory, and (2) whose variables are gener-
ally unbounded. As a result, our model counter not only produces more precise
counts, but also is generally more efficient.

We start by employing the infrastructure of the satisfiability solver S3P [26],
which in turn builds on top of Z3 [12] to efficiently reason about multiple the-
ories. S3P works by building its reduction tree, reducing the original formula
into simpler formulas with the hope that it eventually encounter a solved form
formula from which a satisfying assignment can be enumerated or proving that
all the reduction paths lead to contradictions (i.e. the original formula is unsat-
isfiable). One key advancement of S3P is the ability to detect non-progressive
scenarios with respect to a criterion of minimizing the “lexicographical length”
of the returned solution, if a solution in fact exists. This helps avoiding infi-
nite chains of reductions when dealing with unbounded strings. In other words,
in the search process based on reduction rules, we can soundly prune a sub-
problem when the answer we seek can be found more efficiently elsewhere. If a
subproblem is deemed non-progressive, it means that if the original input for-
mula is satisfiable, then another satisfiable solution of shorter “length” will be
found somewhere else. However, because a model counter needs to consider all
solutions, what offered by S3P is not directly usable for model counting.

Our model counting algorithm proceeds by using the reduction rules of S3P,
but to exhaustively build the reduction tree T . Each node will be associated with
a “generating function” [18] representing its count. We compute the counts for
all the leaf nodes, and propagate bottom-up to derive the count of the original
input formula. There are four types of leaf nodes, i.e. a path is terminated when
one of four scenarios is encountered:

1 We will discuss them in more detail in the Related Work.
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(1) A contradiction is derived. The leaf node is assigned a precise count of 0.
(This holds for any variable of interest with any length.)

(2) The leaf node is in solved form2. We delegate to a helper function to precisely
count a formula in solved form.

(3) The leaf node is a non-progressive formula, detected by S3P’s rules. We can
relate the count of that leaf to one of its ancestors via a recurrence relation.

(4) The path gets stuck or exceeds a predefined budget (often used to enforce
termination), we resort to a baseline algorithm. In the implementation we
choose SMC as the baseline algorithm.

Note however that counting the solutions of a formula in solved form, i.e., sce-
nario (2), is not a trivial task. This is because the family of satisfiable strings
might go beyond a regular language. Constraints on string lengths even further
complicate the problem: a formula in solved form does not mean it is satisfiable.
For this task, we adapt the notion of partial derivative function by Antimirov
[4] to construct a tree, called an enumeration tree (for each leaf formula of T
that is in solved form). The key distinction of an enumeration tree over the top-
level reduction tree is that, because formulas are in solved form, we can perform
specialized over/under-approximation techniques for the length constraints, in
order to direct the enumeration process to repeated formulas, so that recurrence
relations between the counts of them can be extracted. In the end, we use Math-
ematica to evaluate the count for the original formula, given a specific length to
the string variable of interest.

Contributions: In summary, this paper proposes a new model counter, called
S3#. We make the following theoretical contributions:

• We leverage the infrastructure of an existing string solver, namely S3P,
to directly address the two main challenges of model counting for string
constraints.

• We convert each non-progression scenario into a recurrence relation between
the solution counts of formulas in our reduction tree.

• We propose a novel technique to precisely count the solutions of solved form
formulas.

In our empirical evaluation of our implementation, we demonstrate the preci-
sion and efficiency of our model counting technique via real-world benchmarks
against SMC and ABC, the two state-of-the-art model counting techniques for
string constraints. Our first criterion is accuracy, and here we show clearly that
our answers are more accurate in all cases. A second criterion is efficiency. We
shall argue that we are in fact more efficient. However, there will be some counter-
examples. But here we shall demonstrate that the counter-examples are them-
selves countered by a subsequent lack of accuracy. In the end, we demonstrate
that S3# is for now better than the state-of-the-art.

2 We will define “solved form” in Sect. 5.3.
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2 Problem and Related Work

We will define the model counting problem for strings, discuss the implications
in terms of soundness and precision. We also cover main related work in this
Section.

2.1 Problem Definition

Suppose we have a formula F over free variables V . We shall defer defining the
grammar for F for now. Let cvar ∈ V be the string variable of interest and
n denote the (symbolic) length of cvar. Let Scvar denote the set of solutions
for cvar that satisfies F . We define the model counting problem as finding an
estimate of |Scvar| as a function of n, denoted by the quantity Scvar(n). In this
paper, we focus on finding a precise upper bound u(n) to Scvar(n). For certain
applications, a lower bound estimate l(n) is of more interest, but it can be defined
analogously.

Even though our technique can also produce a precise lower bound, restricting
the problem to an upper bound estimate helps in two ways: (1) it is easier to
make comparison with ABC [5], which returns only an upper bound estimate;
(2) the notions of soundness and precision are more intuitive as follows.

We say that an upper bound u(n) is:

• sound iff ∀i ≥ 0, Scvar(i) ≤ u(i).
• κ-precise wrt. some i ≥ 0 iff κ is the relative distance between u(i) and

Scvar(i), i.e. κ = u(i)−Scvar(i)
Scvar(i)

; where 0/0 = 0 and a positive number divided
by zero equals to infinity.

Given a concrete length i of interest for cvar, we say an upper bound is the
exact estimate/count if it is 0-precise w.r.t. to i. Our definition also implies
that it is extremely imprecise to provide a positive count for an unsatisfiable
formula (in software testing, this leads to false positives). Furthermore, in the
counting process, it is unsound to miss a satisfiable assignment, whereas counting
an unsatisfiable assignment or counting one satisfiable assignment for multiple
times (also called duplicate counting) are the main reasons that lead to imprecise
estimates.

2.2 Related Work

There has been significant progress in building string solvers to support the
reasoning of web applications. Recent notable works include [1,2,15,17,23,25,
26,29,30]. Some of these solvers bound the string length [15,23], whereas our
approach handles strings of arbitrary length (as does ABC). Our solver also
supports complicated string operations such as replace, which is commonly
used in real-world programs (both in JavaScript [23] and Java [14]).

However, to the best of our knowledge, there are only two solvers that support
model counting for strings, namely SMC [18] and ABC [5]. ABC has been used
to quantify side-channel leakage in a more recent work [7].
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The pioneering work [18] proposes to use “generating function” in model
counting. Their treatment of string constraints is, however, rather simple. Briefly,
a formula is structurally broken down into sub-formulas, until each sub-formula
is in primitive form so that a generating function can be assigned. The rest
of the effort is to appropriately (but routinely) combine the derived generating
functions. The rules to combine are slightly different between computing upper
bound and computing lower bound estimates. Importantly, these rules are fixed.
For example, given a formula F = F1 ∨F2, SMC will count the upper bound for
the number of solutions of F1 and F2 and then sum them up without taking into
account the overlapping solutions between F1 and F2. Similarly, the lower bound
for F1 ∧ F2 is simply 0. As highlighted in [5], SMC cannot determine a precise
count for a simple regular expression constraint such as x ∈ (“a”|“b”)�|“ab”.
It neither can coordinate the reasoning across logical connectives to infer pre-
cise counts for simple constraints such as (x ∈ “a”|“b”) ∨ (x ∈ “a”|“b”|“c”|“d”)
nor (x ∈ “a”|“b”) ∧ (x ∈ “a”|“b”|“c”|“d”). In short, the sources of the impre-
cision of SMC may be ambiguous grammars, conjunctions, disjunctions, length
constraints, high-level string operations, etc.

ABC [5] enhances the precision by a rigorous method: representing the set of
solution strings as an extended form of a deterministic finite automaton (DFA)
and then precisely enumerating the count when a bound on string length is given.
However, there are two issues with this approach. First, it might suffer from an
up-front exponential blow-up, in the DFA construction phase. For example, a
DFA that represents the concatenation of two DFA could be exponential in size
of the input DFAs [28]. (Note that ABC’s premise that “the number of paths
to accepting states corresponds to the solution count” only holds for a DFA.)
Second, to reason about web applications, the constraint language is required
to be expressive. This frequently leads to cases that the set of solutions cannot
be captured precisely with a regular language, e.g. what is called “relational
constraints” in [5]. In such cases, ABC suffers from serious imprecision.

3 Motivating Examples

As stated in Sect. 1, model counting techniques for bounded domains are not
directly applicable to the string domain. We now present some motivating exam-
ples where state-of-the-art string model counters are not precise.

First, we discuss the limitation of SMC. As pointed out in [5], it has a severe
issue of duplicate counting. SMC focuses on the syntax structure of the input
formula to recursively break it down into sub-formulas until these are in a prim-
itive form. Then a generating function can be assigned independently to each
of them. In other words, SMC does not have a semantics-based analysis on the
actual solution set. Below are two simple examples showing imprecise bounds
produced by SMC:

X ∈ ((“a”|“b”)�|“ab”) ⇒ 1 ≤ SX(2) ≤ 5
X ∈ (“a”|“b”) ∨ X ∈ (“a”|“b”|“c”|“d”) ⇒ 2 ≤ SX(1) ≤ 6
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The exact counts are 4 and 2 respectively. Both our tool S3# and ABC can pro-
duce these exact counts (as upper bounds). Next consider the following examples.

Example 1 (Regular language without length constraints). Count the number of
solutions of X in:

X = Y · Y ∧ Y ∈ (“a”)�

Though the set of solutions for X can be captured by a regular language, the
word equation X = Y ·Y involves a concatenation operation, making the exam-
ple non-trivial for existing tools. While ABC crashes, SMC returns an unsound
estimate [0; 0] – indicating that both the lower bound and the upper bound are
0. (We actually observe this behaviour in our evaluation with small benchmarks
in Sect. 6, Table 1).

Example 2 (Non-regular language with length constraints). Count the number of
solutions of X in:

X = Y · Z ∧ Y ∈ (“a”)� ∧ Z ∈ (“b”)� ∧ length(Y ) = length(Z)

It can be seen that the set of solutions of X is beyond a regular language. In
fact, it is a context-free language: {am·bm | m≥0}.

For this example, SMC is not applicable because it cannot handle the con-
straint length(Y ) = length(Z) — its parser simply fails. Counting the solutions
of length 2 for X, ABC gives 3 as an upper bound, while the exact count is 1.
For length 500, ABC’s answer is 501 though the exact count is still 1. Our tool
S3# can produce the exact counts for all these scenarios.

In general, ABC does not handle well the cases where the solution set is not a
regular language. The reason is that ABC needs to approximate all the solutions
as an automaton before counting the accepting paths up to a given length bound.
This limitation is quite serious because in practice, e.g. in web application, length
constraints are often used. Therefore, the solution set is usually beyond a regular
language. (This is realized frequently in our evaluation with Kaluza benchmarks
in Sect. 6, Tables 2 and 3.)

4 The Core Language

We present the core constraint language in Fig. 1.

Variables: We deal with two types of variables: Vstr consists of string variables
(X, Y , Z, T , and possibly with subscripts); and Vint consists of integer variables
(M , N , P , and possibly with subscripts).

Constants: Correspondingly, we have two types of constants: string and integer
constants. Let Cstr be a subset of ξ� for some finite alphabet ξ. To make it easier
to compare with other model counters, we choose the same alphabet size, that is
256. Elements of Cstr are referred to as string constants or constant strings. They
are denoted by a, b, and possibly with subscripts. The empty string is denoted
ε. Elements of Cint are integers and denoted by m, n, possibly with subscripts.
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Fml ::= Literal | ¬ Literal | Fml ∧ Fml
Literal ::= As | Al

As ::= Tstr = Tstr

Al ::= Tlen ≤ m (m ∈ Cint)
Tstr ::= a (a ∈ Cstr)

| X (X ∈ Vstr)
| concat(Tstr, Tstr)
| replace(Tstr, Tregexpr, Tstr)
| star(Tregexpr, M) (M ∈ Vint, M≥0)

Tregexpr ::= a (a ∈ Cstr)
| (Tregexpr)

� | Tregexpr · Tregexpr

| Tregexpr + Tregexpr

Tlen ::= m (m ∈ Cint)
| M (M ∈ Vint)
| length(Tstr) | Σn

i=1(mi ∗ Tlen)

Fig. 1. The syntax of our core constraint language

Terms: Terms may be string terms or length terms. A string Tstr term (denoted
D, E, and possibly with subscripts) is either an element of Vstr, an element
of Cstr, or a function on terms. More specifically, we classify those functions
into two groups: recursive and non-recursive functions. An example of recursive
function is replace (which is used to replace all matches of a pattern in a
string by a replacement), while an example of non-recursive function is concat.
The concatenation of string terms is denoted by concat or interchangeably by
· operator. For simplicity, we do not discuss string operations such as match,
split, exec which return an array of strings. We note, however, these operations
are fully supported in our implementation.

A length term (Tlen) is an element of Vint, or an element of Cint, or a length
function applied to a string term, or a constant integer multiple of a length term,
or their sum. Furthermore, Tregexpr represents regular expression terms. They
are constructed from string constants by using operators such as concatenation
(·), union (+), and Kleene star (�). Regular expression terms are only used as
parameters of functions such as replace and star.

Following [25], we use the star function in order to reduce a membership
predicate involving Kleene star to a word equation. The star function takes
two input parameters. The first is a regular expression term, while the second
is a non-negative integer variable. For example, X ∈ (r)� is modeled as X =
star(r,N), where N is a fresh variable denoting the number of times that r is
repeated.

Literals: They are either string equations (As) or length constraints (Al).

Formulas: Formulas (denoted F , G, H, K, I, and possibly with subscripts) are
defined inductively over literals by using operators such as conjunction (∧), and
negation (¬). Note that, each theory solver of Z3 considers only a conjunction of
literals at a time. The disjunction will be handled by the Z3 core. We use Var(F )
to denote the set of all variables of F , including bound variables. Finally we can
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define the quantifier-free first-order two-sorted logic for our formulas as simply
string equations involving some recursive and non-recursive functions, conjoined
with some length constraints.

As shown in [25], to sufficiently reason about web applications, string solvers
need to support formulas of quantifier-free first-order logic over string equa-
tions, membership predicates, string operations and length constraints. Given a
formula of that logic, similarly to other approaches such as [25], our top level
algorithm will reduce membership predicates into string equations where Kleene
star operations are represented as recursive star functions. Other high level
string operations can also be reduced to the above core constraint language.
After such reductions, the new formula can be represented in our core constraint
language in Fig. 1. Note that, our input language subsumes those of other tools.
For example, compared with ABC, our replace operation can take as input
string variables instead of just string constants.

5 Algorithm

We first present the top-level algorithm, and then more details on the helper
functions.

5.1 Top-Level Algorithm

The top-level algorithm is the recursive function solve presented in Algorithm 1.
It takes two input arguments, a current formula F and γ, which is a list of pairs,
each containing a formula and a sequence. γ is used to detect non-progressive
formulas; we will discuss how γ is constructed and maintained in Sect. 5.2.

Given an input formula I and a variable of interest cvar, treated as global
variables, an upper bound estimate u(n) of the count is computed by invoking
solve(I, ∅). When given a specific length len for cvar, we can get an integer
estimate by evaluating u(len) using Mathematica. We discuss how to compute
lower bound in our technical report [27].

Our algorithm constructs a reduction tree similar to the satisfiability checking
algorithm in [26]. Specifically, the construction of the tree is driven by a set of
rules.

Definition 1 (Reduction Rule). Each rule is of the general form

(RULE-NAME)
F

∨m
i=1 Gi

where F , Gi are conjunctions of literals3, F ≡ ∨m
i=1 Gi, and Var(F ) ⊆ Var(Gi).

�
An application of this rule transforms a formula at the top, F , into the formula
at the bottom, which comprises a number (m) of reducts Gi.
3 As per Fig. 1.
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function solve(F : Fml, γ: a list of pairs of a formula and a sequence)
〈1〉 if (F ≡ false ) return 0 /*........................ Case 1 ........................*/
〈2〉 cnstrcvar ← extract(F , cvar)
〈3〉 if (isSolvedForm(cnstrcvar))
〈4〉 return count(cnstrcvar) /*........................ Case 2 ........................*/
〈5〉 if (F contains a recursive term or a non-grounded concatenation)
〈6〉 if (∃〈K, σ〉 ∈ γ, ∃ progressive substitution θ w.r.t. σ s.t. Fθ ⇒ K)
〈7〉 Mark K as an ancestor of a non-progressive formula
〈8〉 return recurrence(K, F, θ) /*.................. Case 3 ..................*/
〈9〉 if (depth = max depth OR there is no rule to apply)

〈10〉 return baseSolver(F , cvar) /*.................... Case 4 ....................*/
〈11〉 if (F contains a recursive term or a non-grounded concatenation)
〈12〉 Let σF be a sequence on Var(F ) s.t. τ is a prefix of σF

〈13〉 γ ← γ ∪ 〈F, σF〉
〈14〉 ∨

Gi ← applyRule(F ) /*........... Apply a reduction rule ...........*/
〈15〉 sum ← 0
〈16〉 foreach reduct Gi do
〈17〉 sum ← sum + solve(Gi, γ) /*................. Recursive Case .................*/
〈18〉 return evaluate(sum, F )
end function

Algorithm 1. Top-level algorithm

Our algorithm has four base cases that are mutually exclusive as follows:

• The current formula is unsatisfiable (line 1). We return 0 as the exact count.
• The current formula is in solved form (lines 2–4). We first extract the con-

straints that are relevant to cvar. If the extracted constraints are in solved
form (which is defined in Sect. 5.3), then we use the helper function count
to precisely compute the count of cnstrcvar.

• The current formula is non-progressive (line 5–8), or the condition in line 6
holds. Intuitively, it means that there is an ancestor formula K that “sub-
sumes” the current formula F (modulo a renaming θ). We then call the helper
function recurrence to express the count of F in terms of the count of K.

• The path is terminated because the maximum depth has been reached or no
rule is applicable (lines 9–10). We then simply resort to an existing solver
such as SMC.

It is important to note that except for case-1, where a contradiction is detected,
a count in some other base case will generally be a “generating function” (e.g.,
as used in [18]).

Finally, lines 15–17 handle the recursive case, where we first apply a reduction
rule to the current formula F , obtaining the reducts Gi. The estimate count for
F is the sum of the estimate counts for those Gi. In line 18, if F is not marked
as an ancestor of a non-progressive formula, then evaluate simply returns the
expression sum, which is the summation of a number of generating functions.
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Otherwise, there exists some descendant of F that is deemed non-progressive due
to F . For such case, sum will be an expression that also involves the count of F ,
but with some smaller length. In other words, we have a recurrence equation to
constrain the count of F . We rely on a function, evaluate, to add a recurrence
equation into a global variable φ that tracks all collected recurrence equations,
and prepare its base cases (see Sect. 5.2) so that concretization can be done when
later we provide a concrete value of len.

5.2 Non-progressive Formulas

We now discuss the process of detecting non-progression. We first choose any
sequence τ from all the variables of the input formula I. Then whenever we
encounter a recursive term or a non-grounded concatenation, we add a pair,
which consists of the current formula F and a sequence σF from all of F ’s vari-
ables, to γ (lines 11–13). The condition for choosing σF is that τ must be a prefix
of σF . This is to help compare solution lengths “lexicographically” [26]. In line 6
of Algorithm 1, if we can find a pair 〈K,σ〉 ∈ γ, and a progressive substitution θ
w.r.t. σ (informally, θ will increase the solution length), such that Fθ ⇒ K then
we call F a non-progressive formula. We illustrate with the following example.

Example 3 (Non-progression). Count the number of solutions of X in:

“a” · X = X · “a”

See Fig. 2 where K is the formula of interest. By applying (SPLIT) rule to K,
we obtain two reducts K1 and K2. In K1, X is an empty string, whereas in K2

we deduce that “a” must be a prefix of X. Next, by substituting X with “a”·X1

in K2, we obtain F . If we keep on applying (SPLIT) and (SUB) rules, we will go
into an infinite loop. As such, non-progression detection [26] is crucial to avoid
non-termination. The technique will find θ = [X1/X] s.t. Fθ ⇒ K and conclude
that F is non-progressive. For satisfiability checking, it is sound to prune F and
continue the search for a solution in K1.

(SPLIT)
K ≡ “a” · X = X · “a”

K1 ≡ X = ε ∧ “a” = “a”
(SUB)

K2 ≡ X = “a”·X1 ∧ “a” · X = X·“a”

F ≡ X = “a”·X1 ∧ “a” · X1 = X1·“a”

Fig. 2. Solving steps for Example 3

However, for model counting, we have to consider all solutions, including
those contributed by F , if any. Thus we propose, instead of pruning F , we extract
a relationship between the counts of F and of K, with recurrence as a helper.

recurrence is presented in Algorithm 2. It is important to note that based
on θ, we can compute the length difference between cvar in K and the corre-
sponding variable (for the substitution) in F . For the example above, it is the
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function recurrence(K: Fml, F : Fml, θ)
〈1〉 d ← diff(K, F, θ, cvar)
〈2〉 Let fK be a function over lK , representing the estimate count of K
〈3〉 return fK(lK−d)

end function
Algorithm 2. recurrence function

length difference between X and X1, which is 1. We then can extract a relation-
ship between the count of F and the count of K, thus further constraining the
count of K with a recurrence equation.

Let fK be the counting function for K; it takes as input the symbolic length
lK of cvar and returns the number of solutions of cvar for that length. In short,
because Fθ =⇒ K, the count for F is (upper) bounded by fK(lK − 1).

Now assume we compute the count of K (the variable of interest is still X)
with len = 3. Following Algorithm1, when we backtrack to node K, its sum is
the expression fK1(lK) + fK(lK − 1); where fK1(lK) is a function that returns 1
when lK is 0, and returns 0 otherwise. By calling evaluate(fK1(lK)+fK(lK−1),
K) in line 8, we will add a recurrence equation fK(lK) = fK1(lK) + fK(lK − 1)
into φ. We also compute its base case fK(0), which is fK1(0)+fK(−1) = 1+0 =
1. (Based on the distance d, a number of base cases might be required.) Finally,
since K is the input formula of interest, when given query length len = 3, we
can compute the value of fK(3) = 1.

5.3 Solved Form Formulas

We now discuss how to compute an estimate count for a formula in solved form,
i.e., the count function.

As presented in Fig. 3, a formula is in solved form if it is a conjunction of
atomic constraints and their negation. An atomic constraint is either an equality
string constraint which is in solved form or a length constraint. To be in solved
form, an equality string constraint can only be between a variable and a con-
catenation of other variables, between a variable and a constant, or between a
variable and a star function. Each variable can only appear once in the LHS of
all equality constraints.

In fact, one purpose of applying reduction rules is to obtain solved form for-
mulas. For most cases, when no rule is applicable, the current formula is already
in solved form. In this basic form, we can easily enumerate all the solutions for
the string constraints. However, these solutions are also required to satisfy addi-
tional length constraints. As a result, a solved form formula system still might
not have any solution.

Given a list of solved form formulas, we define its count as the count for the
conjunction of all the formulas (note that the conjunction might not be in solved
form). Now, given a solved form formula H, function count will generate an
enumeration tree rooted at {H} (i.e. a singleton list with a formula H). Each
node in the tree will be a list of solved form formulas, though as before, it is
associated with a counting function, or count for short. Let β be a map between
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SFml ::= Atom | ¬ Atom | SFml ∧ SFml
Atom ::= Aeq | Al

Aeq ::= Tvar = Tconcat | Tvar = Tground

Tvar ::= X (X ∈ Vstr)
Tconcat ::= X (X ∈ Vstr)

| concat(Tconcat, Tconcat)
Tground ::= a (a ∈ Cstr)

| star(Tregexpr, M) (M ∈ Vint, M≥0)

Fig. 3. Solved form

a formula list (i.e. a node in the tree) and its count. E.g., the count of {H}
is fH = β({H}). We then use function recur eq to collect a set of recurrence
equations (added into φ) between the counts for different nodes in the tree. These
equations are parameterized by an integer variable lH . In the end, count(H)
will return the count for H, denoted by fH(lH).

In recur eq function, given a list of formulas α, we compute the count
fα(lα). Lines 6–8 handle the case when there exists an unsatisfiable formula in
the list α. Lines 9–11 handle the case when we can reuse the result of an ancestor
node. Lines 12–18 are to derive the child nodes by applying partial derivative
functions, which are defined below. The count for a parent node is the sum of
those for child nodes, which do not have the same starting character ci. Those
which share the same starting character ci are put into λi, which is a list of SFml
list. For each λi, we use moivre function to obtain the precise definition for the
sum of the counts of all λij(1≤j≤n) (to avoid overlapping solutions). moivre
function will then call recur eq with the first parameter is a list of formulas,
which is the flattened combination of elements from λi.

InAlgorithm 3, thetail function (line 16) is implemented via the variants of the
partial derivative function of regular expressions byAntimirov [4].TheAntimirov’s
function can be denoted as δc which compute the partial derivative of the input reg-
ular expression w.r.t. character c. Concretely, δc(r) is a regular expression whose
language is the set of all words w (including the empty one) such that c·w ∈ L(r).
We now extend it by defining the partial derivative function for negation-free for-
mulas in solved form. (We explain the handling of negation in our technical report.)

Definition 2 (Partial Derivative). Given a string variable X, and a character
c∈ξ, a partial derivative function δX,c of a solved form formula is defined as follows:

δX,c(Y = T1)
def
= {Y = T1} δX,c(Al)

def
= {Al} δX,c(X = ε)

def
= {false }

δX,c(X = c·s) def
= {X = s} δX,c(X = d·s) def

= {false } if d ∈ ξ and d�=c

δX,c(X = star(r, N))
def
= {X = w · star(r, N−1)}, where w ∈ δc(r)

δX,c(X = Y ∧ H2)
def
= {X = Y } ∗∧ δY,c(H2)

δX,c(X = Y ·Z ∧ H2)
def
= {X = Y · Z} ∗∧ δY,c(H2) if ¬e(Y )

δX,c(X = Y ·Z ∧ H2)
def
= {X = Y · Z} ∗∧ δY,c(H2)

∪ {X = Z ∧ Y = ε} ∗∧ δZ,c(H2) if e(Y )

δX,c(H1 ∧ H2)
def
= δX,c(H1)

∗∧ δX,c(H2)

�
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function count(H: SFml)
〈1〉 Let lH be an integer variable and φ be a recurrence equation list
〈2〉 Let β be a mapping from SFml list to a counting function name
〈3〉 recur eq({H}, lH , φ, β)
〈4〉 return β({H})(lH)

end function
function recur eq(α: SFml list, lα: int, φ: recurrence equation list, β: a mapping)

〈5〉 Let fα be a function from integer to integer
〈6〉 if (∃H ∈ α : H ≡ false )
〈7〉 φ ← φ ∪ {fα(lα) = 0}
〈8〉 return
〈9〉 if (∃ variable renaming θ : β[θ(α)] = fparent)

〈10〉 φ ← φ ∪ {fα(lα) = fparent(lα)}
〈11〉 return
〈12〉 β[α] ← fα

〈13〉 Let ζ be the set of all the possible starting characters of cvar
〈14〉 Sum ← 0
〈15〉 foreach character ci ∈ ζ do
〈16〉 λi ← tail(α, cvar, ci) /* Each λi is a SFml list list */
〈17〉 Sum ← Sum + moivre(λi, lα − 1, φ, β)
〈18〉 φ ← φ ∪ {fα(lα) = Sum}
end function
function moivre(λi: SFml list list, N : int, φ: recurrence equation list, β: a mapping)
〈19〉 Let n be the size of λi

〈20〉 for k = 1 to n do
〈21〉 Let Comb be all the combination

(n
k

)
of λi and m be its size

〈22〉 foreach combination C ∈ Comb do
〈23〉 αi ← flatten(C)
〈24〉 recur eq(αi, N , φ, β)
〈25〉 ak ← Σm

i=1fαi

〈26〉 return Σn
k=1(−1)k−1 ∗ ak

end function
Algorithm 3. count function and its auxiliary functions

The function e(Y ) checks if a variable Y can be an empty string or not. For
example, if we have Y = star(“a”, N) ∧ N≥0 then e(Y ) = true, but if Y = “a”

then e(Y ) = false . Meanwhile the operator
∗∧ for two sets is the Cartesian

product version of ∧. We now explain Definition 2 via a simple example.

Example 4 (String-only constraints). Count the number of solutions of X in:

X = Y · Z ∧ Y = star(“a”, N) ∧ Z = star(“b”,M)

Below is the counting tree for the input solved form formula. Suppose the count
for the root node is f1(l1). By applying δX,“a” for the formula in the root node,
we obtain the left node where Y = star(“a”, N − 1). If we substitute N −1 with
N , the formula in the left node becomes the formula in the root node. Therefore,
the count for the left node is f1(l1 − 1), since we have just removed a character
“a” from X.
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{ X=Y · Z ∧ Y =star(“a”, N) ∧
Z=star(“b”,M) } f1

{ X=Y ·Z∧Y =star(“a”, N−1)∧
Z=star(“b”,M) } f1

δX,“a”

{ X=Z ∧ Z=star(“b”,M−1) ∧
Y =ε ∧ N=0 } f2

δX,“b”

In short, we have a set of recurrence equations as below:

f1(l1) = f1(l1 − 1) + f2(l1 − 1)

Note that, we will remove redundant constraints which do not affect the final
count (e.g. Y = ε ∧ N = 0 in the right node). Similarly, we can have a counting
tree for X = Z ∧ Z = star(“b”,M − 1) and a recurrence equation for f2. In
addition, we also need to compute the base case for the definition of f1, that is
f1(0) = 1.

The main technical issue that we have to overcome is non-termination of
the counting tree construction (which leads to non-termination of rec eq func-
tion). Fortunately, because of the recursive structure of strings, in the case of
string-only constraints, we can guarantee to terminate and to generate recur-
rence equations for every counting function (see Theorem1). The difficulty here
is of course when the constraints also include string lengths. To handle length
constraints, we propose over/under-approximation techniques in order to give
precise upper/lower bounds for counting functions. But first we need to propose
another variant of the derivative function.

Definition 3 (Multi-head Partial Derivative). Let s = “?. . .?”·c be a con-
catenation between i copies of “?” and the character c. A multi-head partial
derivative function ΔX,s for the string variable X and the string s is defined as
follows:

ΔX,c(H)
def
= δX,c(H) ΔX,s(Y = T1)

def
= {Y = T1} ΔX,s(Al)

def
= {Al}

ΔX,s(X = Y ∧ H2)
def
= {X = Y } ∗∧ ΔY,s(H2)

ΔX,s(X = Y0. . .Yn ∧ H2)
def
= {X = Y0. . .Yn} ∗∧ δYi,c(H2) if ¬CONCAT(Yj)

0≤j≤n

ΔX,s(H1 ∧ H2)
def
= ΔX,s(H1)

∗∧ ΔX,s(H2)

�
The function concat(Y ) checks if a variable Y is bound with any concatenation.
For example, if we have Y = Z1·Z2 then concat(Y ) = true. Note that, given
a negation-free formula in solved form, we can always transform it to the form
X = Y0. . .Yn ∧Y0 = T0 ∧ ... ∧ Yn = Tn ∧ Al, where ¬concat(Yj) (0≤j≤n).

With the use of multi-head partial derivative function as the new imple-
mentation for the tail function (line 16), we now have to update Algorithm3
correspondingly. Specifically, in line 13, instead of finding the starting characters
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ci of cvar, we now need to construct the set of string si, which is composed by
i copies of “?” and the character ci. This construction is guided by the length
constraints.

Suppose we have a set of constraints on string lengths. By using inference
rules, we can always transform the above set into a disjunction of conjunctive
formulas on the second parameters of star functions. For example,

X = Y ·Z ∧Y = star(“a”, N)∧Z = star(“b”, M)∧2∗ length(Y )+ length(Z) = 4∗P

can be transformed into

X = Y ·Z ∧ Y = star(“a”, N) ∧ Z = star(“b”,M) ∧ 2N + M = 4P.

Thus, w.l.o.g., let us assume that the length constraints exist in the form of
a conjunctive formula on the second parameters of star functions. Suppose we
have a formula H composed by a conjunction of equality constraints Ak (in which
the variable of interest X is constructed by concatenating constant strings and
Yi) and Yi = star(si, Ni) (0≤i≤p), along with linear arithmetic constraints on
Ni (0≤i≤n), where N0, ..., Np are the second parameters of star functions, and
Np+1, ..., Nn are integer variables.

H ≡
∧

Ak ∧
∧

Yi = star(si, Ni) ∧
∧

Σi≤n
i=0 aij ∗ Ni ≤ bj where 0≤j≤m

Then we will try to solve the following set of constraints
∧

Σi≤n
i=0 aij ∗ Ni ≥ 0 where 0≤j≤m (1)

If (1) has a solution (l0, . . . ln), then we know that we have to go the node
where we have the constraint

∧i≤p
i=0 Yi = star(si, Ni − li). Let G be the formula

labelling that node. With the substitution θ = [N0 − l0/N0, ..., Nn − ln/Nn], we
will have Gθ ⇒ H. Therefore fG(lG) = fH(lH − |s0| ∗ l0 − |s1| ∗ l1... − |sp| ∗ lp).
This ensures the termination of the construction of the counting tree for H since
other nodes are of less complexity than G.

Otherwise, we will try to remove as least as possible the integer con-
straints from (1) in order to make it become satisfiable. This is where the over-
approximation applies. Suppose we have to remove the constraints where j ∈ μ
to obtain a satisfiable formula

∧
Σi≤n

i=0 aij ∗ Ni ≥ 0 where 0≤j≤m ∧ j /∈ μ

then the upper bound for the number of solutions of H is the number of solutions
of

H ′ ≡
∧

Ak∧
∧

Yi = star(si, Ni)∧
∧

Σi≤n
i=0 aij ∗ Ni ≤ bj where 0≤j≤m ∧ j /∈ μ

It is obviously seen that the largest upper bound is the number of solutions
of the string-only formula H ′′ ≡ ∧

Ak ∧ ∧
Yi = star(si, Ni). (The lower bound

for the number of solutions of H is the number of solutions of explored nodes in
the counting tree for H. So the deeper we explore, the more precise lower bound
we have. The smallest lower bound of course is 0.) To illustrate more, let us look
at the following example.
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Example 5 (String and length constraints). Count the number of solutions of
X in:

X = Y · Z ∧ Y = star(“a”, N) ∧ Z = star(“b”,M) ∧ 2N + M = 4P

First, we need to solve the equation 2N + M − 4P = 0 in order to find the
solution N = 1, M = 2, P = 1. Then we know that we need to drive the
counting tree to the node that contains the constraint Y = star(“a”, N − 1) ∧
Z = star(“b”,M − 2) as follows.

{ X=Y ·Z ∧ Y =star(“a”, N) ∧
Z=star(“b”,M) ∧ 2N+M=4P } f1

{ X=Y ·Z ∧ Y =star(“a”, N−1) ∧
Z=star(“b”,M) ∧ 2N+M=4P }

{ X=Y ·Z ∧ Y =star(“a”, N−1) ∧
Z=star(“b”,M−1) ∧ 2N+M=4P }

{ X=Y ·Z ∧ Y =star(“a”, N−1) ∧
Z=star(“b”,M−2) ∧ 2N+M=4P } f1

ΔX,“?b”

{ X=Y ∧
Y =star(“a”, N−1) ∧
Z=“b”∧2N+1=4P }

f4

ΔX,“?ε”

ΔX,“?b”

{ X=Y ∧
Y =star(“a”, N−1) ∧

Z=ε ∧ N=2y }
f3

ΔX,“?ε”

ΔX,“a”

{ X=Z ∧
Z=star(“b”,M−1) ∧

Y =ε ∧ M=4P }
f2

ΔX,“b”

In short, we have a set of recurrence equations as below:

f1(l1) = f1(l1 − 3) + f2(l1 − 1) + f3(l1 − 1)
f1(0) = 1; f1(1) = 0; f1(2) = 1;∀n : f4(n) = 0

Similarly, we can construct recurrence equations for f2 and f3.
Lastly, we make two formal statements about our algorithm. The proof sketch

is in our technical report.

Theorem 1 (Soundness). Given an input formula I, Algorithm1 returns the
sound upper bound (and lower bound) for the number of solutions of I. �
Theorem 2 (Precision). Given a solved form formula H which does not con-
tain any constraints of type Al (i.e. length constraints), Algorithm3 returns the
exact number of solutions of H. �

6 Evaluation

We test our model counter S3# with two set of benchmarks, which have also
been used for evaluating other string model counters. All experiments are run
on a 3.2 GHz machine with 8 GB memory.
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In the first case study, we use a small but popular set of benchmarks that
are involved in different security contexts. For example, the experiments with 2
string manipulation utilities (wc and grep) from the BUSYBOX v.1.21.1 package,
and one utility (csplit) from the COREUTILS v.8.21 package, demonstrate the
quantification of how much information would be leaked if these utilities operate
on homomorphically encrypted inputs as in AutoCrypt [18].

Table 1 summarizes the results of running S3# against SMC and ABC4. The
first and second columns contain the input programs and the query lengths for
the query variables. Given those inputs, we then report the bounds produced by
each model counter along with its running time. Note that SMC and S3# can
give both lower and upper bounds while ABC can only give upper bounds.

For each small benchmark, S3# can give the exact count (i.e. lower and upper
bounds are equal). All input formulas here can in fact be transformed into solved
form. This ultimately demonstrates the precision of our counting technique for
solved form formulas. In Table 1, we highlight unsound bounds, generated by
SMC and ABC, in bold with grey background.

In addition, the running time of S3# is small. It is much faster than SMC, and
comparable to ABC. Among the three model counters, when ABC can produce
an answer, it is often the fastest. In such cases, it is because an automaton
can be quickly constructed to represent the solution set. However, ABC also
crashes a few times with the “BDD is too large” error. For the ghttpd and

Table 1. Experiments with small benchmarks. The last column is to notify the bound
is measured with a scale. The scale for marked rows are 101465, 101465, 101129, 101289,
1023, 1014, resp.

4 We used the latest versions from their websites, as of 20 Dec 2016.



416 M.-T. Trinh et al.

length 620, ABC times out after 20 min. In these instances, the solution sets are
beyond regular; ABC cannot effectively represent/over-approximate them using
an automaton. In contrast, if we remove the length constraints from the ghttpd
benchmark to obtain ghttp wo len, ABC can finish it within 0.4 seconds. This
indicates that when the solution set is beyond regular, ABC not only loses it
precision, but also loses its robustness.

We next consider Kaluza benchmarks, that was also used by SMC and ABC
for their evaluations. These benchmarks were generated by Kudzu [23], when
testing 18 web applications that include popular AJAX applications. The gen-
erated constraints are of boolean, integer and string types. Integer constraints
also involve lengths of string variables, while string constraints include string
equations, membership predicates.

Importantly, SMC cannot handle many constraints from the original bench-
marks; instead SMC used an over-simplified version of Kaluza benchmarks where
many important constraints are removed. (ABC [5] had also reported about the
discrepancy when comparing with SMC.) As a result, we only compare S3#
with ABC in this second case study, using the SMT-format version of Kaluza
benchmarks as provided in [17].

Table 2. Kaluza UNSAT benchmarks

# Programs ABC S3#

Upper bound Time Count Time

2700 0 1477 0 1130

9314 Crash

Table 3. Kaluza SAT benchmarks

# Programs ABC S3#

Upper bound Time L&U Time

24825 >0 6984 >0 46575

10445 Crash

Tables 2 and 3 summarize the results of running S3# and ABC with two sets of
Kaluza benchmarks: satisfiable and unsatisfiable ones. Note that ABC crashes
often, nearly half the time5. Importantly, for the unsatisfiable benchmark exam-
ples, S3# produces the exact count 0. ABC, as in [5], managed to run more
benchmarks, but failed to produce the upper bound 0 for 2, 459 benchmark exam-
ples; thus they classified them as satisfiable. For the satisfiable examples, S3#
is also more informative, always determining that the lower bound is positive.

7 Concluding Remarks and Future Work

We have presented a new algorithm for model counting of a class of string con-
straints, which are motivated by their use in programming for web applications.
Our algorithm comprises two novel features: the ability to use a technique of
(1) partial derivatives for constraints that are already in a solved form, i.e. a
form where its (string) satisfiability is clearly displayed, and (2) non-progression,
where cyclic reasoning in the reduction process may be terminated (thus allowing
5 This differs from the report in [5]. Understandably, ABC has been under active

development and there is significant difference in the version of ABC we used and
the version had been evaluated in [5].
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for the algorithm to look elsewhere). We have demonstrated the superior per-
formance of our model counter in comparison with two recent works on model
counting of similar constraints, SMC and ABC.

Though the algorithm is for model counting of string constraints, we believe
it is applicable to other unbounded data structures such as lists, sequences. This
is because both the solving and counting methods deal with recursive structures
in a somewhat general manner. Specifically, the methods are applied to a general
logic fragment of equality and recursive functions.
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Stenman, J.: String constraints for verification. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). doi:10.1007/
978-3-319-08867-9 10

2. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Holk, L., Rezine, A., Rümmer, P., Stenman,
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