
Finding Fix Locations for CFL-Reachability
Analyses via Minimum Cuts

Andrei Marian Dan1(B), Manu Sridharan2, Satish Chandra2,
Jean-Baptiste Jeannin2, and Martin Vechev1

1 Department of Computer Science, ETH Zurich, Zürich, Switzerland
{andrei.dan,martin.vechev}@inf.ethz.ch

2 Samsung Research America, Mountain View, USA
manu@sridharan.net, schandra@schandra.org, jb.jeannin@gmail.com

Abstract. Static analysis tools are increasingly important for ensur-
ing code quality. Ideally, all warnings from a static analysis would be
addressed, but the volume of warnings and false positives usually makes
this effort prohibitive. We present techniques for finding fix locations, a
small set of program locations where fixes can be applied to address all
static analysis warnings. We focus on analyses expressible as context-free-
language reachability, where a set of fix locations is naturally expressed
as a min-cut of the CFL graph. We show, surprisingly, that computing
such a CFL min-cut is NP-hard. We then phrase the problem of finding
CFL min-cuts as an optimization problem which allows us to trade-off
the size of the cut vs. the preservation of computed information. We then
show how to solve the optimization problem via a MaxSAT encoding.

Our evaluation shows that we compute fix location sets that are sig-
nificantly smaller than both the number of warnings and, in the case of
a true CFL min-cut, the fix location sets from a normal min-cut.

1 Introduction

Static analysis tools are playing an increasingly important role in ensuring code
quality of real-world software. They are able to detect a wide variety of defects,
from low-level memory errors to violations of typestate properties. In an ideal
setting, code would be made “clean” with respect to these tools: all warnings
would be addressed either with a fix of the underlying defect, or a combination
of code restructuring and annotations to show the tool no defect exists.

Unfortunately, this ideal is rarely achieved in practice. One issue is that
the volume of warnings emitted by these tools can be large, with each issue
potentially requiring significant time to inspect and understand. Further, as
is inevitable in static analysis, many of the warnings are false positives, and
expending significant effort in annotating and restructuring code to avoid false
positive reports may overburden the developer.

M. Sridharan—Currently affiliated with Uber.
S. Chandra—Currently affiliated with Facebook.

c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part II, LNCS 10427, pp. 521–541, 2017.
DOI: 10.1007/978-3-319-63390-9 27

522 A.M. Dan et al.

This paper presents a technique for computing a small set of fix locations,
such that code changes at or near those locations can address all warnings emit-
ted by a static analysis. Previous work (e.g., Fink et al. [7]) has observed that
many static analysis warnings (particularly false positives) can stem from a small
amount of buggy or difficult-to-analyze code that leads to cascading warnings.
Producing a small set of fix locations would help pinpoint this crucial code,
which could significantly ease the process of addressing a large set of warn-
ings. Similarly, recent work provides succinct explanations for type inference
errors [14,17,22].

A trend in large companies is to only allow committing code that is warning
free. It is deemed acceptable that false positives may need a small refactoring,
or an annotation to silence the analyzer. Addressing all warnings results in a
program that is error free with respect to the analyser that is used. Note that the
user can potentially insert an assumption, instead of modifying the fix location
code. This way, the analyzer gains precision and eliminates false positives.

After cut

Must Not May

Must Not

Warnings

May

Fig. 1. A cut causes “may” facts
that trigger warnings to become
“must-not” facts.

We focus on analyses expressible as context-
free-language reachability (CFL-reachability)
problems [18]. The CFL-reachability frame-
work can express a wide variety of program
analyses, including points-to analysis and inter-
procedural dataflow analysis [18]. In a CFL-
reachability-based analysis, an error report typ-
ically corresponds to the existence of corre-
sponding (CFL) paths in a graph representing
the program and analysis problem. Hence, the
problem of computing fix locations maps natu-
rally to the problem of computing a cut of the
graph that removes the paths corresponding to
the errors. Intuitively, the fix locations are the
program locations corresponding to the edges
in this cut.

Figure 1 gives an overview of our goal. A CFL-reachability analysis typically
computes a set of “may” facts that hold for the input program, corresponding
to CFL paths in the graph. The absence of a path then corresponds to a com-
plementary “must-not” fact, and a cut of the graph changes some facts from
“may” to “must-not” (while preserving “must-not” facts). Certain “may” facts
trigger analysis warnings, and our goal is to compute a small cut that turns all
such “may” facts into “must-not” facts, thereby eliminating all warnings.

A promising component of computing fix locations would be to compute a
CFL min-cut of a graph (we will discuss shortly why the CFL min-cut may not
be the optimal solution in all cases). A CFL min-cut is distinguished from a
standard graph min-cut in that it need only cut CFL paths in the graph. For
a CFL-reachability problem, the CFL min-cut may be smaller than a standard
min-cut that ignores edge labels (see Sect. 2). As CFL-reachability is computable
in polynomial time [18], a natural question is:

Can a CFL min-cut be computed in polynomial time?

Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts 523

A key result of this work is that (perhaps surprisingly) it is not possi-
ble to compute a CFL-min-cut in polynomial time for an arbitrary CFL lan-
guage.1 Towards that, we prove that computing the CFL min-cut problem for
the restricted language of balanced parentheses is NP-hard. Moreover, we prove
that for a language with multiple types of parentheses, computing the CFL min-
cut on graphs resulting from applying an IFDS null analysis on programs is also
NP-hard. We expect that similar techniques will work for other realistic analyses
like pointer analysis.

CFL-reachability problems correspond to Datalog programs consisting
entirely of chain rules [18]. For such programs, the CFL min-cut problem maps
to finding the smallest set of input facts that, when removed, make a specified
set of output facts underivable. Our hardness result implies that finding this
smallest set for Datalog chain programs is also NP-hard.

Beyond computational hardness, a CFL min-cut may not always provide
the most desirable set of fix locations, as it does not consider the degree of
unnecessary change to the (abstract) program behavior. Notice that in Fig. 1,
the cut caused some “may” facts that did not correspond to warnings to become
“must-not” facts. If this set of needlessly-transformed “may” facts becomes too
large, the fix locations corresponding to a CFL min-cut may not be desirable (see
Sect. 2 for an example). On the other hand, an approach that strictly minimizes
the number of transformed “may” facts (while still fixing all warnings) may yield
an excessively large set of fix locations. Hence, we require a technique that allows
for a tunable tradeoff between these two factors, analogous to tradeoffs between
syntactic and semantic change in program repair [6].

To achieve this flexible tradeoff, we first define an abstract distance that
measures how many of the “may” facts are transformed for a given cut. Second,
we formulate the problem of computing the best cut of a CFL graph as an
optimization problem. In the process, we show how this formulation can be
constructed with a simple instrumentation of an optimized IFDS solver, requiring
no changes to analysis clients using the solver. The optimization formulation
combines the goal to minimize the cut size (formulated for IFDS problems based
on the Reps-Horwitz-Sagiv tabulation algorithm [19]) with the minimization of
the abstract distance. Finally, we solve the optimization problem via an encoding
to a weighted MaxSAT formula. MaxSAT solvers have improved dramatically
in recent years, and the framework of weighted MaxSAT allows us to concisely
express the relevant tradeoffs in our problem.

We have implemented our technique and evaluated it on a realistic null deref-
erence analysis for Java programs. We found that our proposed fix location sets
were often smaller than the total number of warnings (up to 11 times smaller).
Moreover, we discover that the size of a CFL min-cut is significantly smaller
(up to 50%) than the size of a normal min-cut. We also evaluated the tradeoffs
between cut vs. abstract distance sizes. To our best knowledge, our system is
the first to be able to suggest a minimal number of fix locations for errors found
by a static analysis.

1 Assuming P �= NP .

524 A.M. Dan et al.

Contributions. This paper presents the following contributions:

– We prove that computing a CFL min-cut is NP-hard, even for a simple
balanced-parentheses language and acyclic graphs (Sect. 3).

– We define the notion of abstract distance and define an optimization problem
between the CFL min-cut vs. abstract distance sizes and show how to solve
this problem via (MaxSAT Sect. 4).

– We evaluate our approach on an IFDS-based null-pointer analysis on several
benchmark programs, showing the benefits of CFL min-cuts and exploring
the tradeoffs involved (Sect. 5).

2 Overview

In this section we provide an overview of our approach on a motivating program
analysis example, illustrating the usefulness of CFL min-cuts and the tradeoffs
involved. We start with some core definitions.

2.1 CFL Reachability

Let us consider the context-free grammar of balanced parenthesis H =
{{S}, Σ,R, S}, where Σ = {(,), ε} is a set of symbols; S is the non-terminal
starting variable; and R = {S → SS, S → (S), S → ε} is the set of production
rules. Let G = (V,E) be a graph with vertices V and edges E, each edge labelled
with a symbol from Σ; Fig. 2 gives an example.

a

b c

d e

f

(
ε

)

ε
)

(

Fig. 2. Edges of the graph are labelled
with symbols from the context-free
grammar of balanced parenthesis H.

Given a graph G and a context-free
grammar H, CFL reachability from a
source vertex u to a destination vertex v is
conceptually established as follows. Given
a path p, we define word Wp as the con-
catenation of the edge labels of p. Then, v
is CFL-reachable from u iff there exists a
path p from u to v s.t. Wp is in the lan-
guage defined by H. In the graph of Fig. 2,
only vertices d and f are CFL-reachable
from vertex a.

2.2 CFL Min-Cuts

Min-Cut. A standard min-cut between two nodes a and f of a graph is defined as
a minimal set of edges M such that if all edges in M are removed, no path remains
from a to f . For Fig. 2, any min-cut between nodes a and f must have size 2, as it
must cut the path a → b → c → f and and the path a → d → e → f . Computing
a min-cut is polynomial in the size of the graph and several algorithms have been
developed [8,21].

Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts 525

CFL Min-Cut. Similarly, a CFL min-cut between two nodes a and f of a graph
is defined as a minimal-size set of edges that, when removed, ensure no CFL
path exists from a to f . Any min-cut is also a CFL cut. However, it is possible
that a min-cut is not a CFL min-cut. For Fig. 2, the only CFL path from a to f
is a → b → c → f . (a → d → e → f is not a CFL path because the word “ε)(”
has mismatched parentheses.) Therefore, for this example the CFL min-cuts are
of size one ({ab}, {bc} or {cf}). Though computing a standard min-cut has a
polynomial time complexity, in Sect. 3 we prove that computing a CFL min-cut
is NP-hard even for a simple balanced parentheses language.

2.3 Min-Cuts for Program Analysis

Here, we detail how our technique applies CFL min-cuts to finding fix locations
for a static analysis, focusing on an analysis expressed atop the well-known IFDS
framework [19].

Fig. 3. On this example, a null dereference
analysis reports 2 warnings at lines 12 and 13.
Depending on if conditions, these could be bugs
or false positives.

Figure 3 shows an example
program. We use . . . to omit parts
of the program, for simplification
purposes. The program consists
of a class with three static meth-
ods (f, g, main) and one static
field (a).

Null Dereference IFDS Analy-
sis. A null dereference analy-
sis for Java checks that field
accesses and method invocations
do not dereference null, causing
a NullPointerException. Such an
analysis can be encoded in the
IFDS (interprocedural, finite, dis-
tributive, subset) framework [19].
IFDS problems can be solved by
computing CFL-reachability over
an exploded super-graph repre-
sentation of the program. We briefly describe the technique here; see Reps et al.
for further details [19].

Super-Graph. Starting from the input program P , the analysis constructs a
supergraph, a type of interprocedural control-flow graph. The supergraph nodes
for the example in Fig. 3 are the boxes in Fig. 4. In addition to the usual nodes
of the intra-procedural flow graphs, each procedure has a distinguished entry
and exit node (e.g., sf and ef). Each function call is represented by a call and
return node at the caller (e.g., n3 and n4), and by edges from the call node to the
callee entry and from the callee exit to the return node. A detailed description
of supergraphs is available in [19].

526 A.M. Dan et al.

0
smain

0

0

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10 …

n11

n12

n13

n14

n15

n16

emain

sf

ef

sg

eg

Fig. 4. Exploded super-graph for the program in Fig. 3. The emphasized blue edge rep-
resents a CFL min-cut in this graph such that the fact a is not reachable at statements
a.toString and a.getClass. The white circles represent facts that are not reachable
from the fact 0 of the main procedure’s entry node. The grey and blue circles represent
reachable facts from the fact 0 of the main procedure’s entry node. The blue nodes
become CFL unreachable if we remove the blue edge. A reachable node a means that
the variable a may be null at that program point. (Color figure online)

Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts 527

Exploded Super-Graph. Given the supergraph, the IFDS analysis constructs an
exploded supergraph, with nodes representing facts at program points and edges
representing control flow and transfer functions. The exploded supergraph for
null dereference analysis of Fig. 3 is shown in Fig. 4. Here, the analysis only needs
to track nullness of global variable a. So, for each node in the supergraph, the
exploded supergraph has two nodes: a 0 node and an a node. (The number of
nodes depends on the number of facts in the abstract domain.) The 0 nodes are
required for well-formedness, and the a node tracks whether the variable a may
be null. The solid edges represent the transfer function for the corresponding
program statement. E.g. edges 〈n1,0〉 〈n2,0〉 and 〈n1,0〉 〈n2,a〉 show
that statement a = null “gens” a fact that a may be null. The dotted and dashed
edges correspond to function calls and returns. We use dotted edges for the first
(in program order) calls and return for functions f and g (e.g., 〈n3,0〉 〈sf ,0〉
and 〈ef ,0〉 〈n4,0〉) and we use dashed edges for the second calls to these
functions. Any realizable path through the graph must exit a function call via the
same type of edge (dotted or dashed) as it entered. Checking for realizable paths
is equivalent to computing CFL reachability with a parenthesis labeling for call
and return edges. Each call site gets a unique pair of open and close parentheses,
e.g., (1f for n3 to sf edges and)1f for ef to n4 edges, and the language ensures
any CFL path has matched parentheses.

Warnings as CFL-Reachability. The IFDS analysis computes CFL-reachability
of nodes in the exploded super-graph using the tabulation algorithm [19]. In our
example, if an a node is CFL-reachable from node 〈smain,0〉, then variable a

may be null at the corresponding program point. In Fig. 4, all of the grey and
blue nodes are CFL-reachable from 〈smain,0〉, while the white nodes are not.
In particular, the nodes 〈n14,a〉 and 〈n17,a〉 corresponding to the statements
a.toString and a.getClass are CFL-reachable (blue color). The analysis thus
triggers two warnings, indicating possible null dereferences at lines 12 and 13 of
Fig. 3. These warnings could be real bugs or false positives, depending on the
actual conditions in the if statements.

Fix Locations. To remove all warnings, the corresponding exploded supergraph
nodes must be made unreachable from the 0 entry node. For our example, mak-
ing an a node unreachable corresponds to proving a must not be null at the
corresponding program point. A CFL min-cut gives a minimal set of edges to
make the warning nodes unreachable, and the corresponding program locations
are the suggested fix locations. In Fig. 4, the blue solid edge 〈n10,a〉 〈n11,a〉
is a CFL min-cut between node 〈smain,0〉 and the warning nodes (〈n14,a〉 and
〈n17,a〉). If we remove this edge, then all blue nodes become CFL-unreachable
from node 〈smain,0〉.

Min-Cut vs. CFL Min-Cut. Notice that if we consider regular reachability instead
of CFL reachability, then the nodes corresponding to warnings are still reachable
from 〈smain,0〉 in Fig. 4, even after removing the CFL min-cut (blue edge). For
example, node 〈n14,a〉 can be reached through the path: 〈smain,0〉 〈n1,0〉

528 A.M. Dan et al.

〈n2,a〉 〈n3,a〉 〈sf ,a〉 〈ef ,a〉 〈n13,a〉 〈n14,a〉. However, this
is not a realizable program path because the call edge 〈n3,a〉 〈sf ,a〉 does
not correspond to the return edge 〈ef ,a〉 〈n13,a〉. For this example, a regular
min-cut has size two.2 Hence, if only regular min-cuts were considered, the num-
ber of fix locations could be unnecessarily higher than a CFL min-cut, leading
to needless fixing effort from the programmer.

CFL Min-Cut Selection. In general, a graph can have several CFL min-cuts.
We choose to select the cut that preserves the most reachability facts in the
exploded super-graph. Choosing in this manner converts as few may facts to
must-not facts as possible (see Fig. 1), retaining as much of the original safe
behavior as possible. The blue edge CFL min-cut in Fig. 4 only makes the eight
blue nodes in the graph CFL unreachable. The actual fix can be implemented
by simply introducing a line a = new Object() (or a more realistic fix) between
lines 11 and 12 of Fig. 3. Note that suggesting a concrete repair is future work
and out of scope for this paper.

Consider another possible CFL min-cut, 〈n9,0〉 to 〈n10,a〉. Since node n10

can correspond to a large code fragment (that potentially does not write to
variable a), this alternate cut could correspond to a much more disruptive change.
Further trade-offs between preserving semantics and min-cut sizes are presented
in Sect. 4. Next, we study the complexity of finding a CFL min-cut.

3 CFL Min-Cut Complexity

The time complexity for CFL-reachability is O(|Σ|3n3) when using dynamic
programming, where n is the number of graph vertices and |Σ| the size of the
CFL [16], compared to normal reachability which is O(n) (graph traversal).
Computing a normal min-cut has the complexity O(mn × log(n2/m)) (m is the
number of graph edges) [8], and one might expect only a polynomial additional
cost for computing a CFL min-cut. But, here we show that computing a CFL
min-cut is NP -hard even for a restricted version of the problem (Table 1).

Table 1. Time complexity for the reachability and min-cut problems.

Reachability Min-cut

Normal O(n) O(mn × log(n2/m)) [8]

CFL O(|Σ|3n3) [16] NP-hard (this work)

When considering this problem, we focused on balanced parentheses lan-
guages (as defined in Sect. 2.1), as most popular and important CFL-reachability-
based program analyses we know of use balanced parentheses. Theorem1 shows
2 Note that an edge between two 0 nodes (e.g. 〈smain,0〉 〈n1,0〉) cannot be cut

as such an edge is required for the well-formedness of the exploded supergraph [19].

Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts 529

NP-hardness of CFL min-cut for the restricted language of balanced parenthe-
ses. Theorem 1 also shows that the hardness result holds even for acyclic graphs
and it is our best result in terms of the most restricted CFL and graph struc-
ture. In practice, when applying a CFL-reachability analysis to graphs from
real programs, the resulting graphs may not allow for the structure used in the
proof of Theorem 1. Still, most popular CFL-reachability analyses allow for mul-
tiple parentheses types and we show an example in Theorem2 that for graphs
resulting from an IFDS null analysis the CFL min-cut problem is NP-hard. We
believe that similar proof techniques can be extended to other realistic analyses
like pointer analysis.

Preliminaries. Let L be a context-free language over the alphabet Σ and a
directed graph G = (V,E) such that the edges in E are labelled with members
of Σ (label : E → Σ). Henceforth CFL paths, CFL reachability and CFL min-
cuts are understood with respect to the language L. Let s ∈ V be the source
node and t ∈ V the target node. Each path from s to t in G defines a word over
the alphabet Σ. A path is a CFL path if the word corresponding to the path
is a member of L. We consider directed graphs. The s, t CFL min-cut problem
is defined as finding the smallest subset E′ ⊆ E such that there exists no CFL
path from s to t in the graph G′ = (V,E \ E′).

Theorem 1. If L is the language of balanced parentheses, finding the s, t CFL
min-cut in acyclic directed graphs with edges labelled by symbols of L is NP-hard.

((u2
c

(s (u1
a u2

a u1
b u2

b u3
b u1

c u3
c

t

u-1
ab u0

ab u1
ab u2

ab

u-1
ac u0

ac u1
ac u2

ac u3
ac

(

((

)

)

)

u4
c

()

))) ((

)

))

)

Fig. 5. Acyclic labelled graph for which finding the CFL min-cut between s and t
leads to finding the vertex cover for the graph with three vertices and two edges
({a, b, c}, {ab, ac}).

Proof. We reduce the vertex cover problem to s, t CFL min-cut in acyclic graphs.
Given an undirected graph G = (V,E), the vertex cover problem [10] computes
the smallest set C ⊆ V such that ∀uv ∈ E ⇒ u ∈ C ∨ v ∈ C. We map each
element of V to a number in {1 . . . n}, where |V | = n (id : V → {1 . . . n}). Notice
that if initially G contains vv ∈ E, where v ∈ V , then v has to be in the vertex
cover. Therefore, we add v to the solution and remove all the edges containing
v from E. From now we can assume that E does not contain vv edges, v ∈ V .

530 A.M. Dan et al.

Starting from the graph (V,E), we construct the new graph (V ′, E′) on which
we compute the s, t CFL min-cut. First, we introduce two distinguished vertices
{s, t} ⊆ V ′. Then for each vertex v ∈ V we create id(v) + 1 vertices in V ′:
{uv

1, . . . , u
v
id(v)+1}. Additionally, we add id(v) edges to E′, labelled with the

symbol “(”: {uv
1u

v
2, . . . , u

v
id(v)u

v
id(v)+1}.

For each edge vv′ ∈ E, ordered (without loss of generality) such that id(v) <
id(v′), we first create 2 new vertices in V ′: {uvv′

−1 , uvv′
0 }, and 4 new edges in E′:

suvv′
−1 , uv

id(v)+1u
vv′
0 , labelled with “(” and uvv′

−1uv
1, uvv′

0 uv′
1 labelled with “)”.

Finally, for each edge vv′ ∈ E, we introduce id(v) + id(v′) − 1 vertices
{uvv′

1 , . . . uvv′
id(v)+id(v′)−1} and id(v) + id(v′) edges labelled by “)”:

{uv′
id(v′)+1u

vv′
1 , uvv′

1 uvv′
2 , . . . , uvv′

id(v)+id(v′)−2u
vv′
id(v)+id(v′)−1, u

vv′
id(v)+id(v′)−1t}

Overall, if |E| = m, the number of vertices in V ′ is O(n2 +mn) and the number
of edges in E′ is O(n2 + mn).

We illustrate the construction for a small graph ({a, b, c}, {ab, ac}) for which
we want to find the vertex cover. First, we associate 1 to vertex a, 2 to b and 3
to c. Next, following the steps described above, we construct the graph shown
in Fig. 5.

For each edge vv′ ∈ E, there exists a corresponding CFL path from s to t in
the graph (G′, E′). This path contains all the id(v)+ id(v′) edges corresponding
to v and v′. Additionally, the CFL path will contain the sub-CFL-paths of length
2 between s and the first vertex corresponding to v (uv

1) and from the last vertex
corresponding to v (uv

id(v)+1) to the first vertex corresponding to v′ (uv′
1).

There exist additional CFL paths from s to t. Given vv′ ∈ E and v1, v2 ∈ V
such that v1v2 ∈ E and v2v

′ ∈ E and id(v1) + id(v2) = id(v), there is an CFL
path from s to t containing the edges added for the vertices v1, v2 and v′. An
important observation is that any cut for the CFL paths corresponding to edges
in E will also be a cut for the additional CFL paths described above. Therefore,
the additional CFL paths do not increase the size of the s, t CFL min-cut.

Finding an s, t CFL min-cut in this newly constructed graph is equivalent to
finding a vertex cover in the original graph. We show how to obtain the vertex
cover given an s, t CFL min-cut M = {e1, . . . , ek}.

The first step is to transform M such that it contains only edges of type
uv

i uv
i+1, where v ∈ V and i < id(v) + 1.
If e ∈ M is of type uvv′

i uvv′
i+1, we replace it with uv′

id(v′)u
v′
id(v′)+1. It is impossible

that the new edge already exists in M , because all CFL paths that contain
uvv′

i uvv′
i+1 also contain uv′

id(v′)u
v′
id(v′)+1 and this would contradict the minimality

of the cut size. Additionally, M remains an s, t CFL cut and has the same size.
If e is of type suvv′

−1 , uvv′
−1uv

1, uv
id(v)+1u

vv′
0 or uvv′

0 uv′
1 then we replace it with

the edge uv
id(v)u

v
id(v)+1. Similarly to the previous case, all the CFL paths that

contain e also contain its replacement (uv
id(v)u

v
id(v)+1).

Next, to each edge uv
i uv

i+1 in the s, t CFL min-cut corresponds the vertex v
in the cover set. For the example in Fig. 5, the CFL min-cut is edge ua

1u
a
2 , which

Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts 531

corresponds to {a} as the result for the vertex cover problem for the graph
({a, b, c}, {ab, ac}).

The s, t CFL min-cut contains at least one edge from each CFL path from
s to t. This implies that the vertex cover will contain at least one vertex of
each edge in E. The minimality of the cut implies the minimality of the vertex
cover.
�
Theorem 2. If L is the language of balanced multiple types of parentheses, find-
ing the s, t CFL min-cut in exploded supergraphs resulted from applying a CFL
analysis is NP-hard, considering that the edges between two 0 nodes cannot be
part of the cut.

Proof. We prove this theorem by reduction from the vertex cover problem. The
proof has two steps. First, given an undirected graph G = (V,E) for which we
want to compute the vertex cover, we construct a program P . Second, given a
null analysis like the one in Sect. 2, we show that finding a CFL min-cut of the
exploded super-graph of program P implies finding a vertex cover for graph G.

Constructing the Program P. Let n = |V | be the number of vertices in the graph
G. The program P has a variable x of type Obj and n + 1 methods. We assume
the class Obj declares a method f(). For each vertice u ∈ V we declare in P
a method mu() that does not modify x. Additionally, we introduce a method
prog that has a local integer i, initialized to a random value between 1 and m,
where m = |E| is the number of edges in G. The method prog contains a switch
statement that takes as argument i and has m cases, one for each edge in G. For
the case corresponding to the edge uv ∈ E, the variable x is set to null, then
the methods mu() and mv() are invoked and the variable x is dereferenced by
invoking the function x.f(). Finally, each case ends with a break statement. For
example, given the small graph ({a, b, c}, {ab, ac}), we construct the following
program:

Exploded Supergraph Using the Null Analysis. Next, consider the null analysis
used in Sect. 2. For each node in the supergraph of program P , the exploded
super-graph contains two nodes: a 0 node and an x node (meaning x may be
null at that program point). Initially, there exists one CFL path from the 0 node
at the entry in method prog to each dereference x.f() in P (exactly one CFL
path for each edge in G). Each path contains a prefix of edges between 0 nodes,
and a suffix of edges between x nodes. The edge between a 0 and an x node
corresponds to the statements x = null that precede the dereference. Since the
cut may not contain edges between two 0 nodes, the CFL min-cut will contain
edges that are part of the suffixes of each CFL path that leads to a dereference
of x or edges between a 0 and an x node. For a CFL min-cut, we replace the
edges that are not between x nodes inside one of the methods mu, for u ∈ V ,
with edges between nodes inside one of the mu functions. For instance, if the
CFL cut contains an edge between a 0 and an x node, we will replace it with
an edge between two x nodes inside the first method that is called after the
corresponding x = null statement. This does not increase the size of the cut.

532 A.M. Dan et al.

Fig. 6. Program for which finding the CFL min-cut in its exploded supergraph for a
null analysis leads to finding the vertex cover for the graph with three vertices and two
edges ({a, b, c}, {ab, ac}).

Each CFL min-cut has at most one edge from each method mu. Given a CFL
min-cut, we can build the vertex cover by selecting the vertices corresponding
to the methods that contain edges of the CFL min-cut. The CFL cut is minimal
and there exists exactly one CFL path for each edge in G, therefore the obtained
vertex cover is minimal.

Given a vertex cover, we can construct a CFL cut by selecting a cut edge in
each method mu corresponding to a vertex u in the cover.

For the program in Fig. 6, the CFL min-cut is an edge in function m_a, which
corresponds to the vertex cover {a}. Intuitively, adding the line x = new Obj();

in method m_a will lead to eliminating all null dereference warnings that the null
analysis would trigger.

As an observation, for acyclic directed graphs with normal cut-sizes of up to
2, the CFL min-cut size is equal to the normal min-cut size. This implies that
any min-cut of size at most 2 is also a CFL min-cut.

Proposition 1. If the s, t min-cut has the size at most 2 in an acyclic graph,
then this is also an s, t CFL min-cut.

Proof. Any s, t min-cut is also an s, t CFL cut because if all paths from s to t
are removed, then all the CFL paths are also removed. If the graph G′, where
we remove all edges that are not part of a CFL path from s to t, has a min cut
of size 1, then it is also an s, t CFL min-cut.

If G′ has a min-cut of size 2, we show that there cannot exist a smaller s, t
CFL min-cut. Assuming an s, t CFL -min-cut of size 1 exists, then all CFL paths
from s to t contain the cut edge c. We show that all the non-CFL paths from s to
t also contain c. Let p be a non-CFL path from s to t. The first edge of p is either
c or comes before c on an CFL path from s to t. It cannot come after c, because
we would obtain a cycle in the graph. Similarly, for all the edges of p not equal
to c, they must appear before c in an CFL path from s to t. Assume no edge is

Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts 533

equal to c, then the last edge of the path, reaching t is before c, which creates a
cycle. Since all paths contain c, then the s, t min-cut is of size 1, contradicting
the hypothesis.

4 Solving the CFL Min-Cut for IFDS

In this section we present our approach to solve the CFL min-cut problem for an
IFDS analysis. First, we instrument the IFDS analysis, recording the relevant
information while it computes CFL reachability in the exploded super-graph.
Second, based on the recorded information and the warnings found by the analy-
sis, we formulate and solve the CFL min-cut as an optimization problem.

4.1 IFDS Analysis Instrumentation

Types of Edges. The tabulation algorithm [19] solves CFL reachability from the
0 entry node to all nodes in the exploded supergraph. In the process, it derives
two types of edges: path edges and summary edges. If the algorithm derives a
path edge between nodes n1 and n2, it means n2 is actually CFL reachable from
the 0 entry node. Summary edges are derived between fact nodes corresponding
to a function call and a matching return from call. For instance, in Fig. 4, a
summary edge would be introduced between nodes 〈n3,0〉 and 〈n4,0〉.

Derivation Rules. The tabulation algorithm maintains a worklist of recently
derived path edges and applies a set of rules to derive additional path edges.
The newly derived path edges are implied by existing path edges, exploded
supergraph edges and summary edges. The complete description of the derivation
rules can be found in [19]. For the example in Fig. 4, the tabulation algorithm
starts with path edge pathEdge1 〈smain,0〉 〈smain,0〉 in the worklist. Next,
based on pathEdge1 and the exploded super-graph edge 〈smain,0〉 〈n1,0〉
(graphEdge1), the algorithm derives pathEdge2 〈smain,0〉 〈n1,0〉, and adds
it to the worklist.

Recording All Derivations. During the execution of the tabulation algorithm, we
record all derivations (a derivation is an instance of a rule application) and keep
track of all path edges (PE), summary edges (SE) and edges of the exploded
super-graph (GE) that were used in these derivations. The set of all derivations
is D and each derivation is stored as an implication. The following is an example
of a derivation:

pathEdge1 ∧ graphEdge1 ⇒ pathEdge2

An important property of our instrumentation is that we record all possible
derivations for each path edge and summary edge (in case such an edge can be
derived in more than one way). This ensures that we capture all derivations and
the CFL min-cut we will compute in the next step is guaranteed to be correct
(covers all CFL paths). Let W ⊆ PE be the set of path edges (warnings always
correspond to path edges) which corresponds to warnings of the analysis. Given
the PE, SE, GE, D and W sets, we proceed to find the CFL min-cut.

534 A.M. Dan et al.

4.2 Optimization Objective

Let Edges = PE ∪ SE ∪ GE and let σ : Edges → {true, false} map an edge
to true or false. For a given σ, let [[]]σ : D → {true, false} compute the boolean
value of each derivation with respect to σ. That is, the truth value of a derivation
(such as the one listed above) is computed by simply applying basic logical rules
on the truth values of the edges as defined in σ. We define Q as:

Q(D,W) = {σ | ∀d ∈ D : [[d]]σ ∧ ∀w ∈ W : ¬σ(w)}

Here, Q(D,W) denotes the set of valuations that satisfy all derivations in D and
for which all warning edges in W are mapped to false.

Let fσ : Edges → {0, 1} such that:

∀e ∈ Edges : (σ(e) ≡ fσ(e) = 1) ∧ (¬σ(e) ≡ fσ(e) = 0)

Using this auxiliary function we can now express the CFL min-cut problem as
the following optimization objective:

argmax
σ∈Q(D,W)

∑

p∈GE

fσ(p)

The solution of this problem will be a valuation in Q that maps the highest
number of graph edges to true. The graph edges mapped to false are the edges
of the CFL min-cut. Note that the optimization problem above can have several
possible solutions. We describe next a possible criteria to select a solution.

Minimize Abstract Distance. Given a program P and an IFDS analysis, we
consider an abstract program as the exploded super-graph esgP correspond-
ing to P . Let nr(esg) be the number of nodes of the exploded super-graph
esg that are CFL reachable from the 0 entry node. We define the distance
between two exploded supergraphs as: d(esg1, esg2) = |nr(esg1) − nr(esg2)|.
Given esgP , one intuitive criteria is to select a CFL min-cut C such that the
distance d(esgP , esgP \C) is minimal, where esgP \C is the same as esgP except
we remove the edges in C. As discussed in Sect. 2.3, this criteria leads to a CFL
min-cut where we try to preserve as many CFL-reachable nodes in the exploded
super-graph as possible. For example, in Fig. 4, the abstract distance between the
exploded supergraph before and after removing the cut (blue edge) is 8 (there
are 8 nodes, shown in blue, that become CFL unreachable). This criterion can
be seen as a proxy for reducing the number of changes to the program (as more
changes would likely lead to more changes in the computed abstract facts). We
now extend our optimization problem with this criterion.

The goal is to select the valuation σ such that it corresponds to a CFL min-
cut and it has a maximal number of path edges mapped to true. As mentioned
before, each path edge corresponds to an abstract fact that holds at a certain
program point. The challenge is that, if we simply add the sum of fσ(p) for all
p ∈ PE to the formula above, it will not be sound. The problem is that the

Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts 535

result may have path edges mapped to trueeven if the left hand sides of all their
corresponding derivations are false. This would lead to incorrect results.

To address this challenge, we create a new set of derivations, D̂, that contains
all derivations in D as well as new derivations, described next. Given a path or a
summary edge p ∈ PE ∪ SE, let Dp ⊆ D be the derivations in D that have the
right hand side of the implication equal to p: Dp = {d ∈ D | rhs(d) = p}. All
derivations d ∈ Dp are of the form lhs(d) ⇒ p, where lhs represents the left hand
side of the implication. For all p ∈ PE ∪SE, we add to the set D̂ the derivation:
p ⇒ ∨

d∈Dp
lhs(d). This avoids valuations that map a path or a summary edge

to true even if all left hand sides of their corresponding derivations are false.
We define w : GE ∪ PE → R as a function assigning a value to a path or a

graph edge. The new optimization objective is:

argmax
σ∈Q(D̂,W)

∑

p∈GE∪PE

w(p) × fσ(p)

In particular, if ∀p ∈ GE : w(p) = |PE| + 1 and ∀p ∈ PE : w(p) = 1, then
the priority of the optimization problem is to find a CFL min-cut, and then
select the cut that maximizes the number of path edges. Additionally, we can
implement a trade-off between the size of the CFL cut and the number of path
edges, if the sum of weights of PE edges is greater than the weight of at least
one GE edge. Maximizing the number of path edges corresponds to minimizing
the “may” facts from Fig. 1 that are transformed to “must-not” facts.

4.3 Solution via MaxSAT

We solve the above optimization problems via a translation to MaxSAT.

Variables. For each edge in Edges we introduce a boolean variable in the
MaxSAT formula. Additionally, for each derivation in D, we introduce a new
boolean variable. Let B be the set of all the boolean variables of the formula
and let be : Edges → B map edges to the correspondin boolean variables and
bd : D → B map derivations to boolean variables.

Clauses. For each edge p ∈ GE ∪ PE, we add to the boolean formula one unit
clause - be(p), of weight w(p). For each derivation d ∈ D, we add two clauses:
(i) a clause contains, for each edge p appearing in lhs(d), the literal ¬be(p) and
the literal bd(d), and (ii) a second clause that contains ¬bd(d) and be(p). The
weight of these clauses is set to ∞. Further, for each edge p ∈ PE ∪ SE, we add
a clause containing the literal ¬be(p) and the literals bd(d), for all d ∈ Dp. This
clause has the weight ∞. Finally, for each edge p ∈ W , we add the unit clause
¬be(p) with weight ∞.

5 Evaluation

In this section, we present an evaluation of the CFL min-cut approach described
in Sect. 4, leveraging a null-deference analysis similar to the one in Sect. 2.

536 A.M. Dan et al.

Table 2. Benchmarks showing the differences between the number of warnings, CFL
and normal min-cut sizes for the null pointer analysis.

Benchmark Null pointer analysis CFL min-cut Normal min-cut

Time (s) Warnings Time (s) Size Distance Time (s) Size Distance

Antlr 13 114 32 19 401 28 28 588

Eclipse 9 41 13 12 260 11 12 351

Hsqldb 1 22 1 2 120 0.6 2 122

Luindex 11 92 60 9 1519 8 10 1636

Pmd 1 22 2 2 124 0.3 2 126

Xalan 1 40 3 3 232 0.4 3 234

Javasrc-p 12 28 16 11 167 10 14 309

Kawa-c 27 14 34 9 226 23 10 726

Rhino-a 64 59 173 15 2154 87 18 3282

Schroeder-m 2 40 3 5 382 0.8 5 420

Toba-s 1 1 0.4 1 2 0.3 1 30

Null Dereference Analysis. We first implemented an IFDS-based analysis for
detecting null-pointer dereferences (as described in Sect. 2), leveraging the
WALA analysis framework [1]. The analysis runs in the forward direction, track-
ing access paths that either may be null (if some statement may have written null
to the location) or may-not be null (some statement wrote a non-null value into
the location; if the may-not be null fact is unreachable, then the variable must be
null). A null-pointer error is reported when a variable that may (or must) be null
is de-referenced. The analysis includes basic interpretation of branch conditions
comparing variables to null. The analysis does not track all aliasing exactly, and
hence is unsound—soundness is not required to evaluate our current techniques.
In our evaluation, we used the WPM-3-2015.co MaxSAT solver [2].

Benchmarks. We ran the analysis on a suite of 11 open-source Java benchmarks.
The set of benchmarks includes programs from the DaCapo suite [3], and also
programs used in other recent work on static analysis [7,23].

Results. Table 2 summarizes the results from our experiments. The first column
indicates the name of the benchmark program. The next two columns show
the running time in seconds of the null dereference analysis and the number of
warnings it generates for each program. As described in Sect. 4, the analysis is
instrumented and all possible derivations are recorded during its execution. The
next three columns present information about the CFL min-cut computation: the
running time in seconds, the size of the cut, and the abstract distance between
the exploded supergraphs before and after the cut (defined in Sect. 4.2). The final
three columns present the same information as before, this time for computing
a normal min-cut, instead of a CFL min-cut.

Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts 537

Table 3. Abstract distance vs. CFL cut size trade-off, for Antlr and Rhino-a.

Number of Warnings vs. Number of Fix Locations. For several benchmarks
(Hsqldb, Luindex, Pmd, Xalan, Schroeder-m), the size of the min-cut is approx-
imately 10 times smaller than the number of warnings of the analysis. This
confirms our hypothesis that a small number of fix locations has the potential
to address all warnings—computing a min-cut is beneficial in such cases.

CFL Min-Cut Size. Computing a CFL min-cut can often reduce the size of the
cut over a normal min-cut. For benchmarks such as Antlr, Luindex, Javasrc-p,
Kawa-c, Rhino-a, the normal min-cut is between 10%–50% larger than the CFL
min-cut. This is a non-trivial difference, as each report requires manual effort
from the end user.

Program Fixes. We inspected manually the fix locations proposed by our sys-
tem for several benchmarks and discovered that identifying the concrete fix was
straightforward. Adding these fixes removed all the initial warnings. Construct-
ing the fixes can become more complex in the case of other IFDS analyses. We
consider that to be an interesting future work item.

Implementation Details. To simplify the boolean formulas that are generated,
we exclude identity edges (propagating the same fact) from the possible cuts.
This reduces greatly the burden of the MaxSAT solver, enabling a more scalable
implementation. Intuitively this The MaxSAT solver can take advantage of the
stratification optimization [2] to compute faster the min-cuts with maximized
path edges.

Case Study: Cut Size - Abstract Distance Tradeoffs. We investigated the tradeoff
between the CFL cut size and the abstract distance. We kept the weight for all
edges p ∈ PE as w(p) = 1 and we set the weight of p ∈ GE : w(p) = k, where
k is a constant between 1 and |PE| + 1. We illustrate our results on two of the
benchmarks, Antlr and Rhino-a. For each benchmark, we show in Table 3 the
CFL cut size (on the X axis) and the abstract distance (on the Y axis) for several
values of k. (Note that the CFL cuts for different values of k are not subsets of
each other.) For both benchmarks we observe that allowing a larger cut size leads

538 A.M. Dan et al.

to a smaller abstract distance. This makes intuitive sense: as cuts are allowed to
grow larger, fix locations can be more “specialized” to warnings, reducing effects
on other may facts. In the limit, a cut could include a fix location specific to
each warning, minimizing abstract distance.

6 Related Work

Our work bears some similarity to recent work on finding minimal explana-
tions for type inference errors. Pavlinovic et al. leverage MaxSMT for comput-
ing small explanations [17], while Loncaric et al. leverage MaxSAT [14]. Zhang
and Myers [22] takes a probabilistic approach based on constraint graphs from
type inference. These techniques may also benefit from factoring in a notion of
abstract distance, rather than purely minimizing the number of fix locations.

Given an error trace that violates an assertion, Jose and Majumdar [9] use
MaxSAT to localize the error causes. Their work identifies potential error causes
of the concrete test execution that violates an assertion, whereas our approach
focuses on warnings of static analyses.

Merlin [12] automatically classifies methods into sources, sinks and sanitizers,
for taint analysis. Their sanitizer inference could be viewed as finding ways to
“cut” flows from sources to sinks, but our problem differs in that we allow
many more graph edges to be cut. Livshits and Chong [11] aim to find a valid
sanitization of a given data-flow graph. Their approach leverages static and
dynamic analysis, whereas our work is purely static.

The complexity class for the view update problem is studied in Buneman
et al. [4]. The paper investigates the complexity of identifying a minimal set
tuples in the database whose deletion will eliminate a given tuple from a query
view; this problem bears some similarity to the CFL min-cut problem as applied
to chain Datalog programs (see Sect. 1). The paper proves the problem is NP-
hard for several types of queries.

D’Antoni et al. [6] aim to find repairs of small programs such that both
the syntactic and the semantic difference between the original and the fixed
programs is minimal, leveraging the Sketch synthesis tool [20]. The semantic dif-
ference is the distance between concrete traces of the programs. In contrast, our
work focuses on minimizing abstract distances. Moreover, our system suggests fix
locations (corresponding to abstract transitions) and runs on large benchmarks,
as opposed to computing concrete program fixes for small input programs.

The system in Mangal et al. [15] infers weights for rules of a static analysis in
order to classify the warnings of the analysis, based on feedback collected from
users on previous analysis runs. It is interesting to apply similar techniques to
automatically infer weights for edges in the cut so to explore further the min-
cut vs. abstract distance tradeoff. In our work, we directly determine possible
fix locations that will address all the warnings. Our experiments show that the
number of fix locations can be several times smaller than the number of warnings.

Recent work [5,13] presents a system that infers necessary preconditions
(when such a precondition does not hold, the program is guaranteed to be wrong)

Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts 539

on large-scale programs. Their work considers non-null, array out of bounds and
contracts analyses. Our system can be viewed as inferring a minimal number of
sufficient preconditions for IFDS analyses.

7 Conclusion

The CFL min-cut is a fundamental building block for suggesting fix locations for
both false positive warnings caused by over-approximations of the analysis and
true bugs of the program. In this work, we first proved that computing CFL min-
cuts is NP-hard. Next, we phrased the CFL min-cut as an optimization problem
and solved it via MaxSAT. Using a null dereference analysis, we experimentally
showed that in practice the CFL min-cut frequently yields fewer fix locations and
smaller abstract program distances than a normal min-cut. In future work, we
plan to apply CFL min-cuts to more program analysis problems and investigate
faster CFL min-cut algorithms for common graph structures.

Acknowledgements. We thank Dimitar Dimitrov from ETH Zurich for comments
on earlier proofs of the theorems in this paper.

References

1. Watson, T.J.: Libraries for Analysis (WALA). http://wala.sf.net. Accessed 22 Jan
2017

2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted
maxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33558-7 9

3. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D.,
VanDrunen, T., von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks:
Java benchmarking development and analysis. In: Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, OOPSLA 2006, pp. 169–190. ACM, New York (2006)

4. Buneman, P., Khanna, S., Tan, W.-C.: On propagation of deletions and annota-
tions through views. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2002, pp. 150–158.
ACM, New York (2002)

5. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 128–148. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35873-9 10

6. D’Antoni, L., Samanta, R., Singh, R.: Qlose: program repair with quantitative
objectives. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
383–401. Springer, Cham (2016). doi:10.1007/978-3-319-41540-6 21

7. Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verifi-
cation in the presence of aliasing. In: Pollock, L.L., Pezzè, M. (eds.) Proceedings of
the ACM/SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2006, Portland, Maine, USA, 17–20 July 2006, pp. 133–144. ACM (2006)

http://wala.sf.net
http://dx.doi.org/10.1007/978-3-642-33558-7_9
http://dx.doi.org/10.1007/978-3-642-35873-9_10
http://dx.doi.org/10.1007/978-3-642-35873-9_10
http://dx.doi.org/10.1007/978-3-319-41540-6_21

540 A.M. Dan et al.

8. Hao, J., Orlin, J.B.: A faster algorithm for finding the minimum cut in a graph.
In: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 1992, pp. 165–174. Society for Industrial and Applied Mathematics,
Philadelphia (1992)

9. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2011, pp. 437–446. ACM,
New York (2011)

10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Com-
puter Computations, 20–22 March 1972, IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, New York. The IBM Research Symposia Series, pp. 85–103.
Plenum Press, New York (1972)

11. Livshits, B., Chong, S.: Towards fully automatic placement of security sanitizers
and declassifiers. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2013, pp. 385–398.
ACM, New York (2013)

12. Livshits, B., Nori, A.V., Rajamani, S.K., Banerjee, A.: Merlin: specification infer-
ence for explicit information flow problems. In: Proceedings of the 30th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2009, pp. 75–86. ACM, New York (2009)

13. Logozzo, F., Ball, T.: Modular and verified automatic program repair. In: Leavens,
G.T., Dwyer, M.B. (eds.) Proceedings of the 27th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, 21–25 October 2012, pp.
133–146. ACM (2012)

14. Loncaric, C., Chandra, S., Schlesinger, C., Sridharan, M.: A practical framework
for type inference error explanation. In: Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, pp. 781–799. ACM, New York (2016)

15. Mangal, R., Zhang, X., Nori, A.V., Naik, M.: A user-guided approach to program
analysis. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pp. 462–473. ACM, New York (2015)

16. Melski, D., Reps, T.W.: Interconvertibility of a class of set constraints and context-
free-language reachability. Theoret. Comput. Sci. 248(1–2), 29–98 (2000)

17. Pavlinovic, Z., King, T., Wies, T.: Practical SMT-based type error localization. In:
Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pp. 412–423. ACM, New York (2015)

18. Reps, T.: Program analysis via graph reachability. In: Proceedings of the 1997
International Symposium on Logic Programming, ILPS 1997, pp. 5–19. MIT Press,
Cambridge (1997)

19. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: Cytron, R.K., Lee, P. (eds.) Conference Record of POPL
1995: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, California, USA, 23–25 January 1995, pp. 49–61. ACM
Press (1995)

20. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XII, pp. 404–415. ACM, New York (2006)

Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts 541

21. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)
22. Zhang, D., Myers, A.C.: Toward general diagnosis of static errors. In: Proceedings

of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2014, pp. 569–581. ACM, New York (2014)

23. Zhang, X., Mangal, R., Grigore, R., Naik, M., Yang, H.: On abstraction refinement
for program analyses in datalog. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2014, Edinburgh, United Kingdom -
09–11 June 2014, p. 27 (2014)

	Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts
	1 Introduction
	2 Overview
	2.1 CFL Reachability
	2.2 CFL Min-Cuts
	2.3 Min-Cuts for Program Analysis

	3 CFL Min-Cut Complexity
	4 Solving the CFL Min-Cut for IFDS
	4.1 IFDS Analysis Instrumentation
	4.2 Optimization Objective
	4.3 Solution via MaxSAT

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

