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Abs t rac t .  We describe a technique for verifying the control logic of 
pipelined microprocessors. It handles more complicated designs, and re- 
quires less human intervention, than existing methods. The technique 
automatically compares a pipelined implementation to an architectural 
description. The CPU time needed for verification is independent of the 
data path width, the register file size, and the number of ALU oper- 
ations. Debugging information is automatically produced for incorrect 
processor designs. Much of the power of the method results from an effi- 
cient validity checker for a logic of uninterpreted functions with equality. 
Empirical results include the verification of a pipelined implementation 
of a subset of the DLX architecture. 

1 I n t r o d u c t i o n  

The design of high-performance processors is a very expensive and competitive 
enterprise. The speed with which a design can be completed is a crucial factor 
in determining its success in the marketplace. Concern about  design errors is a 
major factor in design time. For example, each month of additional design time 
of the MIPS 4000 processor was estimated to cost $3-$8 million, and 27~ of the 
design time was spent in "verification and test" [13]. 

We believe that  formal verification methods could eventually have a signif- 
icant economic impact on microprocessor designs by providing faster methods 
for catching design errors, resulting in fewer design iterations and reduced simu- 
lation time. For maximum economic impact, a verification methodology should: 

- be able to handle modern processor designs, 
- be applicable to the aspects of the design that  are most susceptible to errors, 
- be relatively fast and require little labor, and 
- provide information to help pinpoint design errors. 

The best-known examples of formally verified processors have been extremely 
simple processor designs, which were generally unpipelined [7, 8, 15, 16]. The ver- 
ification methods used rely on theorem-provers that  require a great deal of very 
skilled human guidance (the practical unit of for measuring labor in these studies 
seems to be the p e ~ n - m o n t h ) .  Furthermore, the processor implementations that  
were verified were so simple that  they were able to avoid central problems such 
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as control complexity. There are more recent verification techniques [1, 17] that 
are much more automatic, but they have not been demonstrated on pipelined 
processors. 

The verification of modern processors poses a special problem. The natu- 
ral specification of a processor is the programmer-level functional model, called 
the instruction set architecture. Such a specification is essentially an operational 
description of a processor that executes each instruction separately, one cycle 
per instruction. The implementation, one the other hand, need not execute each 
instruction separately; several instruction might be executing simultaneously 
because of pipelining, etc. Formal verification requires proving that the specifi- 
cation and implementation are in a proper relationship, but that relationship is 
not necessarily easy to define. 

Recently, there have been successful efforts to verify pipelined processors 
using human-guided theorem-provers [11, 19, 20, 22]. However, in all of these 
cases, either the processor was extremely simple or a large amount of labor was 
required. 

Although the examples we have attacked are still much simpler than current 
high-performance commercial processors, they are significantly beyond the ca- 
pabilities of automatic verification methods reported previously. The method is 
targeted towards errors in the microprocessor control, which, according to many 
designers, is where most of the bugs usually exist (datapaths are usually not 
considered difficult, except for floating point operations). Labor is minimized, 
since the procedure is automatic except for the development of the descriptions 
of the specification and implementation. When the implementation of the pro- 
cessor is incorrect, the method can produce a specific example showing how the 
specification is violated. 

Since we wish to focus on the processor control, we assume that the combi- 
national logic in the data path is correct. Under this assumption (which can be 
formally checked using existing techniques), the differences between the speci- 
fication and implementation behaviors are entirely in the timing of operations 
and the transfer of values. For example, when the specification stores the sum of 
two registers in a destination register, the implementation may place the result 
in a pipe register, and not write the result to its destination until after another 
instruction has begun executing. 

The logic we have chosen is the quantifier-free logic of uninterpreted functions 
and predicates with equality and propositional connectives. Uninterpreted func- 
tions are used to represent combinational ALUs, for example, without detailing 
their functionality. Propositional connectives and equality are used in describing 
control in the specification and the implementation, and in comparing them. 

The validity problem for this logic is decidable. In practice, the complexity 
is dominated by handling Boolean connectives, just as with representations for 
propositional logic such as BDDs [2]. However, the additional expressiveness of 
our logic allows verification problems to be described at a higher level of abstrac- 
tion than with propositional logic. As a result, there is a substantial reduction 
in the CPU time needed for verification. 
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Corella has also observed that uninterpreted functions and constants can be 
used to abstract away from the details of datapaths, in order to focus on control 
issues [9, 10]. He has a program for analyzing logical expressions which he has 
used for verifying a non-pipelined processor and a prefetch circuit. Although 
the details are not presented, his analysis procedure appears to be much less 
efficient than ours, and he does not address the problems of specifying pipelined 
processors. 

Our method can be split into two phases. The first phase compiles operational 
descriptions of the specification and implementation, then constructs a logical 
formula that is valid if and only if the implementation is correct with respect to 
the specification. The second phase is a decision procedure that checks whether 
the formula is valid. The next two sections describe these two phases. We then 
give experimental results and concluding remarks. 

2 C o r r e c t n e s s  C r i t e r i a  

The verification process begins with the user providing behavioral descriptions 
of an implementation and a specification. For processor verification, the speci- 
fication describes how the programmer-visible parts of the processor state are 
updated when one instruction is executed every cycle. The implementation de- 
scription should be at the highest level of abstraction that still exposes relevant 
design issues, such as pipelining. 

Each description is automatically compiled into a transition function, which 
takes a state as its first argument, the current inputs as its second argument, 
and returns the next state. The transition function is encoded as a vector of 
symbolic expressions with one entry for each state variable. Any HDL could be 
used for the descriptions, given an appropriate compiler. Our prototype verifier 
used a simple HDL based on a small subset of Common LISP. The compiler 
translates behavioral descriptions into transition functions through a kind of 
symbolic simulation. 

We write Fspec and fImpl to denote the transition function of the specification 
and the implementation, respectively. We require that the implementation and 
the specification have corresponding input wires. The processors we have verified 
have no explicit output wires since the memory was modeled as part of the 
processor and we did not model I/O. 

Almost all processors have an input setting that causes instructions already 
in the pipeline to continue execution while no new instructions are initiated. This 
is typically referred to as stalling the processor. If/Stall is an input combination 
that causes the processor to stall, then the function ~mpl( ", Istan) represents 
the effect of stalling for one cycle. All instructions currently in the pipeline can 
be completed by stalling for a sufficent number of cycles. This operation is called 
flushing the pipeline, and it is an important part of our verification method. 

Intuitively, the  verifier should prove that if the implementation and speci- 
fication start in any matching pair of states, then the result of executing any 
instruction will lead to a matching pair of states. The primary difficulty with 



71 

matching the implementation and specification is the presence of partially ex- 
ecuted instructions in the pipeline. Various parts of the implementation state 
are updated at different stages of the execution of an instruction, so it is not 
necessarily possible to find a point where the implementation state and the 
specification state can be compared easily. The verifier solves this problem by 
simulating the effect of completing every instruction in the pipeline before doing 
the comparison. The natural way to complete every instruction is to flush the 
pipeline. 

All of this is made more precise in figure 1. The implementation can be in 
an arbitrary state QImpl (labeled "Old Impl State" in the figure). To complete 
the partially executed instructions in Qlmpl, the pipeline is flushed, producing 
"Flushed Old Impl State". Then, all but the programmer-visible parts of the im- 
plementation state are stripped off (we define the function proj for this purpose) 
to produce Qspec, the "Old Spec State". Because of the way Qsp~r is constructed 
from QImpl, we say that Qspec matches Qlmpl. 

Old Impl[ FImpl(" ,/Stall) 
State [ 

FImpl(-,I) 

FImpl(.,Istall) IFlushedOldl proj IOld 
'1 ImplState ~ - - ~  Stl 

Fsp,r I) 

;pec 
te 

~ ew Impl �9 * �9 �9 Flushed Newl ~ e w  Spec I 
State FImp~(',Ist~n) F~mp~(',Ist~n) ' Impl State ~ State 

Fig. 1. Commutative diagram for showing our correctness criteria. 

Let I be an arbitrary input combination to the pipeline (recall that the 
specification and the implementation are required to have corresponding input 
wires). Let Q~mpl = FImpl(QImpl, I), the "New Impl State", and let Q~pec = 
Fspec(Qspec, I), the "New Spec State". We consider the implementation to sat- 
isfy the specification if and only if Q~p~r matches Q~mpt- To check this, flush and 
project i I Qlmpl, then see if the result is equal to Qspec, as shown at the bottom 
of figure 1. 

It is often convenient to use a slightly different (but equivalent) statement 
of our correctness criteria. In figure 1, there are two different paths from "Old 
Impl State" to "New Spee State". The path that involves Flmpl( ", I) is called 
the implementation side of the diagram; the path that involves Fspec( ", I) is 
called the specification side. For each path, there is a corresponding function 
that is the composition of the functions labeling the arrows on the path. We 
say that the implementation satisfies the specification if and only if the function 
corresponding to the implementation side of the diagram is equal to the func- 
tion corresponding to the specification side of the diagram. More succinctly, the 
diagram must commute. 
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The reader may notice that  figure 1 has the same form as commutative di- 
agrams used with abstraction functions. In our case, the abstraction function 
represents the effect of flushing an implementation state and then applying the 
proj function. Typical  verification methods require that  there exist some abstrac- 
tion function that  makes the diagram commute. In contrast,  we require that  our 
specific abstraction function makes the diagram commute. 

In some cases, it may be necessary during verification to restrict the set 
of "Old Impl States" considered in figure 1. In this case, an invariant could 
be provided (the invariant must be closed under the implementation transition 
function). All of the examples in this paper were proved correct without having 
to use an invariant. 

Notice that  the same input I is applied to both the implementation and the 
specification in figure 1. This is only appropriate in the simple case where the 
implementation requires exactly one cycle per instruction (once the pipeline is 
filled). If more than one cycle is sometimes required, then on the extra cycles it 
is necessary to apply/stal l  to the ini~uts of the specification rather than I.  An 
example of this is discussed in section 4.2. 

3 C h e c k i n g  C o r r e c t n e s s  

As described above, to verify a processor we must check whether the two func- 
tions corresponding to the two sides of the diagram in figure 1 are equal. Each 
of the two functions can be represented by a vector of symbolic expressions. Th e  
vectors have one component for each programmer-visible state variable of the 
processor. These expressions can be computed efficiently by symbolically simu- 
lating the behavioral descriptions of the implementation and the specification. 
The implementation is symbolically simulated several times to model the effect 
of flushing the pipeline. 

Let {st . . . . .  sn) and (tl . . . . .  tn) be vectors of expressions. To verify that  the 
functions they represent are equal, we must check whether  each formula ~ -- tk 
is valid, for 1 < k < n. Before describing our algorithm for this, we define the 
logic we use to encode the formulas. 

3.1 Uninterpreted Functions with Equality 

Many quantifier-free logics that  include uninterpreted functions and equality 
have been studied. Unlike most of those logics [18, 21], ours does not include 
addition or any arithmetical relations. For our application of verifying micropro- 
cessor control, there does not appear to be any need to have arithmetic built 
into the logic (although the ability to declare certain uninterpreted functions to 
be associative and/or  commutative would be useful). 

We begin by describing a subset of the logic we use. This subset has the 
following abstract syntax (where ire denotes the if-then-else operator): 
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(formnla) ::= ite((formnla), (formnla), (formula)) 
I ( ( term)  = ( t erm))  
I (predicate symbol) ( (term ) . . . .  , (term)) 
I (propositional variable) l true I false 

(term) ::--- ite( (fovraula), (term), (term)) 

I (function symbol)( (term), . . ., (term)) 

I (term variable). 

Notice that  the ire operator can be used to construct both formulas and 
terms. We included ire as a primitive because it simplifies our case-splitting 
heuristics and because it allows for efficient construction of transition functions 
without introducing auxiliary variables.  

There is no explicit quantification in the logic. Also, we do not require specific 
interpretations for function symbols and predicate symbols. A formula is valid 
if and only if it is true for all interpretations of variables, function symbols and 
predicate symbols. 

Although the ire operator, together with the constants true and false, is 
adequate for constructing all Boolean operations, we also include logical nega- 
tion and disjunction as primitives in our decision procedure. This simplifies the 
rewrite rules used to reduce our formulas, especially rules involving associativity 
and commutativity of disjunction. 

Verifying a processor usually requires reasoning about  stores such as a reg- 
ister file or main memory. We model stores as having an unbounded address 
space. If a processor design satisfies our correctness criteria in this case, then 
it is correct for any finite register file or memory. If certain conventions are fol- 
lowed, the above logic is adequate for reasoning about  stores. However, we found 
it more efficient to add two primitives, read and write, for manipulating stores. 
These primitives are essentially the same as the select and store operators used 
by Nelson and Oppen [18]. If regfile is a variable representing the initial state of 
a register file, then 

write(regfile, addr, data) 

represents the store that results from writing the value data into address addr 
of regfile. The value at address addr in the original state of the register file is 
denoted by 

read( regfile, addr ). 

Any expression that  denotes a store, whether it is constructed using variables, 
write's or ire's, can be used as the first argument of a read or a write operation. 
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3.2 V a l i d i t y  C h e c k i n g  A l g o r i t h m  

Pseudo-code for a simplified version of our decision procedure for checking va- 
lidity, along with a description of its basic operation, is given in figure 2. This 
procedure is still preliminary and may be improved further, so we will just sketch 
the main ideas behind it. 

Our decision procedure differs in several respects from earlier work [18, 21]. 
Arithmetic is not a source of complexity for our algorithm, since it is not included 
in our logic. In our applications, the potentially complex Boolean structure of 
the formulas we check is the primary bottleneck. Thus, we have concentrated on 
handling Boolean structure efficiently in practice. 

Another difference is that  we are careful to represent formulas as directed 
acyclic graphs (DAGs) with no distinct isomorphic subgraphs. For this to reduce 
the time complexity of the validity checker, it is necessary to memoize (cache) 
intermediate results. As shown in figure 2, the caching scheme is more compli- 
cated than in standard BDD algorithms [2] because formulas must be cached 
relative to a set of assumptions. 

The final major  difference between our algorithm and previous work is that  
we do not require formulas to be rewritten into a Boolean combination of atomic 
formulas. For example, formulas of the form el  = e2, where el and e2 may 
contain an arbitrary number of ire operators, are checked directly without first 
being rewritten. 

Detlefs and Nelson [12] have recently developed a new decision procedure 
based on a conjunctive normal form representation that  appears to be efficient 
in practice. We have not yet been able to do a thorough comparison, however. 

As check does recursive case analysis on the formula p, it accumulates a set of 
assumptions A that  is used as an argument to deeper recursive calls (see figure 2). 
This set of assumptions must not become inconsistent. To avoid such inconsis- 
tency, we require that  if 190 is the first result of simplify(p, Ao), then neither 
choose_splitting_formnla(po) nor its negation is logically implied by A0. We call 
this the consistency requirement on simplify and choose_splitting_formula. Main- 
taining the consistency requirement is made easier by restricting the procedure 
choose_splitting_formula to return only atomic formulas (formulas containing no 
ire, or, not or write operations). 

As written in figure 2, our algorithm is indistinguishable from a propositional 
tautology checker. Dealing with uninterpreted functions and equality is not done 
in the top level algorithm. Instead, it is done in the simplify routine. For example, 
given the assumptions el = e2 and e2 = e3, it must be possible to simplify the 
formula el r e3 to false; otherwise, the consistency requirement would not be 
maintained. As a result, simplify and associated routines require a large fraction 
of the code in our verifier. 

In spite of the consistency requirement, there is significant latitude in how 
aggressively formulas are simplified. It m ay  seem best to do as much simplifi- 
cation as possible, but  our experiments indicate otherwise. We see two reasons 
for this. If simplify does the minimal amount of simplification necessary to meet 
the consistency requirement, then it may use less CPU time than a more aggres- 
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check(p: formula, A: set of formula): set of formula; 
vat 

s, P0, pl: formula; 
Ao, A1, Uo, U1, U: set of formula; 
~: set of set of formula; 

begin 
i f p  = true then return 0; 
i f p  -- false then 

print "not valid"; 
terminate unsuccessfully; 

:= cache(p); 
if 3U E ~ such that  U C_ A then return U; /*  cache hit * /  
/*  cache miss */  
s := choose_splitting.formula(p); /*  prepare to case split * /  
/*  do s false case */  
Ao := A U {-,s}; 
(P0, U0) := simplify(p, A0); 
U0 := UoUcheck(p0, A0); /*  assumptions used for s false case * /  
/*  do s true case */  
A1 : = A U { s } ;  
(px, U1) := simplify(p, A1); 
U~ := Ua Ucheck(p~, A1); /*  assumptions used for s true case * /  
U := (U0 - {-,s}) U (U~ - {s}); /*  assumptions used * /  
cache(p) := ~ U {U}; /*  add cache entry */  
return U; 

end; 

Fig.  2. The procedure check terminates successfully if the formula p is logically implied 
by the set of assumptions A; otherwise, it terminates unsuccessfully. Not all of the 
assumptions in A need be relevant in implying p; when check terminates successfully 
it returns those assumptions that were actually used. The set of assumptions used 
need not be one of the minimal subsets of A that implies p. Checking whether p is 
valid is done by letting A be the emptyset. Initially, the global lookup table cache 
returns the emptyset for every formula p. Later, cache(p) returns the set containing 
those assumption sets that have been sufficient to imply p in previous calls of check. 
The procedure choose_splittin94ormula heuristically chooses a formula to be used for 
case splitting. The call simpliIy(p, Ao) returns as its first result a formula formed by 
simplifying p under the assumptions A0. The second result is the set of formulas in A0 
that were actually used when simplifying p. 
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sive simplification routine. Thus, even if slightly more case splitting is needed 
(resulting in more calls to simplify), the total CPU time used may be reduced. 

The second reason is more subtle. Suppose we are checking the validity of a 
formula p that  has a lot of shared structure when represented as a DAG. Our 
hope is tha t  by caching intermediate results, the CPU time typically needed 
for validity checking grows with the size of the DAG of p, rather than with 
the size of its tree representation. This can be important in practice; for the 
DLX example (section 4.2) it is not unusual for the tree representation of a 
formula to be two orders of magnitude larger than the DAG representation. The 
more aggressive simplify is, the more the shared structure of p is lost during 
recursive case analysis, which appears to result in worse cache performance. We 
are continuing to experiment with different kinds of simplification strategies in 
our prototype implementation. 

Unlike the algorithm in figure 2, our validity checker produces debugging 
information for invalid formulas. This consists of a satisfiable set of (possibly 
negated) atomic formulas that  implies the negation of the original formula. When 
verifying a microprocessor, the debugging information can be used to construct 
a simulation vector that  demonstrates the bug. 

There is another important difference between our current implementation 
and the algorithm in figure 2. Let (Po, Uo) be the result of simplify(p, Ao). Con- 
trary to the description in figure 2, in our implementation U0 is not required 
to be a subset of Ao. All that  is required is that  all of the formulas in U0 are 
logically implied by A0, and that  the equivalence of p and P0 is logically implied 
by U0. As a result, something more sophisticated than subtracting out the sets 
{s} and {--s} must be done to compute a U that  is weak enough to be logi- 
cally implied by A (see figure 2). A second complication is that  finding a cache 
hit requires checking sufficient conditions for logical implication between sets of 
formulas, rather than just  set containment. However, dealing with these com- 
plications seems to be justified since the cache hit ratio is increased by having 
simplify return a U0 that  is weaker than it could he if it had to be a subset of Ao. 
We are still experimenting with ideas for balancing these issues more efficiently. 

4 E x p e r i m e n t a l  R e s u l t s  

In this section, we describe empirical results for applying our verification method 
to a pipelined ALU [5] and a subset of the DLX processor [14]. 

4.1 P i p e l i n e d  A L U  

The 3-stage pipelined ALU we considered (figure 3) has been used as a bench- 
mark for BDD-based verification methods [3, 4, 5, 6]. A natural way to compare 
the performance of these methods is to see how the CPU time needed for veri- 
fication grows as the pipeline is increased in size by (for example) increasing its 
datapath  width w or its register file size r. For Burch, Clarke and Long [4] the 
CPU time grew roughly quadratically in w and cubically in r. Clarke, Grumberg 
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and Long [6], using a simple abstraction provided by the user, demonstrated lin- 
ear growth in both w and r. Sublinear growth in r and subquadratic growth in 
w was achieved by Bryant,  Beat ty  and Seger [3]. 

Read ports Write }oft 

.~ ~ ! Register file 

Fig. 3.3-stage pipehned ALU. If the stall input is true, then no instruction is loaded. 
Otherwise, the srcl  and srcP inputs provide the address of the arguments in the register 
file, the op input specifies the ALU operation to be performed on the arguments, and 
the dest input specifies were the result is to be written. 

In our verification method, the width of the data  path and the number of 
registers and ALU operations can be abstracted away. As a result, one verifica- 
tion run can check the control logic of pipelines with any combination of values 
for these parameters. A total of 370 milliseconds of CPU time (running compiled 
Lucid Common LISP on a DECstation 5000/240) is required to do a complete 
verification run, including loading and compiling behavioral descriptions, au- 
tomatically constructing the abstraction function and related expressions, and 
checking the validity of the appropriate formula. The validity checking itself, 
the primary bottleneck on larger examples, only required 50 milliseconds for the 
pipelined ALU. 

4.2 D L X  Processor 

Hennessy and Pat terson [14] designed the DLX architecture to teach the basic 
concepts used in the MIPS 2000 and other RISC processors of that  generation. 
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The subset of the DLX that  we verified had six types of instructions: store word, 
load word, unconditional jump, conditional branch (branch when the source 
register is equal to zero), 3-register ALU instructions, and ALU immediate in- 
structions. As with the pipelined ALU described earlier, the specifics of the ALU 
operations are abstracted away in both the specification and the implementa- 
tion. Thus, our verification covers any set of ALU operations, assuming that  the 
combinational ALU in the processor has been separately verified. 

Our DLX implementation has a standard 5-stage pipeline. The DLX archi- 
tecture has no branch delay slot; our implementation uses the "assume branch 
not taken" strategy. No pipelining is exposed in the DLX architecture or in our 
specification of it. Thus, it is the responsibility of the implementation to provide 
forwarding of data and a load interlock. 

The interlock and the lack of a branch delay slot mean that  the pipeline ex- 
ecutes slightly less than one instruction per cycle, on average. This complicates 
"synchronizing" the implementation and the specification during verification, 
since the specification executes exactly one instruction per cycle. We address 
the problem in a manner similar to that  used by Saxe el al. [20]. The user must 
provide a predicate on the implementation states that  indicates whether the 
instruction to be loaded on the current cycle will actually be executed by the 
pipeline. While this predicate can be quite complicated, it is easy to express 
in our context, using internal signals generated by the implementation. In par- 
ticular, our pipeline will not execute the current instruction if and only if one 
or more of the following conditions holds: the stall input is asserted, the signal 
indicating a taken branch is asserted, or the signal indicating that  the pipeline 
has been stalled by the load interlock is asserted. 

When internal signals are used in this way, it is possible for bugs in the 
pipeline to lead to a false positive verification result. In particular, the pipeline 
may appear correct even if it can get into a state where it refuses to ever execute 
another instruction (a kind of livelock). To avoid the possibility of a false positive, 
we automatically check a progress condition that  insures that  livelock cannot 
occur. The CPU time needed for this check is included in the total given below. 

Our specification has four state variables: the program counter, the register 
file, the data  memory and the instruction memory. If the data  memory and the 
instruction memory are combined into one store in the specification and the 
implementation, then the verifier will detect that  the pipeline does not satisfy 
the specification for certain types of self-modifying code (this has been confirmed 
experimentally). Separating the two stores is one way to avoid this inappropriate 
negative result. 

For each state variable of the specification, the verifier constructs an appro- 
priate formula and checks its validity. Since neither the specification nor the 
implementation write to the instruction memory, checking the validity of the 
corresponding formula is trivial. Checking the formulas for the program counter, 
the data  memory and the register file requires 15.5 seconds, 34 seconds and 9.5 
seconds of CPU time, respectively. The total CPU time required for the full 
verification (including loading and compiling the behavioral descriptions, etc.) 
is less than 66 seconds. 
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In another test, we introduced a bug in the forwarding logic of the pipeline. 
The verifier required about  8 seconds to generate 3 counter-examples, one each 
for the three formulas that  had to be checked. These counter-examples provided 
sufficient conditions on a initial implementation state where the effects of the 
bug would be apparent. This information can be analyzed by hand, or used to 
construct a start  state for a simulator run that  would expose the bug. 

5 Conc luding  Remarks  

The need for improved debugging tools is now obvious to everyone involved 
in producing a new processor implementation. It is equally obvious that  the 
problem is worsening rapidly: driven by changes in semiconductor technology, 
architectures are moving steadily from the simple RISC machines of the 1980s to- 
wards very complex machines which aggressively exploit concurrency for greater 
performance. 

Although we have demonstrated that  the techniques presented here can verify 
more complex processors with much less effort than previous work, examples 
such as our DLX implementation are still not nearly as complex as commercial 
microprocessor designs. We have also not yet dealt with memory systems and 
interrupts, which are rich source of bugs in practice. 

It will be very challenging to increase the capacity of verification tools as 
quickly as designers are increasing the scale of the problem. Clearly, the com- 
putational efficiency of logical decision procedures (in practice, not in the worst 
case) will be a major bottleneck. If decision procedures cannot be extended 
rapidly enough, it may still be possible to use some of the same techniques for 
partial verification or in a mixed simulation/verification tool. 
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