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Abstract. We consider parity games, a special form of two-player
infinite-duration games on numerically labelled graphs, whose winning
condition requires that the maximal value of a label occurring infi-
nitely often during a play be of some specific parity. The problem has
a rather intriguing status from a complexity theoretic viewpoint, since
it belongs to the class UPTime ∩ CoUPTime, and still open is the
question whether it can be solved in polynomial time. Parity games also
have great practical interest, as they arise in many fields of theoreti-
cal computer science, most notably logic, automata theory, and formal
verification. In this paper, we propose a new algorithm for the solution
of the problem, based on the idea of promoting vertices to higher pri-
orities during the search for winning regions. The proposed approach
has nice computational properties, exhibiting the best space complexity
among the currently known solutions. Experimental results on both ran-
dom games and benchmark families show that the technique is also very
effective in practice.

1 Introduction

Parity games [45] are perfect-information two-player turn-based games of infinite
duration, usually played on finite directed graphs. Their vertices, labelled by
natural numbers called priorities, are assigned to one of two players, named
Even and Odd or, simply, 0 and 1, respectively. The game starts at an arbitrary
vertex and, during its evolution, each player can take a move only at its own
positions, which consists in choosing one of the edges outgoing from the current
vertex. The moves selected by the players induce an infinite sequence of vertices,
called play. If the maximal priority of the vertices occurring infinitely often in
the play is even, then the play is winning for player 0, otherwise, player 1 takes
it all.

Parity games have been extensively studied in the attempt to find efficient
solutions to the problem of determining the winner. From a complexity theoretic
perspective, this decision problem lies in NPTime ∩ CoNPTime [18,19], since
it is memoryless determined [17,37,38,45]. It has been even proved to belong
to UPTime ∩ CoUPTime [31], a status shared with the factorisation problem
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[1,24,25]. They are the simplest class of games in a wider family with similar
complexities and containing, e.g., mean payoff games [16,30], discounted payoff
games [55], and simple stochastic games [15]. In fact, polynomial time reductions
exist from parity games to the latter ones. However, despite being the most likely
class among those games to admit a polynomial-time solution, the answer to the
question whether such a solution exists still eludes the research community.

The effort devoted to provide efficient solutions stems primarily form the fact
that many problems in formal verification and synthesis can be reformulated in
terms of solving parity games. Emerson, Jutla, and Sistla [18,19] have shown
that computing winning strategies for these games is linear-time equivalent to
solving the modal μCalculus model checking problem [20]. Parity games also
play a crucial role in automata theory [17,36,44], where, for instance, they can
be applied to solve the complementation problem for alternating automata [29]
and the emptiness of the corresponding nondeterministic tree automata [36].
These automata, in turn, can be used to solve the satisfiability and model check-
ing problems for expressive logics, such as the modal [53] and alternating [2,51]
μCalculus, ATL∗ [2,50], Strategy Logic [14,40,41,43], Substructure Temporal
Logic [4,5], and fixed-point extensions of guarded first-order logics [7,8].

Previous solutions mainly divide into two families: those based on decom-
posing the game into subsets of winning regions, called dominions, and those
trying to directly build winning strategies for the two players on the entire game.
To the first family belongs the divide et impera solution originally proposed by
McNaughton [39] for Muller games and adapted to parity games by Zielonka [54].
More recent improvements to that recursive algorithm have been proposed by
Jurdziński, Paterson, and Zwick [33,34] and by Schewe [48]. Both approaches rely
on finding suitably closed dominions, which can then be removed from a game
to reduce the size of the subgames to be recursively solved. To the second family
belongs the procedure proposed by Jurdziński [32], which exploits the connection
between the notions of progress measures [35] and winning strategies. An alter-
native approach was proposed by Jurdziński and Vöge [52], based on the idea of
iteratively improving an initial non-winning strategy. This technique was later
optimised by Schewe [49]. From a purely theoretical viewpoint, the best asymp-
totic behaviour obtained to date is the one exhibited by the solution proposed
in [48], which runs in time O

(
e · n

1
3k

)
, where n and e are the number of ver-

tices and edges of the underlying graph and k is the number of priorities. As far
as space consumption is concerned, we have two incomparable best behaviours:
O(k · n · log n), for the small progress measure procedure of [32], and O

(
n2

)
, for

the optimised strategy improvement method of [49]. Due to their inherent recur-
sive nature, the algorithms of the first family require O(e · n) memory, which
could be reduced to O

(
n2

)
, by representing subgames implicitly through their

sets of vertices. All these bounds do not seem to be amenable to further improve-
ments, as they appear to be intrinsic to the corresponding solution techniques.
Polynomial time solutions are only known for restricted versions of the prob-
lem, where one among the tree-width [22,23,46], the dag-width [6], the clique-
width [47] and the entanglement [9] of the underlying graph is bounded.
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The main contribution of the paper is a new algorithm for solving parity
games, based on the notions of quasi dominion and priority promotion. A quasi
dominion Q for player α ∈ {0, 1}, called a quasi α -dominion, is a set of vertices
from each of which player α can enforce a winning play that never leaves the
region, unless one of the following two conditions holds: (i) the opponent α can
escape from Q or (ii) the only choice for player α itself is to exit from Q (i.e.,
no edge from a vertex of α remains in Q). Quasi dominions can be ordered by
assigning to each of them a priority corresponding to an under-approximation of
the best value the opponent can be forced to visit along any play exiting from it.
A crucial property is that, under suitable and easy to check assumptions, a higher
priority quasi α-dominion Q1 and a lower priority one Q2, can be merged into a
single quasi α-dominion of the higher priority, thus improving the approximation
for Q2. For this reason we call this merging operation a priority promotion of
Q2 to Q1. The underlying idea of our approach is to iteratively enlarge quasi
α-dominions, by performing sequences of promotions, until an α-dominion is
obtained.

We prove soundness and completeness of the algorithm. Moreover, a bound
O

(
e · (3n−2

k−2 )k−1
)

on the time complexity and a O(n · log k) bound on the mem-
ory requirements are provided. Experimental results, comparing our algorithm
with the state of the art solvers, also show that the proposed approach perform
very well in practice, most often significantly better than existing ones, on both
random games and benchmark families proposed in the literature.

2 Parity Games

Let us first briefly recall the notation and basic definitions concerning parity
games that expert readers can simply skip. We refer to [3,54] for a comprehensive
presentation of the subject.

Given a partial function f : A ⇀ B, by dom(f) ⊆ A and rng(f) ⊆ B we denote
the domain and range of f, respectively.

A two-player turn-based arena is a tuple A =〈Ps0,Ps1,Mv〉, with Ps0∩Ps1 =
∅ and Ps � Ps0 ∪ Ps1, such that 〈Ps,Mv〉 is a finite directed graph. Ps0 (resp.
Ps1) is the set of positions of player 0 (resp., 1) and Mv ⊆ Ps × Ps is a left-
total relation describing all possible moves. A path in V ⊆ Ps is a finite or
infinite sequence π ∈ Pth(V) of positions in V compatible with the move relation,
i.e., (πi, πi+1) ∈ Mv , for all i ∈ [0, |π| − 1[. For a finite path π, with lst(π) we
denote the last position of π. A positional strategy for player α ∈ {0, 1} on
V ⊆ Ps is a partial function σα ∈ Strα(V) ⊆ (V ∩ Psα) ⇀ V, mapping each
α-position v ∈ dom(σα) to position σα(v) compatible with the move relation,
i.e., (v, σα(v)) ∈ Mv . With Strα(V) we denote the set of all α-strategies on V.
A play in V ⊆ Ps from a position v ∈ V w.r.t. a pair of strategies (σ0, σ1) ∈
Str0(V)×Str1(V), called ((σ0, σ1), v)-play, is a path π ∈ Pth(V) such that π0 = v
and, for all i ∈ [0, |π| − 1[, if πi ∈ Ps0 then πi+1 = σ0(πi) else πi+1 = σ1(πi).
The play function play : (Str0(V) × Str1(V)) × V → Pth(V) returns, for each
position v ∈ V and pair of strategies (σ0, σ1) ∈ Str0(V) × Str1(V), the maximal
((σ0, σ1), v)-play play((σ0, σ1), v).
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A parity game is a tuple � = 〈A,Pr, pr〉, where A is an arena, Pr ⊂ N is
a finite set of priorities, and pr : Ps → Pr is a priority function assigning a
priority to each position. The priority function can be naturally extended to
games and paths as follows: pr(�) � maxv∈Ps pr(v); for a path π ∈ Pth, we set
pr(π) � maxi∈[0,|π|[ pr(πi), if π is finite, and pr(π) � lim supi∈N pr(πi), otherwise.
A set of positions V ⊆ Ps is an α-dominion, with α ∈ {0, 1}, if there exists an α-
strategy σα ∈ Strα(V) such that, for all α-strategies σα ∈ Strα(V) and positions
v ∈ V, the induced play π = play((σ0, σ1), v) is infinite and pr(π) ≡2 α. In
other words, σα only induces on V infinite plays whose maximal priority visited
infinitely often has parity α. By �\V we denote the maximal subgame of �

with set of positions Ps′ contained in Ps\V and move relation Mv ′ equal to the
restriction of Mv to Ps′.

The α-predecessor of V, in symbols preα(V) � {v ∈ Psα : Mv(v) ∩ V �=
∅} ∪ {v ∈ Psα : Mv(v) ⊆ V}, collects the positions from which player α can
force the game to reach some position in V with a single move. The α-attractor
atrα(V) generalizes the notion of α-predecessor preα(V) to an arbitrary number
of moves. Thus, it corresponds to the least fix-point of that operator. When
V = atrα(V), we say that V is α-maximal. Intuitively, V is α-maximal if player
α cannot force any position outside V to enter this set. For such a V, the set
of positions of the subgame � \ V is precisely Ps \ V. Finally, the α-escape
of V, formally escα(V) � preα(Ps \ V) ∩ V, contains the positions in V from
which α can leave V in one move, while the dual notion of α-interior, defined
as intα(V) � (V ∩ Psα) \ escα(V), contains the α-positions from which α cannot
escape with a single move.

3 A New Idea

A solution for a parity game � = 〈A,Pr, pr〉 ∈ PG over an arena A = 〈Ps0,
Ps1,Mv〉 can trivially be obtained by iteratively computing dominions of some
player, namely sets of positions from which that player has a strategy to win
the game. Once an α-dominion D for player α ∈ {0, 1} is found, its α-attractor
atrα

�
(D) gives an α-maximal dominion containing D, i.e., α cannot force any

position outside D to enter this set. The subgame �\atrα
�
(D) can then be solved

by iterating the process. Therefore, the crucial problem to address consists in
computing a dominion for some player in the game. The difficulty here is that,
in general, no unique priority exists which satisfies the winning condition for a
player along all the plays inside the dominion. In fact, that value depends on the
strategy chosen by the opponent. Our solution to this problem is to proceed in a
bottom-up fashion, starting from a weaker notion of α-dominion, called quasi α-
dominion. Then, we compose quasi α-dominions until we obtain an α-dominion.
Intuitively, a quasi α-dominion is a set of positions on which player α has a
strategy whose induced plays either remain in the set forever and are winning
for α or can exit from it. This notion is formalised by the following definition.

Definition 1 (Quasi Dominion). Let � ∈ PG be a game and α ∈ {0, 1}
a player. A non-empty set of positions Q ⊆ Ps� is a quasi α-dominion in �
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if there exists an α-strategy σα ∈ Strα
�
(Q) such that, for all α-strategies σα ∈

Strα
�
(Q), with intα

�
(Q) ⊆ dom(σα), and positions v ∈ Q, the induced play π =

play�((σ0, σ1), v) satisfies pr�(π) ≡2 α, if π is infinite, and lst(π) ∈ escα
�
(Q),

otherwise.

The additional requirement that the opponent strategies be defined on all
interior positions discards those strategies in which the opponent deliberately
chooses to forfeit the play by declining to take any move at some of its positions.

We say that a quasi α-dominion Q is α-open (resp., α-closed) if escα
�
(Q) �= ∅

(resp., escα
�
(Q) = ∅). In other words, in a closed quasi α-dominion, player α has a

strategy whose induced plays are all infinite and winning. Hence, when closed, a
quasi α-dominion is a dominion for α in �. The set of pairs (Q, α) ∈ 2Ps� ×{0, 1},
where Q is a quasi α-dominion, is denoted by QD�, and is partitioned into the
sets QD−

�
and QD+

�
of open and closed quasi α-dominion pairs, respectively.

Note that quasi α-dominions are loosely related with the concept of snares,
introduced in [21] and used for completely different purposes, namely to speed
up the convergence of strategy improvement algorithms.

During the search for a dominion, we explore a suitable partial order, whose
elements, called states, record information about the open quasi dominions com-
puted so far. The search starts from the top element, where the quasi dominions
are initialised to the sets of nodes with the same priority. At each step, a query
is performed on the current state to extract a new quasi dominion, which is
then used to compute a successor state, if it is open. If, on the other hand,
it is closed, the search is over. Different query and successor operations can in
principle be defined, even on the same partial order. However, such operations
cannot be completely independent. To account for this intrinsic dependence, we
introduce a compatibility relation between states and quasi dominions that can
be extracted by the query operation. Such a relation also forms the domain of
the successor function. The partial order together with the query and successor
operations and the compatibility relation forms what we call a dominion space.

Definition 2 (Dominion Space). A dominion space for a game � ∈ PG
is a tuple D � 〈�,S,�,
, ↓〉, where (1) S � 〈S,�,≺〉 is a well-founded partial
order w.r.t. ≺ ⊂ S × S with distinguished element � ∈ S, (2) � ⊆ S × QD−

�

is the compatibility relation, (3) 
 : S → QD� is the query function mapping
each element s ∈ S to a quasi dominion pair (Q, α) � 
(s) ∈ QD� such that,
if (Q, α) ∈ QD−

�
then s�(Q, α), and (4) ↓ : � → S is the successor function

mapping each pair (s, (Q, α)) ∈ � to the element s� � s ↓(Q, α) ∈ S with s�≺s.

The depth of a dominion space D is the length of the longest chain in the
underlying partial order S starting from �. Instead, by execution depth of D
we mean the length of the longest chain induced by the successor function ↓.
Obviously, the execution depth is always bound by the depth.

Different dominion spaces can be associated to the same game. Therefore, in
the rest of this section, we shall simply assume a function Γ mapping every
game � to a dominion space Γ (�). Given the top element of D = Γ (�),
Algorithm 1 searches for a dominion of either one of the two players by querying
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the current state s for a region pair (Q, α). If this is closed in �, it is returned as an
α-dominion. Otherwise, a successor state s ↓D (Q, α) is computed and the search
proceeds recursively from it. Clearly, since the partial order is well-founded, ter-
mination of the srcD procedure is guaranteed. The total number of recursive calls
is, therefore, the execution depth dD(n, e, k) of the dominion space D, where n, e,
and k are the number of positions, moves, and priorities, respectively. Hence, srcD
runs in time O(dD(n, e, k) · (T�(n, e) + T↓(n, e)), where T�(n, e) and T↓(n, e)
denote the time needed by the query and successor functions, respectively. Thus,
the total time to solve a game is O(e + n · dD(n, e, k) · (T�(n, e) + T↓(n, e))).
Since the query and successor functions of the dominion space considered in
the rest of the paper can be computed in linear time w.r.t. both n and e, the
whole procedure terminates in time O(n · (n + e) · dD(n, e, k)). As to the space
requirements, observe that srcD is a tail recursive algorithm. Hence, the upper
bound on memory only depends on the space needed to encode the states of a
dominion space, namely O(log ‖D‖), where ‖D‖ is the size of the partial order
S associated with D.

Soundness of the approach follows
from the observation that quasi α-
dominions closed in the entire game are
winning for player α and so are their
α-attractors. Completeness, instead, is
ensured by the nature of dominion
spaces. Indeed, algorithm srcD always
terminates by well-foundedness of the
underlying partial order and, when it
eventually does, a dominion for some
player is returned. Therefore, the cor-
rectness of the algorithm reduces to
proving the existence of a suitable
dominion space, which is the subject of
the next section.

4 Priority Promotion

In order to compute dominions, we shall consider a restricted form of quasi
dominions that constrains the escape set to have the maximal priority in the
game. Such quasi dominions are called regions.

Definition 3 (Region). A quasi α-dominion R is an α-region if pr(�) ≡2 α
and all the positions in escα

�
(R) have priority pr(�), i.e. escα

�
(R) ⊆ pr−1

�
(pr(�)).

As a consequence of the above definition, if the opponent α can escape from
an α-region, it must visit a position with the highest priority in the region, which
is of parity α. Similarly to the case of quasi dominions, we shall denote with Rg�

the set of region pairs in � and with Rg−
�

and Rg+
�

the sets of open and closed
region pairs, respectively. A closed α-region is clearly an α-dominion.
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At this point, we have all the tools to explain the crucial steps underlying
the search procedure. Open regions are not winning, as the opponent can force
plays exiting from them. Therefore, in order to build a dominion starting from
open regions, we look for a suitable sequence of regions that can be merged
together until a closed one is found. Obviously, the merging operation needs to
be applied only to regions belonging to the same player, in such a way that the
resulting set of position is still a region of that player. To this end, a mech-
anism is proposed, where an α-region R in some game � and an α-dominion
D in a subgame of � not containing R itself are merged together, if the only
moves exiting from α-positions of D in the entire game lead to higher prior-
ity α-regions and R has the lowest priority among them. As we shall see, this
ensures that the new region R� � R ∪ D has the same associated priority as R.
This merging operation, based on the following proposition, is called promotion
of the lower region to the higher one.

Proposition 1 (Region Merging). Let � ∈ PG be a game, R ⊆ Ps� an α-
region, and D ⊆ Ps�\R an α-dominion in the subgame � \ R. Then, R� � R ∪ D
is an α-region in �. Moreover, if both R and D are α-maximal in � and � \ R,
respectively, then R� is α-maximal in � as well.

Proof. Since R is an α-region, there is an α-strategy σR such that, for all α-
strategies σα ∈ Strα

�
(R), with intα

�
(R) ⊆ dom(σα), and positions v ∈ R, the play

induced by the two strategies is either winning for α or exits from R passing
through a position of the escape set escα

�
(R), which must be one of the position

of maximal priority in � and of parity α. Set D is, instead, an α-dominion in
the game � \ R, therefore an α-strategy σD ∈ Str�\R exists that is winning for
α from every position in D, regardless of the strategy σ′

α ∈ Strα
�\R(D), with

intα
�\R(D) ⊆ dom(σ′

α), chosen by the opponent α. To show that R� is an α-
region, it suffices to show that the following three conditions hold: (i) it is a
quasi α-dominion; (ii) the maximal priority of � is of parity α; (iii) the escape
set escα

�
(R�) is contained in pr−1

�
(pr(�)).

Condition (ii) immediately follows from the assumption that R is an α-region
in �. To show that also Condition (iii) holds, we observe that, since D is an α-
dominion in � \ R, the only possible moves exiting from α-positions of D in
game � must lead to R, i.e., escα

�
(D) ⊆ R. Hence, the only escaping positions

of R�, if any, must belong to R, i.e. escα
�
(R�) ⊆ escα

�
(R). Since R is an α-region

in �, it hods that escα
�
(R) ⊆ pr−1

�
(pr(�)). By transitivity, we conclude that

escα
�
(R�) ⊆ pr−1

�
(pr(�)).

Let us now consider Condition (i) and let the α-strategy σR� � σR ∪ σD

be defined as the union of the two strategies above. Note that, being D and R
disjoint sets of positions, σR� is a well-defined strategy. We have to show that
every path π compatible with σR� and starting from a position in R� is either
winning for α or ends in a position of the escape set escα

�
(R�).

First, observe that escα
�
(R�) contains only those positions in the escaping set

of R from which α cannot force to move into D, i.e. escα
�
(R�) = escα

�
(R)\preα

�
(D).
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Let now π be a play compatible with σR� . If π is an infinite play, then it
remains forever in R� and we have three possible cases. If π eventually remains
forever in D, then it is clearly winning for α, since σR� coincides with σD on
all the positions in D. Similarly, if π eventually remains forever in R, then it is
also winning for α, as σR� coincides with σR on all the positions in R. If, on
the other hand, π passes infinitely often through both R and D, it necessarily
visits infinitely often an escaping position in escα

�
(R) ⊆ pr−1

�
(pr(�)), which has

the maximal priority in � and is of parity α. Hence, the parity of the maximal
priority visited infinitely often along π is α and π is winning for player α. Finally,
if π is a finite play, then it must end at some escaping position of R from where
α cannot force to move to a position still in R�, i.e., it must end in a position of
the set escα

�
(R) \ preα

�
(D) = escα

�
(R�). Therefore, lst(π) ∈ escα

�
(R�). We can then

conclude that R� also satisfies Condition (i).
Let us now assume, by contradiction, that R� is not α-maximal. Then, there

must be at least one position v belonging to atrα
�
(R�) \ R�, from which α can

force entering R� in one move. Assume first that v is an α-position. Then there
is a move from v leading either to R or to D. But this means that v belongs to
either atrα

�
(R) \ R or atrα

�\R(D) \ D, contradicting α-maximality of those sets. If
v is a α-position, instead, all its outgoing moves must lead to R ∪ D. If all those
moves lead to R, then v ∈ atrα

�
(R) \ R, contradicting α-maximality of R in �. If

not, then in the subgame � \ R, the remaining moves from v must all lead to D.
But then, v ∈ atrα

�\R(D) \ D, contradicting α-maximality of D in � \ R.

During the search, we keep track of the computed regions by means of an
auxiliary priority function r ∈ Δ� � Ps� → Pr�, called region function, which
formalises the intuitive notion of priority of a region described above. Initially,
the region function coincides with the priority function pr� of the entire game �.
Priorities are considered starting from the highest one. A region of the same
parity α ∈ {0, 1} of the priority p under consideration is extracted from the
region function, by collecting the set of positions r−1(p). Then, its attractor
R � atrα

��(r−1(p)) is computed w.r.t. the subgame ��, which is derived from �

by removing the regions with priority higher than p. The resulting set forms an
α-maximal set of positions from which the corresponding player can force a visit
to positions with priority p. This first phase is called region extension. If the
α-region R is open in ��, we proceed and process the next priority. In this case,
we set the priority of the newly computed region to p. Otherwise, one of two
situations may arise. Either R is closed in the whole game � or the only α-moves
exiting from R lead to higher regions of the same parity. In the former case, R
is a α-dominion in the entire game and the search stops. In the latter case, R is
only an α-dominion in the subgame ��, and a promotion of R to a higher region
R� can be performed, according to Proposition 1. The search, then, restarts from
the priority of R�, after resetting to the original priorities in pr� all the positions
of the lower priority regions. The region R� resulting from the union of R� and R
will then be reprocessed and, possibly, extended in order to make it α-maximal.
If R can be promoted to more than one region, the one with the lowest priority
is chosen, so as to ensure the correctness of the merging operation. Due to the
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property of maximality, no α-moves from R to higher priority α-regions exist.
Therefore, only regions of the same parity are considered in the promotion step.
The correctness of region extension operation above, the remaining fundamental
step in the proposed approach, is formalised by the following proposition.

Proposition 2 (Region Extension). Let � ∈ PG be a game and R� ⊆ Ps�

an α-region in �. Then, R � atrα
�
(R�) is an α-maximal α-region in �.

Proof. Since R� is an α-region in �, then the maximal priority in � is of parity
α and escα

�
(R�) ⊆ pr−1

�
(pr(�)). Hence, any position v in � must have priority

pr�(v) ≤ pr(�). Player α can force entering R� from every position in atrα
�
(R�) \

R�, with a finite number of moves. Moreover, R� is a quasi α-dominion and the
priorities of the positions in Ps�\R� are lower than or equal to pr(�) ≡2 α. Hence,
every play that remains in R forever either eventually remains forever in R� and
is winning for α, or passes infinitely often through R� and atrα

�
(R�) \ R�. In the

latter case, that path must visit infinitely often a position in escα
�
(R�) that has

the maximal priority in � and has parity α. Hence, the play is winning for α. If,
on the other hand, α can force a play to exit from R, it can do so only by visiting
some position in escα

�
(R�). In other words, escα

�
(R) ⊆ escα

�
(R�) ⊆ pr−1

�
(pr(�)).

In either case, we conclude that R is an α-region in �. Finally, being R the result
of an α-attractor, it is clearly α-maximal.

e/2

c/4

a/6

i/0

d/3

b/5

g/1

h/1 f/2

Fig. 1. Running example.

Table 1. PP simulation.

1 2 3 4 5 6 7

6 a↓ · · · · · · · · · · · · a,b,d,g,i↓ · · ·
5 b,f,h↓ · · · · · · b,d,f,g,h↓ · · ·
4 c↓ c,e↓ · · · c↓ c,e↓ c↓ c,e,f,h↑6

3 d↓ d↓ d,g↑5

2 e↑4 e↑4 e, f, h↑4

1 g↑3

0 i↑6

Figure 1 and Table 1 illustrate the search procedure on an example game,
where diamond shaped positions belong to player 0 and square shaped ones to
the opponent 1. Player 0 wins from every position, hence the 0-region containing
all the positions is a 0-dominion in this case. Each cell of the table contains
a computed region. A downward arrow denotes a region that is open in the
subgame where it is computed, while an upward arrow means that the region
gets to be promoted to the priority in the subscript. The index of each row
corresponds to the priority of the region. Following the idea sketched above, the
first region obtained is the single-position 0-region {a}, which is open because
of the two moves leading to d and e. At priority 5, the open 1-region {b, f, h}
is formed by attracting both f and h to b, which is open in the subgame where
{a} is removed. Similarly, the 0-region {c} at priority 4 and the 1-region {d}
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at priority 3 are open, once removed {a, b, f, h} and {a, b, c, f, h}, respectively,
from the game. At priority 2, the 0-region {e} is closed in the corresponding
subgame. However, it is not closed in the whole game, since it has a move leading
to c, i.e., to region 4. A promotion of {e} to 4 is then performed, resulting in
the new 0-region {c, e}. The search resumes at the corresponding priority and,
after computing the extension of such a region via the attractor, we obtain
that it is still open in the corresponding subgame. Consequently, the 1-region of
priority 3 is recomputed and, then, priority 1 is processed to build the 1-region
{g}. The latter is closed in the associated subgame, but not in the original
game, because of a move leading to position d. Hence, another promotion is
performed, leading to closed region in Row 3 and Column 3, which in turn triggers
a promotion to 5. Observe that every time a promotion to a higher region is
performed, all positions of the regions at lower priorities are reset to their original
priorities. The iteration of the region forming and promotion steps proceeds until
the configuration in Column 7 is reached. Here only two 0-regions are present:
the open region 6 containing {a, b, d, g, i} and the closed region 4 containing
{c, e, f, h}. The second one has a move leading to the first one, hence, it is
promoted to its priority. This last operation forms a 0-region containing all the
positions of the game. It is obviously closed in the whole game and is, therefore,
a 0-dominion.

Note that, the positions in 0-region {c, e} are reset to their initial priorities,
when 1-region {d, g} in Column 3 is promoted to 5. Similarly, when 0-region {i}
in Column 5 is promoted to 6, the priorities of the positions in both regions
{b, d, f, g, h} and {c, e}, highlighted by the grey areas, are reset. This is actually
necessary for correctness, at least in general. In fact, if region {b, d, f, g, h} were
not reset, the promotion of {i} to 6, which also attracts b, d, and g, would leave
{f, h} as a 1-region of priority 5. However, according to Definition 3, this is not a
1-region. Even worse, it would also be considered a closed 1-region in the entire
game, without being a 1-dominion, since it is actually an open 0-region. This
shows that, in principle, promotions to an higher priority require the reset of
previously built regions of lower priorities.

In the rest of this section, we shall formalise the intuitive idea described
above. The necessary conditions under which promotion operations can be
applied are also stated. Finally, query and successor algorithms are provided,
which ensure that the necessary conditions are easy to check and always met
when promotions are performed.

The PP Dominion Space. In order to define the dominion space induced by
the priority-promotion mechanism (PP, for short), we need to introduce some
additional notation. Given a priority function r ∈ Δ� and a priority p ∈ Pr,
we denote by r(≥p) (resp., r(>p) and r(<p)) the function obtained by restricting
the domain of r to the positions with priority greater than or equal to p (resp.,
greater than and lower than p). Formally, r(≥p) � r�{v ∈ dom(r) : r(v) ≥ p},
r(>p) � r�{v ∈ dom(r) : r(v) > p}, and r(<p) � r�{v ∈ dom(r) : r(v) < p}. By �≤p

r

we denote the largest subgame contained in the structure � \ dom(
r(>p)

)
, which

is obtained by removing from � all the positions in the domain of r(>p).
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A priority function r ∈ R� ⊆ Δ� in � is a region function iff, for all priorities
q ∈ rng(r) with α � q mod 2, it holds that r−1(q) ∩ Ps

�
≤q
r

is an α-region in the
subgame �≤q

r , if non-empty. In addition, we say that r is maximal above p ∈ Pr
iff, for all q ∈ rng(r) with q > p, we have that r−1(q) is α-maximal in �≤q

r with
α � q mod 2.

To account for the current status of the search of a dominion, the states s of
the corresponding dominion space need to contain the current region function
r and the current priority p reached by the search in �. To each of such states
s � (r, p), we then associate the subgame at s defined as �s � �≤p

r , representing
the portion of the original game that still has to be processed.

We can now formally define the Priority Promotion dominion space, by char-
acterising the corresponding state space and compatibility relation. Moreover,
algorithms for the query and successor functions of that space are provided.

Definition 4 (State Space). A state space is a tuple S� �〈S�,��,≺�〉, where
its components are defined as prescribed in the following:

1. S� ⊆ R� × Pr� is the set of all pairs s � (r, p), called states, composed of
a region function r ∈ R� and a priority p ∈ Pr� such that (a) r is maximal
above p and (b) p ∈ rng(r), and (c) r(<p) ⊆ pr�

(<p);
2. �� � (pr�, pr(�));
3. for any two states s1 � (r1, p1), s2 � (r2, p2) ∈ S�, it holds that s1≺�s2

iff either (a) there exists a priority q ∈ rng(r1) with q ≥ p1 such that
(a.i) r1(>q) = r2

(>q) and (a.ii) r−1
2 (q) ⊂ r−1

1 (q), or (b) both (b.i) r1 = r2 and
(b.ii) p1 < p2 hold.

The state space specifies the configurations in which the priority promotion
procedure can reside and the relative order that the successor function must
satisfy. In particular, for a given state s � (r, p), every region r−1(q), with priority
q > p, recorded in the region function r has to be α-maximal, where α = q mod 2.
This implies that r−1(q) ⊆ Ps

�
≤q
r

. Moreover, the current priority p of the state
must be the priority of an actual region in r. As far as the order is concerned,
a state s1 is strictly smaller than another state s2 if either there is a region
recorded in s1 at some higher priority that strictly contains the corresponding
one in s2 and all regions above are equal in the two states, or state s1 is currently
processing a lower priority than the one of s2.

At this point, we can determine
the regions that are compatible with
a given state. They are the only ones
that the query function is allowed to
return and that can then be used
by the successor function to make
the search progress in the dominion
space. Intuitively, a region pair (R, α)
is compatible with a state s � (r, p)
if it is an α-region in the current sub-
game �s. Moreover, if such region is α-open in that game, it has to be α-maximal,
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and it has to necessarily contain the current region r−1(p) of priority p in r. These
three accessory properties ensure that the successor function is always able to
cast R inside the current region function r and obtain a new state.

Definition 5 (Compatibility Relation). An open quasi dominion pair (R,
α) ∈ QD−

�
is compatible with a state s � (r, p) ∈ S�, in symbols s��(R, α), iff

(1) (R, α) ∈ Rg�s
and (2) if R is α-open in �s then (2.a) R is α-maximal in �s

and (2.b) r−1(p) ⊆ R.

Algorithm 2 provides a possible implementation for the query function com-
patible with the priority-promotion mechanism. Let s � (r, p) be the current
state. Line 1 simply computes the parity α of the priority to process in that
state. Line 2, instead, computes in game �s the attractor w.r.t. player α of the
region contained in r at the current priority p. The resulting set R is, according
to Proposition 2, an α-maximal α-region in �s containing r−1(p).

Before continuing with the description of the implementation of the successor
function, we need to introduce the notion of best escape priority for player α
w.r.t. an α-region R of the subgame �s and a region function r in the whole
game �. Informally, such a value represents the best priority associated with an
α-region contained in r and reachable by α when escaping from r. To formalise
this concept, let I � Mv� ∩ ((R ∩ Psα

�
) × (dom(r)\R)) be the interface relation

between R and r, i.e., the set of α-moves exiting from R and reaching some
position within a region recorded in r. Then, bepα

�
(R, r) is set to the minimal

priority among those regions containing positions reachable by a move in I.
Formally, bepα

�
(R, r) � min(rng(r�rng(I ))). Note that, if R is a closed α-region

in �s, then bepα
�
(R, r) is necessarily of parity α and greater than the priority

p of R. This property immediately follows from the maximality of r above p
in any state of the dominion space. Indeed, no move of an α-position can lead
to a α-maximal α-region. For instance, in the example of Fig. 1, for 0-region
R = {e, f, h} with priority equal to 2 in column 6, we have that I = {(e, c), (h, b)}
and r�rng(I ) = {(c, 4), (b, 6)}. Hence, bep1

�
(R, r) = 4.

In the following, to reset the pri-
ority of some the positions in the
game, after a promotion of a given
region is performed, we define the
completing operator � that, taken a
partial function f : A ⇀ B and a
total function g : A → B, returns the
total function g�f � (g\dom(f))∪f :
A → B. The result is equal to f on its
domain and assumes the same val-
ues of g on the remaining part of
the set A.

Algorithm 3 implements the suc-
cessor function informally described
at the beginning of the section. Given the current state s and a compatible
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region pair (R, α) open in the whole game as inputs, it produces a successor
state s� � (r�, p�) in the dominion space. It first checks whether R is open also
in the subgame �s (Line 1). If this is the case, it assigns priority p to region R
and stores it in the new region function r� (Line 2). The new current priority p�

is, then, computed as the highest priority lower than p in r� (Line 3). If, on the
other hand, R is closed in �s, a promotion merging R with some other α-region
contained in r is required. The next priority p� is set to the bep of R for player α
in the entire game � w.r.t. r (Line 4). Region R is, then, promoted to priority p�

and all the priorities below p� in the current region function r are reset (Line 5).
The correctness of this last operation follows from Proposition 1.

As already observed in Sect. 3, a dominion space, together with Algorithm 1,
provides a sound and complete solution procedure. The following theorem states
that the priority-promotion mechanism presented above is indeed a dominion
space. The proof will be provided in the extended version of the paper.

Theorem 1 (Dominion Space). For a game �, the structure D� � 〈�,S�,
��,
�, ↓�〉, where S� is given in Definition 4, �� is the relation of Definition 5,
and 
� and ↓� are the functions computed by Algorithms 2 and 3 is a dominion
space.

Complexity of PP Dominion Space. To conclude, we estimate the size and
depth of dominion space R�. This provides upper bounds on both the time and
space needed by the search procedure srcR�

computing dominions. By looking at
the definition of state space S�, it is immediate to see that, for a game � with n
positions and k priorities, the number of states is bounded by kn. Indeed, there
are at most kn functions r : Ps� → Pr� from positions to priorities that can be
used as region function of a state. Note that the associated current priority is
uniquely determined by the content of the region function. Measuring the depth
is a little trickier. A coarse bound can be obtained by observing that there is an
homomorphism from S� to the well-founded partial order, in which the region
function r of a state is replaced by a partial function f : Pr� ⇀ [1, n] with the
following properties: it assigns to each priority p ∈ rng(r) the size f(p) of the
associated region r−1(p). The order (f1, p1)≺(f2, p2) between two pairs is derived
from the one on the states, by replacing r−1

2 (q) ⊂ r−1
1 (q) with f2(q) < f1(q).

This homomorphism ensures that every chain in S� corresponds to a chain in
the new partial order. Moreover, there are exactly

(
n+k

k

)
partial functions f

such that
∑

p∈dom(f) f(p) ≤ n. Consequently, every chain cannot be longer than(
n+k

k

) ≤ (
e(n

k + 1)
)k, where e is the Euler constant. By further exploiting the

structure of the space, one can obtain a recurrence relation expressing a slightly
better upper bound, whose explicit solution is 3·∑k−2

i=0

(
n−2

i

)
. Then, by applying a

standard approximation via geometric series based on the inequality
(

h−i
n−h+i

)i

≤
(

m
h−i

)
/
(
m
h

) ≤
(

h
n−h+1

)i

, we derive the asymptotic bound stated by the following
theorem. A formal account of the recurrence relation will be provided in the
extended version of this article.
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Theorem 2 (Size & Depth Upper Bounds). The size of a PP dominion
space R with n ∈ N+ positions and k ∈ [1, n] priorities is bounded by kn.
Moreover, if 2 ≤ k, its depth is bounded by 3 · ∑k−2

i=0

(
n−2

i

)
, which is less than

3 n−k+1
n−2k+3

(
en−2

k−2

)k−2

, if k < n/2, and less than 3(2n−2 − c(n−2
k−2 )k−2), for a con-

stant c > 0, otherwise.

Unfortunately, due to the reset operations performed after each promotion,
an exponential worst-case can actually be built. Indeed, consider the game �m,h

having all positions ruled by player 0 and containing h chains of length 2m + 1
that converge into a single position of priority 0 with a self loop. The i-th chain
has a head of priority 4k − i and a body composed of m blocks of two positions
having priority 2i − 1 and 2i, respectively. The first position in each block also
has a self loop. An instance of this game with m = 2 and h = 4 is depicted in
Fig. 2. The labels of the positions correspond to the associated priorities and the
highlighted area at the bottom of the figure groups together the last blocks of
the chains. Intuitively, the execution depth of the PP dominion space for this
game is exponential, since the consecutive promotion operations performed on
each chain can simulate the increments of a counter up to m. Also, the priorities
are chosen in such a way that, when the i-th counter is incremented, all the j-th
counters with j ∈ ]i, h] are reset. Therefore, the whole game simulates a counter
with h digits taking values from 0 to m. Hence, the overall number of performed
promotions is (m + 1)h. The search procedure on �2,4 starts by building the
four open 1-regions {15}, {13}, {11}, and {9} and the open 0-region {8′, 7′′, 8′′},
where we use apices to distinguish different positions with the same priority.
This state represents the configuration of the counter, where all four digits are
set to 0. The closed 1-region {7′} is then found and promoted to 9. Consequently,
the previously computed 0-region with priority 8 is reset and the new region is
maximised to obtain the open 1-region {9, 7′, 8′}. Now, the counter is set to 0001.

0

13 1115 9

1 3 5 7

2 4 6 8

1 3 5 7

2 4 6 8

Fig. 2. The �
PP
2,4 game.

After that, the open 0-region {8′′} and the closed
1-region {7′′} are computed. The latter one is pro-
moted to 9 and maximised to attract position 8′′.
This completes the 1-region containing the entire
chain ending in 9. The value of the counter is
now 0002. At this point, immediately after the
construction of the open 0-region {6′, 5′′, 6′′}, the
closed 1-region {5′} is found, promoted to 11, and
maximised to absorb position 6′. Due to the pro-
motion, the positions in the 1-region with priority
9 are reset to their original priority and all the
work done to build it gets lost. This last operation
represents the reset of the least significant digit of
the counter, caused by the increment of the second
one, i.e., the counter displays 0010. Following sim-
ilar steps, the process carries on until each chain is
grouped in a single region. The corresponding state represents the configuration
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of the counter in which all digits are set to m. Thus, after an exponential number
promotions, the closed 0-region {0} is eventually obtained as solution.

Theorem 3 (Execution-Depth Lower Bounds). For all numbers h ∈ N,
there exists a PP dominion space Rh with k = 2h + 1 positions and priorities,
whose execution depth is 3 · 2h − 2 = Θ2k/2. Moreover, for all numbers m ∈ N+,
there exists a PP dominion space Rm,h with n = (2m + 1) · h + 1 positions and
k = 3h+1 priorities, whose execution depth is ((3m+1) · (m+1)h −1)/m−2 =
O

(
(3n/(2(k − 1)))k/3

)
.

Observe that, in the above theorem, we provide two different exponential
lower bounds. The general one, with k/3 as exponent and a parametric base,
is the result of the game �m,h described in the previous paragraph, where
k = 3h + 1. The other bound, instead, has a base fixed to 2, but the worse
exponent k/2. We conjecture that the given upper bound could be improved to
match the exponent k/2 of this lower bound. In this way, we would obtain an
algorithm with an asymptotic behaviour comparable with the one exhibited by
the small-progress measure procedure [32]. This study will be further pursued in
the extended version of the article.

5 Experimental Evaluation

In order to assess the effectiveness of the proposed approach, the new tech-
nique described above has been implemented in the tool PGSolver [28], which
collects implementations of several parity game solvers proposed in the litera-
ture. This software framework, implemented in OCaml, also provides a bench-
marking tool, which can generate different forms of parity games. The avail-
able benchmarks divide into concrete problems and synthetic ones. The concrete
benchmarks encode validity and verification problems for temporal logics. They
consist in parity games resulting from encodings of the language inclusion prob-
lem between automata, specifically a non-deterministic Büchi automaton and a
deterministic one, reachability problems, namely the Tower of Hanoi problem,
and fairness verification problems, the Elevator problem (see [28]). The synthetic
benchmarks divide into randomly generated games and various families corre-
sponding to difficult cases (clique and ladder-like games) and worst cases of the
solvers implemented in PGSolver. To fairly compare the different solution tech-
niques used by the underlying algorithms, the solvers involved in the experiments
have been isolated from the generic solver implemented in PGSolver, which
exploits game transformation and decomposition techniques in the attempt to
speed up the solution process. However, those optimisations can, in some cases,
solve the game without even calling the selected algorithm, and, in other cases,
the resulting overhead can even outweigh the solver time, making the compar-
ison among solvers virtually worthless [28]. Experiments were also conducted
with different optimisations enabled and the results exhibit the same pattern
emerging in the following experimental evaluation.
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The algorithms considered in the experimentation are the Zielonka algorithm
Rec [54], its two dominion decomposition variants, Dom [33,34] and Big [48], the
strategy improvement algorithm Str [52], and the one proposed in this article,
PP. Small progress measure [32] is not included, since it could not solve any of
the tested benchmarks within the available computational resources1.

Table 2. Execution times in seconds on several bench-
mark families. Time out (†) is set to 600 s and memory
out (‡) to 7.5 Gb.

Benchmark Size Dom Big Str Rec PP

Hanoi 6.3M 21.4 21.4 ‡ 17.4 14.2

Elevator 7.7M † ‡ ‡ ‡ 43.3

Lang. Incl 5M † ‡ ‡ 145.5 21.1

Ladder 4M † ‡ ‡ 35.0 17.1

Str. Imp 4.5M 81.0 82.8 † 71.0 50.0

Clique 8K † ‡ † † 21.7

MC. Lad 7.5M † ‡ ‡ 4.3 6.5

Rec. Lad 50K † ‡ 0.6 ‡ 311.2

Jurdziński 40K † † 188.2 † 314.4

Special Families. Table 2
displays the results of all
the solvers involved on the
benchmark families avail-
able in PGSolver. We
only report on the biggest
instances we could deal
with, given the available
computational resources2.
The parameter Size refers
to the number of posi-
tions in the games and
the best performance are
emphasised in bold. The
first three rows consider
the concrete verification problems mentioned above. On the Tower of Hanoi
problem all the solvers perform reasonably well, except for Str due its high
memory requirements. The Elevator problem proved to be very demanding in
terms of memory for all the solvers, except for our new algorithm and Dom,
which, however, could not solve it within the time limit of 10 min. Our solver
performs extremely well on both this benchmark and on Language Inclusion,
which could be solved only by Rec among the other solvers. On the worst case
benchmarks, it performs quite well also on Ladder, Strategy Improvement, and
Clique, which proved to be considerably difficult for all the other solvers. It was
outperformed only on the last three ones: the Modelchecker, the Recursive Lad-
der, and Jurdziński games. Despite this fact, the new solver exhibit the most
consistent behaviour overall on these benchmarks. Indeed, in all those bench-
marks, the priority promotion algorithm requires no promotions regardless of
the input parameters, except for the elevator problem, where it performs only
two promotions.

Random Games. Figure 3 compares the running times (left-hand side) and
memory requirements (right-end side) of the new algorithm PP against Rec and
Str on 2000 random games of size ranging from 5000 to 20000 positions and
1 Experiments were carried out on a 64-bit 3.1 GHz Intel R© quad-core machine, with

i5-2400 processor and 8 GB of RAM, running Ubuntu 12.04 with Linux kernel ver-
sion 3.2.0. PGSolver was compiled with OCaml version 2.12.1.

2 The instances were generated with the following PGSolver commands:
towersofhanoi 13, elevatorgame 8, langincl 500 100, laddergame 4000000,
stratimprgen -pg friedmannsubexp 1000, modelcheckerladder 2500000, clique
game 8000, recursiveladder 10000, and jurdzinskigame 100 100.
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Fig. 3. Time and auxiliary memory on random games with 2 moves per position.

2 outgoing moves per position. Interestingly, these random games proved to
be quite challenging for all the considered solvers. We set a time-out to 180 s
(3 min). Both Dom and Big perform quite poorly on those games, hitting the
time-out already for very small instances, and we decided to leave them out of
the picture. The behaviour of the solvers is typically highly variable even on
games of the same size and priorities. To summarise the results, the average
running time on clusters of games seemed the most appropriate choice in this
case. Therefore, each point in the graph shows the average time over a cluster
of 100 different games of the same size: for each size value n, we chose a number
k = n · i/10 of priorities, with i ∈ [1, 10], and 10 random games were generated
for each pair of n and k. The new algorithm perform significantly better than the
others on those games. The right-hand side graph also shows that the theoretical
improvement on the auxiliary memory requirements of the new algorithm has
a considerable practical impact on memory consumption compared to the other
solvers. We also experimented on random games with a higher number of moves
per position. The resulting games turn out to be much easier to solve for all the
solvers. This behaviour might depend on the specific random generator provided
by PGSolver. However, those experiments still show better performance by
the new algorithm w.r.t. the competitor ones. Due to the space constraints, the
corresponding results will be reported in the extended version of the paper.

6 Discussion

We considered the problem of solving Parity Games, a special form of infinite-
duration games over graphs having relevant applications in various branches of
Theoretical Computer Science. We proposed a novel solution technique, based
on a priority-promotion mechanism. Based on this approach, a new solution
algorithm have been presented and studied. We gave proofs of its correctness
and provided an accurate analysis of its time and space complexities.

As far as time complexity is concerned, an exponential upper bound in the
number of priorities has been given. A lower bound for the worst-case was also



Solving Parity Games via Priority Promotion 287

presented in the form of a family of parity games on which the new technique
exhibits an exponential behaviour. On the bright side, the new solution exhibits
the best space complexity among the currently known algorithms for parity
games. In fact, we showed that the maximal additional space needed to solve
a parity game is linear in the number of positions, logarithmic in the number
of priorities, and independent from the number of moves in the game. This is
an important result, in particular considering that in practical applications we
often need to deal with games having a very high number of positions, moves,
and, in some cases, priorities. Therefore, low space requirements are essential for
practical scalability.

To assess the effectiveness of the new approach, experiments were carried
out against concrete and synthetic problems. We compared the new algorithm
with the state-of-the-art solvers implemented in PGSolver. The results are very
promising, showing that the proposed approach is extremely effective in prac-
tice, often substantially better than existing ones. This suggests that the new
approach is worth pursuing further. Therefore, we are currently investigating
new and clever priority-promotion policies that try to minimise the number of
region resets after a priority promotion.

It would be interesting to investigate the applicability of the priority promo-
tion approach to related problems, such as prompt-parity games [42] and similar
conditions [12,26,27], and even in wider contexts like mean-payoff games [13,16]
and energy games [10,11].
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46. Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded.
In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92.
Springer, Heidelberg (2003)
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