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Abstract. We describe an approach to proving safety properties of
parameterized reactive systems. Clausal inductive proofs for small
instances are generalized to quantified formulae, which are then checked
against the whole family of systems. Clausal proofs are generated at the
bit-level by the IC3 algorithm. The clauses are partitioned into blocks,
each of which is represented by a quantified implication formula, whose
antecedent is a conjunction of modular linear arithmetic constraints.

Each quantified formula approximates the set of clauses it represents;
good approximations are computed through a process of proof satura-
tion, and through the computation of convex hulls. Candidate proofs
are conjunctions of quantified lemmas. For systems with a small-model
bound, the proof can often be shown valid for all values of the parame-
ter. When the candidate proof cannot be shown valid, it can still be used
to bootstrap finite proofs to permit verification at larger values of the
parameter.

While the method is incomplete, it produces non-trivial invariants for
a suite of benchmarks including hardware circuits and protocols.

1 Introduction

Parameterized families of systems are often encountered among hardware and
software designs. Design libraries often contain arbiters, queues, interfaces, which
can be instantiated in different sizes. Verification of such components benefits
from the ability to produce a proof valid for all their instances. Moreover, tech-
niques that can prove properties for the entire family of systems can often save
time even when compared to verifying just one instance, if it is sufficiently large.
However, the undecidability of the problem in its general form [2] and even in
rather restricted classes of systems [11,21] means that incomplete methods are
often applied to the discovery of parameterized proofs.

We present one such incomplete method called forhull-N, which learns
a parameterized proof by generalizing inductive invariants for instances of the
system. The inspiration for this approach comes from the ability of IC3 [8] to
often produce inductive invariants in clausal form with a high degree of reg-
ularity. From these clausal proofs, our generalization procedure often extracts
parameterized proofs that are even more regular and simple.
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The rest of this paper is organized as follows. In Sect. 2 we give an overview of
the proposed technique, while Sect. 3 reviews related work. Section 4 is devoted
to a description of the algorithm. We describe experimental results in Sect. 5,
and conclude in Sect. 6.

2 Overview

We present a technique for the verification of invariants on parameterized sys-
tems, in which instance proofs are generated for potentially small values of the
parameter; from these we attempt to construct and verify a parameterized proof.

Instance proofs are comprised of instance lemmas; for us these proofs are
conjunctions of clauses produced by bit-level model checking.1 We partition the
set of instance proofs into classes of clauses, based on which literals appear,
in what number, and in what polarity. For each class a universally quantified
lemma is constructed, and their conjunction composes a candidate universally
quantified proof. In many cases we can guarantee that this candidate proof holds
for all values of the parameter. For systems that enjoy a small-model property,
a candidate proof may be verified by showing it holds up to a prescribed value
of the parameter [20]. In other cases, it may be possible to use an SMT solver
to close the proof. Even in cases where the candidate proof cannot be verified, it
may still be used to bootstrap the verification process for large parameter values.

For each class of instance clauses we construct a candidate universally quan-
tified lemma with the form:

∀N, i . constraint(N, i) → template(i). (1)

A template is a clause in FOL, from which instance lemmas are obtained by
substitution of the index variables i . The simplest form of lemma is a clause
whose literals are Boolean variables and Boolean array references. For example:

Instance Lemma: a ∨ b2 ∨ c3

Template: a ∨ bi ∨ cj i, j ∈ i . (2)

Figure. 1 shows the steps by which the parameterized lemma ∀ N, i.(0 ≤ i <
N) → (bi → (a = i)) may be recovered from instance clauses.

Since we infer from bit-level instance proofs, the main requirement for the sys-
tems handled by forhull-N is that their instances be finite-state. Our method
seeks to find a proof composed of parameterized lemmas, and can only succeed
if one exists. We make the further assumption that if parameterized lemmas
exist, they will be witnessed in the instance proofs. While the existence of a
parameterized proof often belies symmetry of the system, no explicit symme-
try information or preliminary analysis is needed. The instance lemmas in Fig. 1
have been reconstructed from the instance clauses above them and the knowledge
that a, for N = 4, is a three-bit integer variable.
1 As mentioned in the Introduction, we mostly use IC3, which in our experience pro-

duces invariants better suited to our purpose than BDD-based reachability analysis.
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Instance clauses (N = 4): {¬b0 ∨ ¬a0, ¬b0 ∨ ¬a1, ¬b0 ∨ ¬a2,

¬b2 ∨ ¬a0, ¬b2 ∨ a1, ¬b2 ∨ ¬a2}
Instance lemmas: b0 → (a = 0), b2 → (a = 2)

Template: bi → (a = j)

Index tuples: (0, 0, 4), (2, 2, 4)

Saturated index tuples: (0, 0, 4), (1, 1, 4), (2, 2, 4), (3, 3, 4)

Candidate lemma: ∀ N, i, j .(0 ≤ i < N ∧ i = j) → (bi → (a = j))

Fig. 1. Deriving a quantified integer lemma

In general not all index assignments for a template correspond to valid
instance lemmas. We therefore restrict the index values by a constraint as in
(1). The constraint is a Boolean formula over predicates in modular linear arith-
metic. It is inferred by associating to each instance lemma a tuple of integer
values and treating each tuple as a point in a multi-dimensional space. The
desired constraint is a combination of hulls of convex sets of such point. In this
way we transform a logic problem into one of computational geometry.

The success of generalization depends on including as many valid instance
lemmas as possible. Therefore we try to saturate the set of points by testing
whether nearby points correspond to invariants. For example, to produce the
candidate lemma in Fig. 1 the index tuples (1, 1, 4) and (3, 3, 4) must first be
found through saturation.

Once a candidate proof is constructed, we attempt to verify whether it holds
for all values of the parameter. When the small-model property of [20] applies,
this can be done by showing that the candidate proof holds up to the computed
bound. In these cases invisible invariants and related techniques could also be
used. We will demonstrate that our technique is in general more expressive.

When a small-model bound is not available or is impractical, it may be pos-
sible to use an SMT solver to check that the parameterized proof is an inductive
invariant. However, the quantifier instantiation heuristics used by SMT solvers
often fail [13]. In these cases, breaking up the proof into simpler obligations may
allow the solver to succeed. It is also possible to provide quantifier instantiations
manually. In some cases, this may produce proof obligations that are entirely
propositional.

All else failing, the candidate proof can be used to generate finite strengthen-
ings for arbitrary values of the parameter. In cases where the candidate proof is
correct, these instantiated proofs are immediately inductive. Even if the instan-
tiated strengthening is not inductive, assuming it during verification may be
cheaper than verifying the invariant from scratch. In Sect. 5 we show a case
where verification can continue to much higher values of the parameter using
the candidate proof than without it.
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3 Related Work

The general problem of parameterized verification is known to be undecidable [2].
There are therefore two approaches: devising techniques for decidable fragments
of the domain, such as the restricted topologies [1,11,14], and incomplete meth-
ods, of which our technique is one. Early approaches were not fully automated,
and required induction over the parameterized structure [7,17,22].

In the technique presented in [9], parameterized lemmas are approximations
of backward-reachable states obtained by iterated symbolic pre-image compu-
tation. Small instances are used to establish forward reachability information,
so as to refine their parameterized invariants. In contrast, we extract lemmas
directly from instance proofs that are arbitrary inductive invariants.

Pnueli, Zuck and others pioneered the use of small-model theorems for para-
meterized systems in their work on invisible invariants [3,20]. Symmetry is
assumed in order to construct a candidate parameterized invariant from a pro-
jection of the reachable states. Properties are proven for Bounded Data Systems
for which the small-model theorem applies. The approach was extended to sup-
port distributed topologies in [5]. Auxiliary assertions were generalized to include
Boolean combinations of ∀-assertions in [4].

If the property or its strengthening relies on arithmetic or modular reasoning
the small-model theorem does not apply. In [12] the authors defined the so-
called modest model theorem, which applies to a larger class of systems than the
theorem in [20], but unfortunately often produces impractically large bounds.

Whereas techniques derived from invisible invariants produce strengthenings
by assuming symmetry, our technique derives lemmas which are constrained by
index relations which are custom-learned from instance proofs. The advantage of
the invisible invariant approach is that obtaining a strengthening by existentially
projecting a BDD for the reachable states is often very fast, especially when a
split invariant may be computed [19].

There is significant overlap between our work and that related to the gen-
eration of universally quantified invariants. The work in [6] produces invariants
in the form of universally quantified Horn clauses. An SMT solver is used with
heuristic instantiation, but unlike our own work it requires the program to be
decorated with symbolic invariants. Similarly, [18] requires the determination of
a set of useful predicates.

The language used in [15], unlike ours, permits statements about reachability.
Candidate proofs are also checked using SMT directly, and so do not share our
requirement for finite instantiability. However, a significantly different general-
ization technique is used, whose effectiveness will have to be established through
experimentation.

4 Description of Algorithm

We are concerned with families of systems indexed by a parameter N that takes
positive integer values. A system is a pair (I, T ), where I(x,N) is a predicate
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describing the initial states and T (x, x′, N) is the transition relation. The x
variables encode the current state, while the x′ variables encode the next state.
We assume that for each value of N , (I, T ) is a finite state model.

We want to prove that M = (I, T ) satisfies the parameterized safety property
P for all N ≥ 1, where P (x,N) describes a parameterized set of “good” states.
Our approach is outlined in Algorithm1. It proceeds by invoking IC3 on finite
model instances for selected values of the parameter. If an instance proof is
obtained, it is used to improve the quantified lemmas composing a candidate
proof. If the candidate proof is found to hold for all N ≥ 1, the process terminates
successfully (at Line 26).

Algorithm 1. Model check parameterized safety property
1: function forhull-N (M , P )
2: // Takes parameterized model M and parameterized safety property P .
3: // Attempt to produce quantified proof from proofs for small values of N .
4: // Returns True if P is proven an invariant of M (∀N ≥ 1).
5: n = 1
6: Store = {
7: // Knowledge store for prover data.
8: t2instances : templates × P(instances) = {},
9: t2lemma : templates × lemmas = {},

10: }
11: while True do
12: S =

∧
Store.t2lemma[t] for t ∈ activeTemplates(Store)

13: result, proof, cex = IC3(instantiate(M , S ∧ P , n))
14: if result == sat then
15: R = responsibleTemplate(Store, P, cex)
16: if R == P then
17: return False
18: else
19: Store.t2lemma = Store.t2lemma \ {R}
20: continue
21: converged = len(proof) == 0
22: if converged then
23: S =

∧
Store.t2lemma[t] for t ∈ activeTemplates(Store)

24: result = testQuantifiedProof(M , S ∧ P , n)
25: if result == success then
26: return True
27: else
28: updateStore(Store, proof, n)

29: n = chooseNextN(result, Store, n, converged)

As the algorithm progresses it accumulates knowledge in the data structure
Store, which contains two maps from templates to related data. For each tem-
plate, t2instances associates a set of index tuples from all values of N already
examined, describing lemma instances known to be invariants. For templates that
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Algorithm 2. Modify and generalize data in Store
1: function updateStore(Store, proof, n)
2: // Modify store to integrate information in instance proof.
3: // Relies on templatized proof (templates × P).
4: // Lemmas are generalized for templates with added instance tuples.
5: tproof = TemplatizeProof(proof, n)
6: for t ∈ tproof do
7: instances = tproof[t]
8: if t 	∈ Store.t2instances then
9: Store.t2instances[t] = {}

10: Store.t2instances[t] = Store.t2instances[t]
⋃

instances
11: result, lemma = GeneralizeLemma(t, Store.t2instances[t])
12: if result == success then
13: Store.t2lemma[t] = lemma
14: else
15: Store.t2lemma = Store.t2lemma \ {t}

generalize, t2lemma associates a quantified formula. The function activeTem-
plates returns the set of templates in the domain of t2lemma. The generalized
strengthening S on Line 12 is the conjunction of the formulae in the co-domain of
t2lemma. To weaken the strengthening, an element from the domain of t2lemma
is removed on Line 19. Initially the relations in Store are empty.

The function instantiate takes two quantified formulae, which describe a
parameterized model and a safety property, and an integer value n. It returns
the finite model produced when instantiating the input formulae with N = n.

Each model instance is checked by IC3, producing either a proof or a coun-
terexample. If the strengthened property S ∧ P passes, IC3 produces a proof,
which is then used by updateStore to modify and generalize the information
in Store. The function of updateStore is detailed in Algorithm 2. If the proof
is empty, it means that the instantiation of P ∧ S is an inductive formula, and
we say that the generalized proof has converged.

If the proof at N = n has converged, testQuantifiedProof checks
whether it can be verified. If it succeeds, the generalized proof is a valid induc-
tive strengthening for all positive values of the parameter. Therefore P is an
invariant, and forhull-N returns True.

If the generalized proof has not converged, or the attempt to verify it fails,
the next parameter value is determined by chooseNextN. If the generalized
proof has converged, all instance proofs at the same value n will be empty, so
the value must change to make progress. Otherwise it may be wise to retry at
the same value some number of times, or until converged. The set of instance
tuples in t2instances grows monotonically, and as a rule, additional lemma
instances improve the chance that generalization succeeds. The intuition behind
this criterion is to learn as much as possible on smaller models before continuing,
while allowing progress to be made if a proof for a higher value of N would be
helpful or necessary.
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If instead, on Line 13, IC3 returns sat, either P fails for a given N or S is
too strong. Based on the result of responsibleTemplate, forhull-N either
returns failure or weakens S by removing the identified template. The function
responsibleTemplate is described in Algorithm 3 in Sect. 4.3.

4.1 Example: Busy Ring Arbiter

As a running example we introduce the Busy Ring arbiter, a distributed speed-
independent circuit with a parameterized number of agents [16]. Each agent is
composed of a client and an arbiter cell as shown in Fig. 2.

C
celli

locali

clienti

reqi acki

tokeni tokeni+1

token0 tokenN

Fig. 2. Busy Ring arbiter

reqi

acki

reqi+1

acki+1

Fig. 3. Busy Ring: four-phase RTZ sig-
naling

0 1 2 3 4

0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

Fig. 4. Busy Ring: N=4 reachable
states for token

The arbiter cell consists of a mutex circuit and a C-element. The client is
abstracted by an inverter with bounded, non-deterministic delay. Cell and client
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communicate by four-phase return-to-zero (RTZ) signaling. (See Fig. 3.) Since a
client lowers the request line after leaving the critical section, mutual exclusion
is expressed by:

∀N, i, j .(0 ≤ i < j < N) → ¬(reqi ∧ acki ∧ reqj ∧ ackj). (3)

Algorithm 1 produces a parameterized inductive strengthening of this property
comprised of the following lemmas:

∀N, i .(0 ≤ i < N) → (¬locali ∨ ¬tokeni+1) (4)
∀N, i .(0 ≤ i < N) → (¬acki ∨ locali ∨ ¬reqi) (5)
∀N, i .(0 ≤ i < N) → (acki ∨ ¬locali ∨ reqi) (6)
∀N, i, j, k .(0 ≤ i < j < k < N) → (tokeni ∨ ¬tokenj ∨ tokenk) (7)
∀N, i, j, k .(0 ≤ i < j < k < N) → (¬tokeni ∨ tokenj ∨ ¬tokenk) (8)
∀N, i .(0 < i < N) → (¬acki ∨ ¬reqi ∨ tokeni) (9)

Lemmas (4)–(6) describe the behavior of an agent in isolation. Lemmas (7) and
(8) characterize the token. Each row of Fig. 4 shows one of its possible values for
N = 4. Lemma (9) states a condition on the critical section.

4.2 Templatization

The first step that updateStore takes in constructing a parameterized lemma
is to partition the latest instance proof into classes keyed on templates. Tem-
plates are FOL formulae, as seen in the consequent of (1), and are produced from
instance lemmas by replacing concrete index values with variables to be quan-
tified. In the simplest case, as in (2), the instance clause contains only Boolean
and Boolean-array variables, and so the template has the form of a propositional
clause as well. Prior to variable substitution the instance lemma must be put
in a canonical form, since the relations in Store are keyed on them. For clausal
lemmas we order the set of literals lexicographically by variable name and then
by index. The ordering by index is important for lemmas that contain repeated
literals: lemmas such as (7) and (8) only emerge when the indices are ordered.
For clauses that contain FOL predicates, additional consideration must be taken
when deciding how to regularize templates as in the case of Fig. 1.

As an example the lemma given by (4) can be expressed as:

∀N, i, j .(0 ≤ i < N ∧ j = i + 1) → (¬locali ∨ ¬tokenj). (10)

This lemma characterizes the mutex circuit. IC3 finds all instances of this lemma,
which for N=3 are:

{¬local0 ∨ ¬token1, ¬local1 ∨ ¬token2, ¬local2 ∨ ¬token3}.
Each instance can be produced by the template ¬locali ∨¬tokenj , and so they
all belong to the same class. The index values form a set of instance tuples, which
are stored in Store.t2instances by updateStore so that:

{(0, 1, 3), (1, 2, 3), (2, 3, 3)} ⊆ Store.t2instances[(¬locali ∨ ¬tokenj)].
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The last entry of each tuple is the value of the parameter at which the instance
was found. The other entries are the index values for that instance.

4.3 Proof Generalization

The association of instance lemmas to index tuples described in Sect. 4.2 allows
updateStore to treat lemma instances as points in a multidimensional space.
Proof generalization infers a pattern in these points, and it is responsible for
producing the antecedent in (1). The generalization process takes place within
the call to GeneralizeLemma on Line 11 of Algorithm 2.

0 1 2 3 4 5 1
2

3
4

5
6

3

4

5

6

¬local0 ∨ ¬token1

¬local5 ∨ ¬token6

i
j

N

Fig. 5. Busy Ring mutex polytope

Figure 5 plots the index tuples corresponding to the lemma instances of the
template ¬locali∨¬tokenj from instance proofs for N ∈{3, 4, 5, 6}. The shaded
polytope is the convex hull of these instance points, described by a set of linear
inequalities, like the following:

{i ≥ 0, i = j − 1, i < N, N ≥ 3, N ≤ 6}.

In this polytope all lattice points correspond to invariants of model instances.
If there are sufficiently many instance points at the highest parameter value,

then there is guaranteed to be a facet that restricts N to have a constant upper
bound. If such a facet exists, generalization is done by simply removing the cor-
responding inequalities. If no such facet exists then generalization fails, and the
template is skipped. After generalization the constraint describes an unbounded
polytope, in this case:

constraint = (0 ≤ i < N) ∧ (j = i + 1) ∧ (3 ≤ N) .

Since the coefficients in the linear constraints describing the convex hulls are
rational, arbitrary precision arithmetic is used to avoid rounding errors.
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Instance Saturation. In most cases the instance proofs do not contain all
instances of a template. Part of the reason is that the IC3 proofs are made
irredundant by dropping clauses and literals, in order to reduce the number of
templates represented in each instance proof. The flip side of this reduction is
that oftentimes not all instances of a template are included because they are
not necessary. The problem is that the resulting subset of a template’s instances
often produce polytopes that do not generalize. Take for example the instances
of Lemma (7) plotted in Fig. 6. The polytope in Fig. 6(a) is obtained from only
those instance lemmas found directly by IC3. The irregularity of the polytope
makes it difficult to generalize. In contrast, in Fig. 6(b) many points have been
added which correspond to additional invariant instances of the same template.

0
1

2
3 1

2

3

4

2

3

4

5

i

j

k

(a) Found by IC3

0
1

2
3 1

2

3

4

2

3

4

5

i

j

k

(b) After saturation

Fig. 6. Instance points for Busy Ring Lemma (7) 2 ≤ N ≤ 5

In these plots the parameterized dimension N is omitted, therefore the plots
are 3-dimensional projections onto the axes i, j, and k. The instances for 2 ≤
N ≤ 5 are plotted simultaneously. Each group of points, denoted by different
coloring, represents lemma instances that were first found at a particular value
of the parameter. At N = 5 all points represent instance lemmas. Likewise at
N = 4 all points except those where k = 5 describe instance lemmas.

Saturation starts with the polytope in Fig. 6(a). At this point IC3 has iden-
tified some lemma instances, and we can begin to guess at what is missing.
One heuristic is to proceed with a neighbor-based exploration, starting with the
points already known to be invariants. Neighbors are those points in which the
coordinate value of each dimension differs by at most 1; specifically, these are
the lattice points whose distance has a max norm equal to 1. The distance is
computed modulo the length of each dimension, so as to discover parameterized
lemmas that require modular arithmetic.

To check whether an instance is an invariant, we model check

instantiate(M, instance ∧ S ∧ P, n),
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where n is the last index of the point. If IC3 returns a counterexample the
neighbor point is remembered as a non-invariant point. If the instance is proved
an invariant, the point is added to the set of instance points and its neighbors
are in turn visited. If the invariance proof is non-empty, we additionally extract
any instances belonging to existing templates. This harvesting is not essential,
but is intended to accelerate saturation.

After saturation a new convex hull is constructed. Through repeated satisfi-
ability queries any unvisited lattice points in the polytope are tested for invari-
ance. At the end of this procedure the status of all lattice points in the hull
is known. If there are no known non-invariants inside the hull, generalization
successfully proceeds with the saturated polytope.

For most models, saturation is very important to producing lemmas that gen-
eralize. In some cases this can expand constraints for which a small-model bound
does not apply to one where it does. For example, saturation may strengthen a
lemma by changing the neighbor-based constraints (0 ≤ i < N −1)∧ (j = i+1),
to the constraints (0 ≤ i < j < N). The latter does not make use of addition;
hence it can appear in the inductive assertion to be checked by the small model
theorem of [3].

Polytope Boolean Combination. If, however, the final saturated convex hull
contains instance points corresponding to non-invariants, we attempt to carve
out the “bad” points by intersecting with additional, potentially unbounded, con-
vex hulls. This procedure may fail when attempting to carve too few instance
points to compute a convex hull. If it fails we attempt to generalize with a
disjunction of polytopes. Instance points are heuristically grouped by the order-
ing of their indices, e.g., for two dimensions, points are classified according to
whether i < j or j ≤ i, and each group is generalized separately. This allows
certain non-convex properties to be found, such as mutual exclusion between
neighbors around a ring:

(∀N, i .(1 ≤ i < N) → (¬tokeni ∨ ¬tokeni−1)) ∧
(∀N, i .(i = N − 1) → (¬token0 ∨ ¬tokeni)).

While permitting Boolean combinations of polytopes substantially increases
the generality of forhull-N, the proofs we currently find do not require these
combinations.

Dimensionality Reduction. Saturation can be an expensive procedure. If the
points from the instance proofs satisfy simple relations, we want to use those
relations to guide saturation. This guidance improves speed, as the instances
that are avoided are unlikely to be necessary for the proof.

Take as an example the Busy Ring mutex lemma expressed in (10). Instance
points for 3 ≤ N ≤ 6 are plotted in Fig. 5. The constraint in (10) contains the
simple linear relation j = i + 1, which is satisfied by all known instance points.
If this relationship can be inferred before saturation, many unnecessary instance
lemmas need not be checked for invariance.
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The procedure takes as input a matrix, where each row is a point. In a first
pass we examine single columns and pairs of columns to identify easy relation-
ships (e.g., i = 3, i < j, or i = j +2). In a second pass we analyze the null space
of the point matrix, augmented with a constant column, to find remaining affine
relations of the form v =

∑
t wt · vt + c, such as i = j + 2 · k + 1.

In the case that the relation is functional the dimensionality can be reduced,
which has the benefit of avoiding degeneracy in the convex hull computation.
However, care must be taken when including lemmas with functional constraints,
since the inclusion of linear arithmetic may preclude the application of a small-
model bound.

Proof Refinement. A candidate generalized proof may produce an instantia-
tion that leads to IC3 finding a counterexample trace. This can never happen at
the same value of the parameter at which the candidate proof was derived, but
may at a different value. If this happens the candidate proof may be too strong,
and so we first try to refine it through weakening until all counterexamples have
been removed.

One possibility is that we learned a mistaken lemma. For example, in
the classic dining philosophers it is possible to learn the incorrect lemma
∀i, j,N .(0 ≤ i < j < N) → (¬eatingi ∨ ¬eatingj) for N ≤ 3 when only
∀i,N .(0 ≤ i < N) → (¬eatingi ∨ ¬eatingi+1) holds in general.

Algorithm 3. Identify reason for proof failure
1: function responsibleTemplate(Store, P , cex)
2: // Candidate proof failed because it is too strong.
3: // Identifies template responsible for counterexample trace.
4: s = cex[-1] // last state
5: for t in Store.t2instances do
6: tinsts = Store.t2instances[t]
7: if s 	|= ∧ substitute(t, i , inst) for inst ∈ tinsts then
8: return t
9: // If no template identified, counterexample due to P .

10: assert s 	|= instantiate(P )
11: return P

If a counterexample is found, responsibleTemplate determines how it
may be removed, as described in Algorithm 3. Let s be the last state of the
counterexample trace. We try to identify a template which has some instance
not modeled by s. Template instances are obtained by the function substitute,
which replaces the variables to be quantified in a template with the values from
an index tuple. If a template is identified it is returned, to be removed from
Store.t2lemma, thereby eliminating one impediment to inductiveness. Note that
the removed template still remains in Store.t2instances; so if new instances
are discovered a lemma for the template may be reintroduced.
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If no such template is found, it must be that a real counterexample to
the property has been discovered, and the program terminates on Algorithm1,
Line 17. After dropping a template the generalized proof is retried at the same
value of N , effectively preventing progress until all counterexamples are dealt
with. Note that it may be that s violates more than one template, but removing
one at a time is sufficient to guarantee that each counterexample is removed,
and that the refinement process terminates.

4.4 Testing Candidate Proofs

Once a generalized proof has converged, it is a candidate for being a valid proof
∀N ≥ 1. One way to prove validity of the candidate proof relies on the small-
model theorem of [3,20]. If the theorem applies with bound N0, and we prove
validity for instances 1 ≤ N ≤ N0, the candidate proof is valid for all N .

However, the small-model theorem of [3,20] does not support strengthenings
that include addition. In these cases the more general modest-model theorem
[12] may apply, which unfortunately usually predicts bounds much higher than
is practical.

Another possibility for closing the proof is to use an SMT solver to discharge
the obligations of the inductive proof. The consecution query is:

∀N .P ∧ S ∧ T → (P ′ ∧ S′) (11)

SMT solver heuristic instantiation of quantifiers is sufficient in some cases for
closing the proof. To further aid the solver, (11) is decomposed so that instead
of providing the P ′ ∧ S′ in the consequent, each parameterized lemma is proven
separately.

Even when the candidate proof cannot be shown to be valid, it may still be
useful in bootstrapping the proof of large instances, as seen in Fig. 7 of Sect. 5.

4.5 Discussion

A converged proof is guaranteed to be an inductive invariant for all values of N
that forhull-N has considered up to that point. However, it does not need to
be either stronger or weaker than the instance proofs from which it was derived.
On the one hand, each parameterized lemma in the proof, when instantiated for
a given value of N , produces all template instances in the instance proof. On the
other hand, templates that are not sufficiently represented in the instance proofs,
or that produced counterexamples, do not contribute to the parameterized proof.
This ability of forhull-N to both strengthen and weaken instance proofs allows
it to produce simple invariants that have a good chance to generalize.

The generalization procedure as described can only learn lemmas that depend
on a fixed number of literals and whose constraints are Boolean combinations
of integer linear constraints. While lemmas that do not fit those restrictions are
occasionally encountered, the approach we have described strikes a reasonable
balance between simplicity and power.
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When no small-model theorem applies, or the small-model bound is large,
forhull-N may use the Z3 SMT solver [10] to verify candidate proofs. While we
have observed simple models in which this leads to success at very small values
of N , it is often the case that the SMT solver is unable to instantiate quantifiers
to close the proof [13].

5 Experimental Results

Our method is implemented by a prototype model checker, written mostly in
Python. Parameterized models are described in an intermediate language embed-
ded in Python, and can be compiled either into finite AIGER models, or quanti-
fied SMT descriptions. Finite proofs are carried out by the IC3 implementation
in the model checker IImc, which returns irredundant proofs on demand. SMT
obligations are discharged by Z3 [10] using the Z3Py interface. Convex hulls
are computed using the Qhull package, included in Octave, using the Python
interface Oct2Py.

Results were obtained for a suite of benchmarks, and are reported in Table 1.
Experiments were conducted on identical machines with quad-core 2.80 GHz
Intel CPUs and 9 GB of memory.

Each model was verified for one or more safety properties, whose number is
listed in column p#. For each property three trials were done. The data reported
are the average over all properties and trials. For models with multiple verified
properties, a hyphenated range of values across all properties is supplied.

Benchmark models are divided into two categories. The first group of models
represents hardware circuits and includes examples of synchronous and asyn-
chronous arbiters. The second group is a collection of different protocols.

The column lemmas reports the number of parameterized lemmas included in
the final candidate proof. Next, convergeN reports the smallest parameter value
at which the candidate proof holds that is greater than the parameter values
instantiated to derive it. The value in validN gives the parameter value at which
the candidate proof was proven to hold for all N. The column boundN reports the
computed small-model bound given the model, property, and candidate proof at
the end of the run.

Some models require specific validation or generalization heuristics to pro-
duce the reported results as noted at the foot of the table. These are: (1) proof
validation by an SMT solver (as opposed to a small-model bound), (2) lemmas
involving modular reasoning, and (3) lemmas encoding integer facts.

An asterisk in any cell denotes that no such value was available; for instance, if
a small-model property does not apply an asterisk appears in column boundN. In
the cases where convergeN has a value, but validN has an asterisk, the converged
candidate proof could not be verified. When convergeN has an asterisk as well, it
means that the process did not converge on a candidate proof, up to the bound
explored. If convergeN has an asterisk, but validN does not, it indicates that
the property was immediately inductive and no strengthening was necessary.



306 M. Dooley and F. Somenzi

Table 1. Benchmark results

model p# lemmas convergeN validN boundN runtime iimctime checktime

tokens1 1 1 5 5 * 8.2 0.1 0.1

databus 1 12 3 3 1 13.2 0.6 0.6

databus init 1 20 3 3 1 19.6 1.9 0.7

mcmillan arb1 1 1 5 5 * 10.5 0.1 0.7

sync ring2 9 0–28 4–8 *–* *–* 17.5–147.9 0.2–84.3 1.3–4.6

busy ring 1 6 4 4 3 12.0 0.8 0.6

dme2 3 0–70 7–* *–* *–* 50.9–787.4 0.7–640.0 3.6–9.4

german 5 17–30 3–3 3–3 3–3 24.0–32.1 1.9–5.8 2.0–2.3

szymanski 1 9 5 5 5 29.3 2.9 2.1

semaphore3 1 2 4 4 4 9.0 0.2 0.3

semaphore2 2 3–4 5–5 5–5 5–5 11.3–11.4 1.0–1.0 0.7–0.8

wheel3 1 2 5 5 4 11.4 0.7 0.5

central book 3 0–0 3–3 3–3 2–3 7.0–7.2 0.0–0.0 0.3–0.3

philosophers 2 0–0 2–2 2–2 1–2 6.8–6.8 0.0–0.0 0.1–0.1

eisenberg 1 4 4 4 4 13.9 0.3 1.7

burns 1 2 4 4 4 10.0 0.2 0.6

dijkstra me 1 2 4 5 5 12.3 0.3 1.0

Heuristics: 1SMT validation. 2 Modular reasoning. 3 Integer reasoning.

Additionally three times are provided: runtime reflecting the total time until
validation, or giving up, iimctime providing the elapsed time spent proving finite
models, and checktime the time spent verifying the proof (doing final instantia-
tion/finite model check).

It is interesting that the table contains only averaged values, yet also contains
integer values for all the columns but the times. This is a consequence of the
apparent stability of the proof process. When verifying a particular property
and model across multiple trials, only the time metrics vary slightly; the number
of lemmas and N values are identical across the trials. While randomness in
proving finite instances can lead to variation in the candidate proofs, this result
highlights the success of regularizing the proof.

When a small-model bound is not available we try to close the proof using
the SMT solver Z3 [10]. In Table 1, the safety properties for model philosophers
are inductive invariants and therefore are easily proved for many values of N .
However, using Z3 we were able to prove the properties for all N in negligible
time using the proof derived at N = 4.

Table 1 shows that forhull-N is able to prove most benchmarks safe for
all parameter values. The exceptions are the properties of sync ring and dme.
The models tokens and mcmillan arb are synchronous circuits for which a small-
model bound does not apply, but their proofs were validated using Z3.

Note that for sync ring and dme Table 1 provides a value for convergeN
but none for boundN. In these cases the small-model property does not apply
due to the candidate proof including modular reasoning. Applying the modest
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model theorem results in a bound that is prohibitively large. Therefore, even if a
generalized proof is obtained, we are currently unable to verify it. However, the
candidate proof may still be useful in verifying finite models for larger values of
the parameter.
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Fig. 7. Verifying instances of dme with increasing N , cumulative elapsed time.

Figure 7 shows the cumulative elapsed time spent verifying mutual exclusion
on finite instances of dme of increasing size. The solid blue curve shows the time
spent solving each model using IImc, the largest reported size is N = 16. The
dashed red curve shows the result of applying our method, which bootstraps
each IImc query with the corresponding instantiation of the candidate proof.
For DME property 0, at N = 6 the candidate proof converges. Subsequently,
for all N shown, the property conjoined with the strengthening is immediately
inductive. Also note that for low values of N our method takes more time than
model checking directly, due to the initial cost of constructing the generalized
proof.

6 Conclusions and Future Work

We have presented forhull-N, a procedure for parameterized verification.
While applicable to a large class of systems, forhull-N currently works best
when a small-model bound is available to verify the parameterized proof on a
small finite instance. To extend the reach of forhull-N, work is underway on
exploiting the structure of the parameterized model to derive hints for quantifier
instantiation in the SMT solver. While “closing the proof” is obviously desirable,
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we have shown that parameterized proofs may also be used to bootstrap proofs
of large instances of the system. The bootstrapping is particularly effective when
a parameterized proof has converged, because then it is likely to be an inductive
invariant. More general lemma structures (e.g., clauses whose number of literals
depends on the parameter) and improved handling of lemmas involving integer-
valued variables will let forhull-N find converged proofs for a larger set of
systems.
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