
Automatic Verification of

Pipelined Microprocessor Control

Jerry R. Burch and David L. Dill

Computer Science Department
Stanford University

Abs t rac t . We describe a technique for verifying the control logic of
pipelined microprocessors. It handles more complicated designs, and re-
quires less human intervention, than existing methods. The technique
automatically compares a pipelined implementation to an architectural
description. The CPU time needed for verification is independent of the
data path width, the register file size, and the number of ALU oper-
ations. Debugging information is automatically produced for incorrect
processor designs. Much of the power of the method results from an effi-
cient validity checker for a logic of uninterpreted functions with equality.
Empirical results include the verification of a pipelined implementation
of a subset of the DLX architecture.

1 I n t r o d u c t i o n

The design of high-performance processors is a very expensive and competitive
enterprise. The speed with which a design can be completed is a crucial factor
in determining its success in the marketplace. Concern about design errors is a
major factor in design time. For example, each month of additional design time
of the MIPS 4000 processor was estimated to cost $3-$8 million, and 27~ of the
design time was spent in "verification and test" [13].

We believe that formal verification methods could eventually have a signif-
icant economic impact on microprocessor designs by providing faster methods
for catching design errors, resulting in fewer design iterations and reduced simu-
lation time. For maximum economic impact, a verification methodology should:

- be able to handle modern processor designs,
- be applicable to the aspects of the design that are most susceptible to errors,
- be relatively fast and require little labor, and
- provide information to help pinpoint design errors.

The best-known examples of formally verified processors have been extremely
simple processor designs, which were generally unpipelined [7, 8, 15, 16]. The ver-
ification methods used rely on theorem-provers that require a great deal of very
skilled human guidance (the practical unit of for measuring labor in these studies
seems to be the p e ~ n - m o n t h) . Furthermore, the processor implementations that
were verified were so simple that they were able to avoid central problems such

69

as control complexity. There are more recent verification techniques [1, 17] that
are much more automatic, but they have not been demonstrated on pipelined
processors.

The verification of modern processors poses a special problem. The natu-
ral specification of a processor is the programmer-level functional model, called
the instruction set architecture. Such a specification is essentially an operational
description of a processor that executes each instruction separately, one cycle
per instruction. The implementation, one the other hand, need not execute each
instruction separately; several instruction might be executing simultaneously
because of pipelining, etc. Formal verification requires proving that the specifi-
cation and implementation are in a proper relationship, but that relationship is
not necessarily easy to define.

Recently, there have been successful efforts to verify pipelined processors
using human-guided theorem-provers [11, 19, 20, 22]. However, in all of these
cases, either the processor was extremely simple or a large amount of labor was
required.

Although the examples we have attacked are still much simpler than current
high-performance commercial processors, they are significantly beyond the ca-
pabilities of automatic verification methods reported previously. The method is
targeted towards errors in the microprocessor control, which, according to many
designers, is where most of the bugs usually exist (datapaths are usually not
considered difficult, except for floating point operations). Labor is minimized,
since the procedure is automatic except for the development of the descriptions
of the specification and implementation. When the implementation of the pro-
cessor is incorrect, the method can produce a specific example showing how the
specification is violated.

Since we wish to focus on the processor control, we assume that the combi-
national logic in the data path is correct. Under this assumption (which can be
formally checked using existing techniques), the differences between the speci-
fication and implementation behaviors are entirely in the timing of operations
and the transfer of values. For example, when the specification stores the sum of
two registers in a destination register, the implementation may place the result
in a pipe register, and not write the result to its destination until after another
instruction has begun executing.

The logic we have chosen is the quantifier-free logic of uninterpreted functions
and predicates with equality and propositional connectives. Uninterpreted func-
tions are used to represent combinational ALUs, for example, without detailing
their functionality. Propositional connectives and equality are used in describing
control in the specification and the implementation, and in comparing them.

The validity problem for this logic is decidable. In practice, the complexity
is dominated by handling Boolean connectives, just as with representations for
propositional logic such as BDDs [2]. However, the additional expressiveness of
our logic allows verification problems to be described at a higher level of abstrac-
tion than with propositional logic. As a result, there is a substantial reduction
in the CPU time needed for verification.

70

Corella has also observed that uninterpreted functions and constants can be
used to abstract away from the details of datapaths, in order to focus on control
issues [9, 10]. He has a program for analyzing logical expressions which he has
used for verifying a non-pipelined processor and a prefetch circuit. Although
the details are not presented, his analysis procedure appears to be much less
efficient than ours, and he does not address the problems of specifying pipelined
processors.

Our method can be split into two phases. The first phase compiles operational
descriptions of the specification and implementation, then constructs a logical
formula that is valid if and only if the implementation is correct with respect to
the specification. The second phase is a decision procedure that checks whether
the formula is valid. The next two sections describe these two phases. We then
give experimental results and concluding remarks.

2 C o r r e c t n e s s C r i t e r i a

The verification process begins with the user providing behavioral descriptions
of an implementation and a specification. For processor verification, the speci-
fication describes how the programmer-visible parts of the processor state are
updated when one instruction is executed every cycle. The implementation de-
scription should be at the highest level of abstraction that still exposes relevant
design issues, such as pipelining.

Each description is automatically compiled into a transition function, which
takes a state as its first argument, the current inputs as its second argument,
and returns the next state. The transition function is encoded as a vector of
symbolic expressions with one entry for each state variable. Any HDL could be
used for the descriptions, given an appropriate compiler. Our prototype verifier
used a simple HDL based on a small subset of Common LISP. The compiler
translates behavioral descriptions into transition functions through a kind of
symbolic simulation.

We write Fspec and fImpl to denote the transition function of the specification
and the implementation, respectively. We require that the implementation and
the specification have corresponding input wires. The processors we have verified
have no explicit output wires since the memory was modeled as part of the
processor and we did not model I/O.

Almost all processors have an input setting that causes instructions already
in the pipeline to continue execution while no new instructions are initiated. This
is typically referred to as stalling the processor. If/Stall is an input combination
that causes the processor to stall, then the function ~mpl(", Istan) represents
the effect of stalling for one cycle. All instructions currently in the pipeline can
be completed by stalling for a sufficent number of cycles. This operation is called
flushing the pipeline, and it is an important part of our verification method.

Intuitively, the verifier should prove that if the implementation and speci-
fication start in any matching pair of states, then the result of executing any
instruction will lead to a matching pair of states. The primary difficulty with

71

matching the implementation and specification is the presence of partially ex-
ecuted instructions in the pipeline. Various parts of the implementation state
are updated at different stages of the execution of an instruction, so it is not
necessarily possible to find a point where the implementation state and the
specification state can be compared easily. The verifier solves this problem by
simulating the effect of completing every instruction in the pipeline before doing
the comparison. The natural way to complete every instruction is to flush the
pipeline.

All of this is made more precise in figure 1. The implementation can be in
an arbitrary state QImpl (labeled "Old Impl State" in the figure). To complete
the partially executed instructions in Qlmpl, the pipeline is flushed, producing
"Flushed Old Impl State". Then, all but the programmer-visible parts of the im-
plementation state are stripped off (we define the function proj for this purpose)
to produce Qspec, the "Old Spec State". Because of the way Qsp~r is constructed
from QImpl, we say that Qspec matches Qlmpl.

Old Impl[FImpl(" ,/Stall)
State [

FImpl(-,I)

FImpl(.,Istall) IFlushedOldl proj IOld
'1 ImplState ~ - - ~ Stl

Fsp,r I)

;pec
te

~ ew Impl �9 * �9 �9 Flushed Newl ~ e w Spec I
State FImp~(',Ist~n) F~mp~(',Ist~n) ' Impl State ~ State

Fig. 1. Commutative diagram for showing our correctness criteria.

Let I be an arbitrary input combination to the pipeline (recall that the
specification and the implementation are required to have corresponding input
wires). Let Q~mpl = FImpl(QImpl, I), the "New Impl State", and let Q~pec =
Fspec(Qspec, I), the "New Spec State". We consider the implementation to sat-
isfy the specification if and only if Q~p~r matches Q~mpt- To check this, flush and
project i I Qlmpl, then see if the result is equal to Qspec, as shown at the bottom
of figure 1.

It is often convenient to use a slightly different (but equivalent) statement
of our correctness criteria. In figure 1, there are two different paths from "Old
Impl State" to "New Spee State". The path that involves Flmpl(", I) is called
the implementation side of the diagram; the path that involves Fspec(", I) is
called the specification side. For each path, there is a corresponding function
that is the composition of the functions labeling the arrows on the path. We
say that the implementation satisfies the specification if and only if the function
corresponding to the implementation side of the diagram is equal to the func-
tion corresponding to the specification side of the diagram. More succinctly, the
diagram must commute.

72

The reader may notice that figure 1 has the same form as commutative di-
agrams used with abstraction functions. In our case, the abstraction function
represents the effect of flushing an implementation state and then applying the
proj function. Typical verification methods require that there exist some abstrac-
tion function that makes the diagram commute. In contrast, we require that our
specific abstraction function makes the diagram commute.

In some cases, it may be necessary during verification to restrict the set
of "Old Impl States" considered in figure 1. In this case, an invariant could
be provided (the invariant must be closed under the implementation transition
function). All of the examples in this paper were proved correct without having
to use an invariant.

Notice that the same input I is applied to both the implementation and the
specification in figure 1. This is only appropriate in the simple case where the
implementation requires exactly one cycle per instruction (once the pipeline is
filled). If more than one cycle is sometimes required, then on the extra cycles it
is necessary to apply/stal l to the ini~uts of the specification rather than I. An
example of this is discussed in section 4.2.

3 C h e c k i n g C o r r e c t n e s s

As described above, to verify a processor we must check whether the two func-
tions corresponding to the two sides of the diagram in figure 1 are equal. Each
of the two functions can be represented by a vector of symbolic expressions. Th e
vectors have one component for each programmer-visible state variable of the
processor. These expressions can be computed efficiently by symbolically simu-
lating the behavioral descriptions of the implementation and the specification.
The implementation is symbolically simulated several times to model the effect
of flushing the pipeline.

Let {st sn) and (tl tn) be vectors of expressions. To verify that the
functions they represent are equal, we must check whether each formula ~ -- tk
is valid, for 1 < k < n. Before describing our algorithm for this, we define the
logic we use to encode the formulas.

3.1 Uninterpreted Functions with Equality

Many quantifier-free logics that include uninterpreted functions and equality
have been studied. Unlike most of those logics [18, 21], ours does not include
addition or any arithmetical relations. For our application of verifying micropro-
cessor control, there does not appear to be any need to have arithmetic built
into the logic (although the ability to declare certain uninterpreted functions to
be associative and/or commutative would be useful).

We begin by describing a subset of the logic we use. This subset has the
following abstract syntax (where ire denotes the if-then-else operator):

73

(formnla) ::= ite((formnla), (formnla), (formula))
I ((term) = (t erm))
I (predicate symbol) ((term) , (term))
I (propositional variable) l true I false

(term) ::--- ite((fovraula), (term), (term))

I (function symbol)((term), . . ., (term))

I (term variable).

Notice that the ire operator can be used to construct both formulas and
terms. We included ire as a primitive because it simplifies our case-splitting
heuristics and because it allows for efficient construction of transition functions
without introducing auxiliary variables.

There is no explicit quantification in the logic. Also, we do not require specific
interpretations for function symbols and predicate symbols. A formula is valid
if and only if it is true for all interpretations of variables, function symbols and
predicate symbols.

Although the ire operator, together with the constants true and false, is
adequate for constructing all Boolean operations, we also include logical nega-
tion and disjunction as primitives in our decision procedure. This simplifies the
rewrite rules used to reduce our formulas, especially rules involving associativity
and commutativity of disjunction.

Verifying a processor usually requires reasoning about stores such as a reg-
ister file or main memory. We model stores as having an unbounded address
space. If a processor design satisfies our correctness criteria in this case, then
it is correct for any finite register file or memory. If certain conventions are fol-
lowed, the above logic is adequate for reasoning about stores. However, we found
it more efficient to add two primitives, read and write, for manipulating stores.
These primitives are essentially the same as the select and store operators used
by Nelson and Oppen [18]. If regfile is a variable representing the initial state of
a register file, then

write(regfile, addr, data)

represents the store that results from writing the value data into address addr
of regfile. The value at address addr in the original state of the register file is
denoted by

read(regfile, addr).

Any expression that denotes a store, whether it is constructed using variables,
write's or ire's, can be used as the first argument of a read or a write operation.

74

3.2 V a l i d i t y C h e c k i n g A l g o r i t h m

Pseudo-code for a simplified version of our decision procedure for checking va-
lidity, along with a description of its basic operation, is given in figure 2. This
procedure is still preliminary and may be improved further, so we will just sketch
the main ideas behind it.

Our decision procedure differs in several respects from earlier work [18, 21].
Arithmetic is not a source of complexity for our algorithm, since it is not included
in our logic. In our applications, the potentially complex Boolean structure of
the formulas we check is the primary bottleneck. Thus, we have concentrated on
handling Boolean structure efficiently in practice.

Another difference is that we are careful to represent formulas as directed
acyclic graphs (DAGs) with no distinct isomorphic subgraphs. For this to reduce
the time complexity of the validity checker, it is necessary to memoize (cache)
intermediate results. As shown in figure 2, the caching scheme is more compli-
cated than in standard BDD algorithms [2] because formulas must be cached
relative to a set of assumptions.

The final major difference between our algorithm and previous work is that
we do not require formulas to be rewritten into a Boolean combination of atomic
formulas. For example, formulas of the form el = e2, where el and e2 may
contain an arbitrary number of ire operators, are checked directly without first
being rewritten.

Detlefs and Nelson [12] have recently developed a new decision procedure
based on a conjunctive normal form representation that appears to be efficient
in practice. We have not yet been able to do a thorough comparison, however.

As check does recursive case analysis on the formula p, it accumulates a set of
assumptions A that is used as an argument to deeper recursive calls (see figure 2).
This set of assumptions must not become inconsistent. To avoid such inconsis-
tency, we require that if 190 is the first result of simplify(p, Ao), then neither
choose_splitting_formnla(po) nor its negation is logically implied by A0. We call
this the consistency requirement on simplify and choose_splitting_formula. Main-
taining the consistency requirement is made easier by restricting the procedure
choose_splitting_formula to return only atomic formulas (formulas containing no
ire, or, not or write operations).

As written in figure 2, our algorithm is indistinguishable from a propositional
tautology checker. Dealing with uninterpreted functions and equality is not done
in the top level algorithm. Instead, it is done in the simplify routine. For example,
given the assumptions el = e2 and e2 = e3, it must be possible to simplify the
formula el r e3 to false; otherwise, the consistency requirement would not be
maintained. As a result, simplify and associated routines require a large fraction
of the code in our verifier.

In spite of the consistency requirement, there is significant latitude in how
aggressively formulas are simplified. It m ay seem best to do as much simplifi-
cation as possible, but our experiments indicate otherwise. We see two reasons
for this. If simplify does the minimal amount of simplification necessary to meet
the consistency requirement, then it may use less CPU time than a more aggres-

75

check(p: formula, A: set of formula): set of formula;
vat

s, P0, pl: formula;
Ao, A1, Uo, U1, U: set of formula;
~: set of set of formula;

begin
i f p = true then return 0;
i f p -- false then

print "not valid";
terminate unsuccessfully;

:= cache(p);
if 3U E ~ such that U C_ A then return U; /* cache hit * /
/* cache miss */
s := choose_splitting.formula(p); /* prepare to case split * /
/* do s false case */
Ao := A U {-,s};
(P0, U0) := simplify(p, A0);
U0 := UoUcheck(p0, A0); /* assumptions used for s false case * /
/* do s true case */
A1 : = A U { s } ;
(px, U1) := simplify(p, A1);
U~ := Ua Ucheck(p~, A1); /* assumptions used for s true case * /
U := (U0 - {-,s}) U (U~ - {s}); /* assumptions used * /
cache(p) := ~ U {U}; /* add cache entry */
return U;

end;

Fig. 2. The procedure check terminates successfully if the formula p is logically implied
by the set of assumptions A; otherwise, it terminates unsuccessfully. Not all of the
assumptions in A need be relevant in implying p; when check terminates successfully
it returns those assumptions that were actually used. The set of assumptions used
need not be one of the minimal subsets of A that implies p. Checking whether p is
valid is done by letting A be the emptyset. Initially, the global lookup table cache
returns the emptyset for every formula p. Later, cache(p) returns the set containing
those assumption sets that have been sufficient to imply p in previous calls of check.
The procedure choose_splittin94ormula heuristically chooses a formula to be used for
case splitting. The call simpliIy(p, Ao) returns as its first result a formula formed by
simplifying p under the assumptions A0. The second result is the set of formulas in A0
that were actually used when simplifying p.

76

sive simplification routine. Thus, even if slightly more case splitting is needed
(resulting in more calls to simplify), the total CPU time used may be reduced.

The second reason is more subtle. Suppose we are checking the validity of a
formula p that has a lot of shared structure when represented as a DAG. Our
hope is tha t by caching intermediate results, the CPU time typically needed
for validity checking grows with the size of the DAG of p, rather than with
the size of its tree representation. This can be important in practice; for the
DLX example (section 4.2) it is not unusual for the tree representation of a
formula to be two orders of magnitude larger than the DAG representation. The
more aggressive simplify is, the more the shared structure of p is lost during
recursive case analysis, which appears to result in worse cache performance. We
are continuing to experiment with different kinds of simplification strategies in
our prototype implementation.

Unlike the algorithm in figure 2, our validity checker produces debugging
information for invalid formulas. This consists of a satisfiable set of (possibly
negated) atomic formulas that implies the negation of the original formula. When
verifying a microprocessor, the debugging information can be used to construct
a simulation vector that demonstrates the bug.

There is another important difference between our current implementation
and the algorithm in figure 2. Let (Po, Uo) be the result of simplify(p, Ao). Con-
trary to the description in figure 2, in our implementation U0 is not required
to be a subset of Ao. All that is required is that all of the formulas in U0 are
logically implied by A0, and that the equivalence of p and P0 is logically implied
by U0. As a result, something more sophisticated than subtracting out the sets
{s} and {--s} must be done to compute a U that is weak enough to be logi-
cally implied by A (see figure 2). A second complication is that finding a cache
hit requires checking sufficient conditions for logical implication between sets of
formulas, rather than just set containment. However, dealing with these com-
plications seems to be justified since the cache hit ratio is increased by having
simplify return a U0 that is weaker than it could he if it had to be a subset of Ao.
We are still experimenting with ideas for balancing these issues more efficiently.

4 E x p e r i m e n t a l R e s u l t s

In this section, we describe empirical results for applying our verification method
to a pipelined ALU [5] and a subset of the DLX processor [14].

4.1 P i p e l i n e d A L U

The 3-stage pipelined ALU we considered (figure 3) has been used as a bench-
mark for BDD-based verification methods [3, 4, 5, 6]. A natural way to compare
the performance of these methods is to see how the CPU time needed for veri-
fication grows as the pipeline is increased in size by (for example) increasing its
datapath width w or its register file size r. For Burch, Clarke and Long [4] the
CPU time grew roughly quadratically in w and cubically in r. Clarke, Grumberg

77

and Long [6], using a simple abstraction provided by the user, demonstrated lin-
ear growth in both w and r. Sublinear growth in r and subquadratic growth in
w was achieved by Bryant, Beat ty and Seger [3].

Read ports Write }oft

.~ ~ ! Register file

Fig. 3.3-stage pipehned ALU. If the stall input is true, then no instruction is loaded.
Otherwise, the srcl and srcP inputs provide the address of the arguments in the register
file, the op input specifies the ALU operation to be performed on the arguments, and
the dest input specifies were the result is to be written.

In our verification method, the width of the data path and the number of
registers and ALU operations can be abstracted away. As a result, one verifica-
tion run can check the control logic of pipelines with any combination of values
for these parameters. A total of 370 milliseconds of CPU time (running compiled
Lucid Common LISP on a DECstation 5000/240) is required to do a complete
verification run, including loading and compiling behavioral descriptions, au-
tomatically constructing the abstraction function and related expressions, and
checking the validity of the appropriate formula. The validity checking itself,
the primary bottleneck on larger examples, only required 50 milliseconds for the
pipelined ALU.

4.2 D L X Processor

Hennessy and Pat terson [14] designed the DLX architecture to teach the basic
concepts used in the MIPS 2000 and other RISC processors of that generation.

78

The subset of the DLX that we verified had six types of instructions: store word,
load word, unconditional jump, conditional branch (branch when the source
register is equal to zero), 3-register ALU instructions, and ALU immediate in-
structions. As with the pipelined ALU described earlier, the specifics of the ALU
operations are abstracted away in both the specification and the implementa-
tion. Thus, our verification covers any set of ALU operations, assuming that the
combinational ALU in the processor has been separately verified.

Our DLX implementation has a standard 5-stage pipeline. The DLX archi-
tecture has no branch delay slot; our implementation uses the "assume branch
not taken" strategy. No pipelining is exposed in the DLX architecture or in our
specification of it. Thus, it is the responsibility of the implementation to provide
forwarding of data and a load interlock.

The interlock and the lack of a branch delay slot mean that the pipeline ex-
ecutes slightly less than one instruction per cycle, on average. This complicates
"synchronizing" the implementation and the specification during verification,
since the specification executes exactly one instruction per cycle. We address
the problem in a manner similar to that used by Saxe el al. [20]. The user must
provide a predicate on the implementation states that indicates whether the
instruction to be loaded on the current cycle will actually be executed by the
pipeline. While this predicate can be quite complicated, it is easy to express
in our context, using internal signals generated by the implementation. In par-
ticular, our pipeline will not execute the current instruction if and only if one
or more of the following conditions holds: the stall input is asserted, the signal
indicating a taken branch is asserted, or the signal indicating that the pipeline
has been stalled by the load interlock is asserted.

When internal signals are used in this way, it is possible for bugs in the
pipeline to lead to a false positive verification result. In particular, the pipeline
may appear correct even if it can get into a state where it refuses to ever execute
another instruction (a kind of livelock). To avoid the possibility of a false positive,
we automatically check a progress condition that insures that livelock cannot
occur. The CPU time needed for this check is included in the total given below.

Our specification has four state variables: the program counter, the register
file, the data memory and the instruction memory. If the data memory and the
instruction memory are combined into one store in the specification and the
implementation, then the verifier will detect that the pipeline does not satisfy
the specification for certain types of self-modifying code (this has been confirmed
experimentally). Separating the two stores is one way to avoid this inappropriate
negative result.

For each state variable of the specification, the verifier constructs an appro-
priate formula and checks its validity. Since neither the specification nor the
implementation write to the instruction memory, checking the validity of the
corresponding formula is trivial. Checking the formulas for the program counter,
the data memory and the register file requires 15.5 seconds, 34 seconds and 9.5
seconds of CPU time, respectively. The total CPU time required for the full
verification (including loading and compiling the behavioral descriptions, etc.)
is less than 66 seconds.

79

In another test, we introduced a bug in the forwarding logic of the pipeline.
The verifier required about 8 seconds to generate 3 counter-examples, one each
for the three formulas that had to be checked. These counter-examples provided
sufficient conditions on a initial implementation state where the effects of the
bug would be apparent. This information can be analyzed by hand, or used to
construct a start state for a simulator run that would expose the bug.

5 Conc luding Remarks

The need for improved debugging tools is now obvious to everyone involved
in producing a new processor implementation. It is equally obvious that the
problem is worsening rapidly: driven by changes in semiconductor technology,
architectures are moving steadily from the simple RISC machines of the 1980s to-
wards very complex machines which aggressively exploit concurrency for greater
performance.

Although we have demonstrated that the techniques presented here can verify
more complex processors with much less effort than previous work, examples
such as our DLX implementation are still not nearly as complex as commercial
microprocessor designs. We have also not yet dealt with memory systems and
interrupts, which are rich source of bugs in practice.

It will be very challenging to increase the capacity of verification tools as
quickly as designers are increasing the scale of the problem. Clearly, the com-
putational efficiency of logical decision procedures (in practice, not in the worst
case) will be a major bottleneck. If decision procedures cannot be extended
rapidly enough, it may still be possible to use some of the same techniques for
partial verification or in a mixed simulation/verification tool.

References

1. D. L. Beatty. A Methodology for Formal Hardware Verification, with Application
to Microprocessors. PhD thesis, School of Computer Science, Carnegie Mellon
University, Aug. 1993.

2. K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD
package. In 27th ACM/IEEE Design Automation Conference, 1990.

3. R. E. Bryant, D. L. Beatty, and C.-J. H. Seger. Formal hardware verification by
symbolic ternary trajectory evaluation. In 28th ACM/IEEE Design Automation
Conference, 1991.

4. J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently
in symbolic model checking. In 28th ACM/1EEE Design Automation Conference,
1991.

5. /1. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit ver-
ification using symbolic model checking. In 27th ACM/1EEE Design Automation
Conference, 1990.

80

6. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In
Nineteenth Annual A CM Symposium on Principles on Programming Languages,
1992.

7. A. J. Cohn. A proof of correctness of the Viper microprocessors: The first level. In
G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification
and Synthesis, pages 27-72. Kluwer, 1988.

8. A. J. Cohn. Correctness properties of the Viper block model: The second level.
In G. Birtwistle, editor, Proceedings of the 1988 Design Verification Conference.
Springer-Verlag, 1989. Also published as University of Cambridge Computer Lab-
oratory Technical Report No. 134.

9. F . Corella. Automated high-level verification against clocked algorithmic specifi-
cations. Technical Report RC 18506, IBM Research Division, Nov. 1992.

10. F. Core]]a. Automatic high-level verification against clocked algorithmic specifi-
cations. In Proceedings of the IFIP WGIO.P Con]erence on Computer Hardware
Description Languages and their Applications, Ottawa, Canada, Apr. 1993. Else-
vier Science Publishers B.V.

11. D. Cyrluk. Microprocessor verification in PVS: A methodology and simple exam-
ple. Technical Report SRI-CSL-93-12, SRI Computer Science Laboratory, Dec.
1993.

12. D. Detlefs and G. Nelson. Personal communication, 1994.
13. J. L. Hennessy. Designing a computer as a microprocessor: Experience and lessons

from the MIPS 4000. A lecture at the Symposium on Integrated Systems, Seattle,
Washington, March 14, 1993.

14. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 1990.

15. W. A. Hunt, Jr. FM8501: A verified microprocessor. Technical Report 47, Uni-
versity of Texas at Austin, Institute for Computing Science, Dec. 1985.

16. J. Joyce, G. Birtwistle, and M. Gordon. Proving a computer correct in higher
order logic. Technical Report 100, Computer Lab., University of Cambridge, 1986.

17. M. Langevin and E. Cerny. Verification of processor-like circuits. In P. Prinetto
and P. Camurati, editors, Advanced Research Workshop on Correct Hardware De-
sign Methodologies, June 1991.

18. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
A CM Traps, Prog. Lang. Syst., 1(2):245-257, Oct. 1979.

19. A. W. Roscoe. Occam in the specification and verification of microprocessors.
Philosophical Transactions of the Royal Society of London, Series A: Physical Sci-
ences and Engineering, 339(1652):137-151, Apr. 15, 1992.

20. J. B. Saxe, S. J. Garland, J. V. Guttag, and J. J. Homing. Using transformations
and verification in circuit design. Technical Report 78, DEC Systems Research
Center, Sept. 1991.

21. R. E. Shostak. A practical decision procedure for arithmetic with function symbols.
J. ACM, 26(2):351-360, Apr. 1979.

22. M. Srivas and M. Bickford. Formal verification of a pipelined microprocessor.
IEEE Software, 7(5):52-64, Sept. 1990.

