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Abstract. In compositional model checking, the approach is to reason
about the correctness of a system by lifting results obtained in analy-
ses of subsystems to the system-level. The main challenge, however, is
that requirements, in the form of temporal logic formulae, are usually
specified at the system-level, and it is not obvious how to relate these to
subsystem-local behaviour. In this paper, we propose a new approach to
checking regular safety properties, which we call Incremental Counter-
Example Construction (ICC). Its main strong point is that it performs
a series of model checking procedures, and that each one only explores
a small part of the entire state space. This makes ICC an excellent app-
roach in those cases where state space explosion is an issue. Moreover, it
is frequently much faster than traditional explicit-state model checking,
particularly when the model satisfies the verified property, and in most
cases not significantly slower. We explain the technique, and report on
experiments we have conducted using an implementation of ICC, com-
paring the results to those obtained with other approaches.

1 Introduction

Model checking [3] is an automatic technique to verify that a given specification
of a concurrent system meets a particular functional property. The specification
of a concurrent system describes a finite number of components, or processes,
and how these can interact. Model checking involves very time and memory
demanding computations. Most computations rely on state space exploration.
This involves interpreting the specification, resulting in building a graph, or state
space, describing all its potential behaviour.

However, model checking suffers from the state space explosion problem,
meaning that a linear growth of the model tends to lead to an exponential
growth of the corresponding state space. Over the years, a whole range of tech-
niques have been proposed to mitigate this problem. One prominent technique is
compositional model checking [10]. The aim is to break down the model checking
problem into several subproblems, and solve these individually, thereby achieving
a compositional approach.
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The main challenge in compositional model checking is that on the one hand,
one wishes to reason about the correctness of subsystems or components and lift
those results to the system level, but on the other hand, the functional property
to be checked is usually expressed directly at the system level. Furthermore,
the possible interactions between the components need to be taken into account
when verifying, therefore only checking components in isolation does not suffice.

In this paper, we present a new approach to compositional model checking,
which we call Incremental Counter-Example Construction (ICC). The main idea
is that the system components are placed in a fixed order, and a sequence of
verification checks is performed, each involving a single component M in the
system in the specified order. Furthermore, each check involves a version of the
negation of the functional property ϕ at the relevant level of abstraction, and
a partially built counter-example c. The goal of each check is to extend c with
behaviour of M in such a way that (the abstract version of) ϕ is still violated.
If one is able to extend a counter-example with behaviour of all components in
the system, then a complete counter-example has been successfully constructed.
If extending c fails in some check, ICC backtracks to an earlier check to produce
a new counter-example candidate. Rejected candidates are added to checks as
constraints to prevent them from being proposed again.

The main benefit of ICC is that it is often very memory-efficient; frequently
the individual checks explore state spaces that are orders of magnitude smaller
than the full system state space. For models with sufficiently large state spaces,
we observe that ICC allows us to check those models, while traditional model
checking runs out of memory.

Another benefit is that, while reducing the memory-use, ICC is actually not
significantly slower than traditional, explicit-state model checking. In fact, it is
frequently even much faster, particularly in those cases where individual checks
can quickly discard large parts of the state space.

The structure of the paper is as follows: Sect. 2 presents the preliminaries.
In Sect. 3, the ICC procedure is presented. Optimisations of this algorithm are
discussed in Sect. 4. Then, experimental results are presented in Sect. 5. Related
work is discussed in Sect. 6, and finally, Sect. 7 contains conclusions and pointers
to future work.

2 Preliminaries

Concurrent System Semantics. We capture the formal semantics of single com-
ponents in concurrent systems in Labelled Transition Systems.

Definition 1 (Labelled Transition System). An LTS G is a tuple 〈S, A, T ,
sin〉, with

– S a finite set of states;
– A a set of action labels, not containing the special internal, or hidden, system

action τ ;
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– T ⊆ S × A ∪ {τ} × S a transition relation;
– sin ∈ S the initial state.

An LTS G with accepting states has an additional tuple element FG ⊆ S, which
is called the set of accepting states.

The set A ∪ {τ} is denoted by Aτ . Action labels in A are denoted by a, b, c,
etc., while actions in Aτ are denoted by �. A transition (s, �, s′) ∈ T , or s

�−→ s′

for short, denotes that LTS G can move from state s to state s′ by performing
the �-action. Whenever we want to make explicit that s

�−→ s′ is a transition
of G, we write s

�−→G s′. We call G deterministic iff for all � ∈ A ∪ {τ} and
s, s′ ∈ S, if s

�−→ s′, then there exists no s′′ ∈ S with s′ �= s′′ and also s
�−→ s′′.

The reflexive, transitive closure of τ−→ is indicated by =⇒ .
A path σ = 〈sin �1−→ �2−→· · · �n−→ sn〉 through G of length n is a sequence

of n transitions, starting from the initial state, that all exist in T . We call a
state s ∈ S reachable iff there exists at least one path from sin to s. The trace
described by σ is the sequence of actions w(σ) = 〈�1, . . . , �m〉 ∈ A∗

τ as they
appear in σ. The trace w(σ1) of path σ1 is a prefix of w(σ2) of path σ2 iff w(σ2)
can be obtained by extending w(σ1). A trace v is said to be accepted by LTS G
iff there is at least one path σ through G leading to a state in FG and w(σ) = v.
When relevant, we denote this by v�. We refer to the empty trace with ε.

We write 1..n for the set of integers ranging from 1 to n. A vector v̄ of size
n contains n elements indexed from 1 to n. For all i ∈ 1..n, v̄i represents the ith

element of vector v̄.
LTSs can be combined using parallel composition, for which we use the con-

vention that LTSs must synchronise on common actions, while actions unique
to one LTS represent independent actions. An exception to this is the τ -action:
internal steps of an LTS are not synchronised with those of another.

Definition 2 (Parallel composition). Given two LTSs G1 = 〈S1,A1, T1, s
in
1 〉

and G2 = 〈S2,A2, T2, s
in
2 〉, we say that M = G1 || G2 is the parallel composition

of G1 and G2. Its LTS M = 〈SM,AM, TM, s̄inM〉 is defined as follows:

– s̄inM = 〈sin1 , sin2 〉;
– TM and SM are the smallest relation and set, respectively, satisfying s̄inM ∈

SM and for all s̄ ∈ SM, � ∈ A1 ∪ A2 ∪ {τ}:
• s̄1

�−→1 t ∧ � �∈ A2 =⇒ s̄
�−→M 〈t, s̄2〉 ∧ 〈t, s̄2〉 ∈ SM;

• s̄2
�−→2 t ∧ � �∈ A1 =⇒ s̄

�−→M 〈s̄1, t〉 ∧ 〈s̄1, t〉 ∈ SM;
• s̄1

�−→1 t ∧ s̄2
�−→2 t′ ∧ � �= τ =⇒ s̄

�−→M 〈t, t′〉 ∧ 〈t, t′〉 ∈ SM.
– AM = {a | ∃s̄, s̄′ ∈ SM.s̄

a−→M s̄′} \ {τ}.

Besides the parallel composition as defined in Definition 2, we also use a
special parallel composition operator |||, which is identical to || except for the
(non-)synchronisation of τ -actions: contrary to ||, ||| also forces synchronisation
between LTSs on τ -actions. For that reason, we refer to the latter form of parallel
composition as fully synchronised parallel composition.
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Encoding and Verifying Regular Safety Properties. A safety property ϕ is a
linear time property that describes which infinite traces in A∗ are considered
correct. Therefore, its negation ¬ϕ describes which traces violate ϕ by listing all
finite bad prefixes of those traces. If this set of bad prefixes constitutes a regular
language, then ϕ is said to be regular [3]. The negation ¬ϕ can be encoded in
an LTS with accepting states P¬ϕ = 〈SP ,AP , TP , sinP ,FP〉.

Verifying whether a system M, consisting of n components of the form Mi =
〈Si,Ai, Ti, s

in
i 〉 (i ∈ 1..n) satisfies a regular safety property ϕ boils down to

checking whether in the parallel composition M1 || · · · || Mn || P¬ϕ a system
state 〈s1, . . . , sn, s′〉 is reachable from 〈sin1 , . . . , sinn , sinP 〉 in which s′ ∈ FP . For
convenience, we also call such a system state an accepting state. In fact, in
this paper, we use a generalised version of this definition of accepting state:
in a parallel composition of LTSs G1 || · · · || Gn, we say that a system state
〈s1, . . . , sn〉 is accepting iff for all Gi containing accepting states, i.e., FGi

�= ∅,
we have that si ∈ FGi

.

Trace Equivalences. As equivalence relations between LTSs, we use both trace
equivalence and weak trace equivalence [7]. In contrast to trace equivalence, weak
trace equivalence is sensitive to internal actions. These equivalences can be used
to minimise an LTS, i.e., obtain a reduced LTS in which all the (visible) traces
are preserved that are present in the original one. To define these equivalences,
we first define for an LTS with accepting states G = 〈S,A, T , sin,F〉 the set of
traces and weak traces of a state s ∈ S. Sets A∪{�} and Aτ ∪{�} are denoted
by A� and Aτ,�, respectively.

Definition 3 (Traces of a state). For a state s ∈ S, Traces(s) is the minimal
set satisfying:

– ε ∈ Traces(s);
– � ∈ Traces(s) iff s ∈ F ;
– For all � ∈ Aτ , σ ∈ A∗

τ,�, we have �σ ∈ Traces(s) iff there exists an s′ ∈ S
such that s

�−→ s′ and σ ∈ Traces(s′).

Definition 4 (Weak traces of a state). For a state s ∈ S, WTraces(s) is the
minimal set satisfying:

– ε ∈ WTraces(s);
– � ∈ WTraces(s) iff s ∈ F ;
– For all a ∈ A, σ ∈ A∗

�, we have aσ ∈ WTraces(s) iff there exists an s′ ∈ S
such that s

a−→ s′ and σ ∈ WTraces(s′);
– For all σ ∈ A∗

�, we have σ ∈ WTraces(s) iff there exists an s′ ∈ S such that
s

τ−→ s′ and σ ∈ WTraces(s′).

Definition 5 (Trace equivalence). States s, s′ are trace equivalent iff

Traces(s) = Traces(s′)
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Definition 6 (Weak trace equivalence). States s, s′ are weak trace equiv-
alent iff

WTraces(s) = WTraces(s′)

We say that two LTSs G1 = 〈S1,A1, T1, s
in
1 ,F1〉 and G2 = 〈S2,A2, T2, s

in
2 ,F2〉

are trace equivalent and weak trace equivalent iff their initial states sin1 and
sin2 are trace equivalent and weak trace equivalent, respectively. Finally, given
an LTS G = 〈S,A, T , sin,F〉, we refer with Traces(G) and WTraces(G) to
Traces(sin) and WTraces(sin), respectively.

It is known that linear-time properties are preserved by trace equivalence [3],
i.e., if an LTS G1 satisfies a linear-time property ϕ and G1 is trace equivalent to
G2, then also G2 satisfies ϕ. The same holds for weak trace equivalence, as long
as ϕ does not refer to the internal action τ . The standard powerset construc-
tion algorithm to determinise finite automata [40] can be used to reduce LTSs
w.r.t. trace and weak trace equivalence. Although this algorithm has worst-case
complexity O(2|S|), reducing small LTSs of system components can still be done
relatively fast. As an intermediate step, one could consider first reducing the LTS
w.r.t. branching bisimulation, which can be done in O(|T |·(log |A|+log |S|)) [26].

Abstraction. To raise the abstraction level of an LTS, we define action hiding of
an LTS w.r.t. a set of actions A.

Definition 7 (Action hiding). Given an LTS G = 〈S,A, T , sin〉, we define
the LTS G′ = 〈S,A′, T ′, sin〉 resulting from action hiding G w.r.t. A as follows:

– A′ = A ∩ A;
– T ′ = {(s, �, s′) | (s, �, s′) ∈ T ∧ � ∈ A} ∪ {(s, τ, s′) | (s, �, s′) ∈ T ∧ � �∈ A}.

With G↓A, we denote the LTS resulting from first action hiding G w.r.t.
A, and subsequently applying weak trace equivalence reduction on the action
hidden LTS. Similarly, with G↓ we refer to the LTS obtained by applying trace
equivalence reduction on G. Note that G↓ is in general not equivalent to G↓A, in
particular when τ -transitions are present in G.

3 Incremental Counter-Example Construction

In this section, we introduce the basic approach to compositionally verify
whether a system M satisfies a regular safety property ϕ via ICC.

3.1 The ICC Algorithm

We first illustrate how the algorithm works by using an example.

Example. Consider the two LTSs and the property LTS depicted in Fig. 1, where
the doubly lined state denotes an accepting state, and states with a detached
incoming arrow are initial. For this system, the ICC procedure works as follows:



Compositional Model Checking with ICC 575

Fig. 1. Example with two LTSs and the property “after an odd amount of a’s no b can
be performed”. The doubly-lined state is an accepting state.

first, we place LTSs M1 and M2 in some order, say the order in which they are
depicted in Fig. 1. Then, we analyse the parallel composition of the first LTS and
an abstract version of the property LTS w.r.t. the action set A1: M1 || P¬ϕ

↓A1 . A
Breadth-First Search exploration of the state space will reach an accepting state
via a path describing the traces ac∗b (it should be noted that the correctness
of ICC does not depend on the exploration strategy). Next, we replace M1

by an LTS L1 with Traces(L1) = {ab�, acb�, accb�, . . .}, include M2 in the
analysis, and consider another abstract version of the property LTS. This means
that we search for a counter-example in L1 || M2 || P¬ϕ

↓A1∪A2 . In this case,
note that since L1 has an accepting state, a system state is accepting iff both
L1 and P¬ϕ

↓A1∪A2 are in accepting states. Also note that the property LTS is
now abstracted w.r.t. actions in both LTSs. In this system, no accepting state is
reachable, therefore we have to go back to M1 || P¬ϕ

↓A1 to find another accepted
trace. Now, we find a path describing the traces cdac∗b, which we use to construct
a new L′

1. Since an accepting state can be reached in L′
1 || M2 || P¬ϕ

↓A1∪A2 ,
we conclude that the property does not hold.

The Li and L′
i referred to in the example above can actually be directly

extracted from the state space that was explored up to the point when the first
accepting state was reached. Consider having to check the parallel composition
of L1 || · · · || Li−1 || Mi || P¬ϕ

↓A1∪...∪Ai
, with i ∈ 1..n. When the state space is

explored, an accepting state is searched on-the-fly, and, once detected, the state
space exploration is terminated. Subsequently, all the traces of component Mi

that are accepted in the state space explored so far, are taken into account to
construct an LTS for the next check. Such an LTS can be constructed as follows
from an LTS G = 〈S,A, T , sin,F〉 representing the state space explored so far,
where F is the singleton set {s}.

1. Remove all states from G from which s cannot be reached. This can be effi-
ciently done by exploring G in the opposite direction, starting from s, and
after doing so, removing all the unreached states. Let us call the resulting
LTS G′.

2. Action hide G′ w.r.t. Ai, thereby only keeping the behaviour of Mi visible. In
order for this to work correctly, it is required that during construction of G,
the explored τ -transitions that originated from Mi have been labelled in such
a way that they can be distinguished from other τ -transitions (for instance
with the label τ ′).

3. Finally, relabel the τ ′-transitions in G′
↓Ai

back to τ -transitions.
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Algorithm 1. Incremental Counter-Example Construction
Require: 〈M1, . . . , Mn〉, P¬ϕ

Ensure: true is returned if M satisfies ϕ, otherwise a counter-example is returned
1: i ← 1
2: while i ≤ n do
3: result ← Checki (= explore L1 || · · · || Li−1 || (Mi ||| Ri↓) || P¬ϕ

↓⋃k∈1..i Ak
)

4: if ¬result then
5: construct LTS Li containing all the accepted traces of Mi in the state space

// New counter-example found, update
6: i ← i + 1 // Go to next Checki

7: else if i = 1 then
8: return true // Property is satisfied
9: else
10: identify the smallest j < i for which Lj caused Checki to not reach an accepting state
11: updatePreviousRestrictions(j) // Update restrictions
12: resetRestrictions(j + 1, i) // Reset restriction LTSs in range [j + 1,i]
13: i ← j // Backtrack to Checkj

14: return counter-example from the final state space

Algorithm 1 presents the basic ICC technique. We iterate over the compo-
nents of the system (lines 1-2), and in each iteration i, we construct a verification
task Check i (line 3). Note that the order here in which the components are con-
sidered coincides with the order in which they appear in the system. Prior to
performing ICC, one can determine a suitable ICC order. For more on this, see
Sect. 4.

Initially, Check1 entails placing LTS M1 in parallel composition with
P¬ϕ

↓A1 , that is, a version of the property LTS in which we have abstracted
away all actions that are not present in M1, and on which we have applied weak
trace equivalence reduction. In addition, we involve a trace equivalence reduced
version of restriction LTS R1. In general, the purpose of restriction LTS Ri is
to enable iterating over the possible traces through Mi. We place Mi in a fully
synchronised parallel composition with Ri↓ (line 3). Every time we have learned
that at least one selected trace through some Mj cannot be part of a counter-
example, we update Rj in such a way, that this trace is no longer accepted
by Rj , and thereby cannot be produced anymore by Mj ||| Rj↓. More on the
restriction LTSs and how updating is done in the next subsection. Initially, Ri

accepts all possible traces that can be produced by Mi.
Verifying whether we can reach an accepting state in (M1 ||| R1↓) || P¬ϕ

↓A1

will produce one of two possible results: the first possibility is that an accepting
state was detected (result = false). In that case, we extract all explored and
accepted behaviour of M1 from the state space explored so far, using the pre-
viously described procedure, which results in an LTS L1 (line 5). After that, we
increment i (line 6).

The second option is that no accepting state was reachable. Then, we may
conclude that M satisfies ϕ, since we are considering an over-approximation
of the behaviour of M1 within the context given by M (parallel composition
with other components can only restrict M1 (Definition 2)). Since after the first
check, we have i = 1, the algorithm returns true and terminates (lines 7-8).
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In iterations i > 1, we construct a verification task Check i by combining
the selected traces L1, . . . ,Li−1 from previous iterations with Mi, Ri and the
property LTS at the right level of abstraction, i.e. P¬ϕ

↓
⋃

k∈1..i Ak
. When perform-

ing Check i, we determine whether the partial counter-example obtained so far
involving M1, . . . ,Mi−1, represented by LTSs L1, . . . ,Li−1, is allowed by Mi.
If so, then again, we extract from the state space explored so far the accepted
traces of Mi, create an LTS Li exactly containing these traces, and increment i
(lines 5-6).

Alternatively, we should identify the smallest j < i for which Lj caused
Check i to not result in finding an accepting state (line 10, we skip lines 7-8 since
i > 1). This can be achieved as follows, performing at most i − 2 subsequent
checks Check ′

1, . . . ,Check ′
i−2, where each check Check ′

l (l ∈ 1..i − 2) is defined
as follows:

Check ′
l = explore L1 || · · · || Ll || (Mi ||| Ri↓) || P¬ϕ

↓
⋃

k∈1..l∪{i} Ak

When performing the checks in the order specified by their indices, then as
soon as one of these checks results in not reaching an accepting state, we have
found the smallest j and can stop this procedure. If all checks result in reaching
an accepting state, then we select j = i − 1. It is important that we find the
smallest j, as opposed to directly selecting i−1, since failure to backtrack as far
as possible up the ICC order of components will result in performing redundant
checks.

Next, we have to reject the current combination of traces L1, . . . ,Li−1, and
we do this using the value of j. Namely, we update the restriction LTS Rj of
Mj in procedure updatePreviousRestrictions (line 11). In this case, instead of
extracting the accepted traces of Mi from the state space explored so far, we
extract a constraint concerning Lj from the state space that resulted either from
the final Check ′

j (if j < i − 1) or from Check i (if j = i − 1). This can be done
using almost the same procedure that is used to extract accepted traces of Mi

(except that we skip step 1, since no accepting state was reached) provided that
the state space was adequately annotated with additional information during
construction. After constructing the constraint, procedure updatePreviousRe-
strictions adds this constraint to Rj . How to extract constraints and update
restriction LTSs is explained in detail in the next section.

Having updated Rj , we reset all restriction LTSs in the range [j +1, i], since
those restrictions were only relevant for the combination of traces L1, . . . ,Li−1

(line 12), and jump back to verification task Check j (line 13).
Finally, if at any moment, i > n, then we have successfully constructed a

complete counter-example. This result is returned at line 14.

3.2 Constraints and Restriction LTSs

Extracting a Constraint LTS. Whenever a check at line 3 of Algorithm1 has
failed to reach an accepting state, and subsequently, the smallest index j has been
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Fig. 2. Example with two LTSs and the property “after an odd amount of a’s no b
can be performed”. The state space is constructed with annotations expressing which
behaviour of L1 is not possible. From the result, a constraint C1 can be constructed.

identified corresponding with an Lj that causes accepting states to be unreach-
able (line 10), we must extract relevant information from the corresponding state
space to update the restriction LTS Rj .

In order to make this possible in the first place, we annotate, while con-
structing, the state space resulting from each check with information regarding
the impossibility to perform behaviour of the component directly preceding com-
ponent Mi, i.e., component Li−1 in the checks Check i at line 3, and Ll in the
checks Check ′

l performed at line 10.
Again consider the example system in Fig. 1. As illustrated in Sect. 3.1, after

the first check, a path is found representing the traces ac∗b. Based on this,
we construct an LTS L1 that accepts exactly these traces. Now, the setup is
as illustrated in Fig. 2, and ICC moves on to the next check, which involves
exploring L1 || (M2 ||| R2↓) || P¬ϕ

↓A1∪A2 . This is a rather straightforward task
in this case, since the outgoing transition from the initial state of L1 cannot
synchronise with behaviour of M2, and hence the exploration is finished. But
instead of only producing a single state with no transitions, we add a special
sink state and a transition from the initial state to that sink state labelled ¬a,
to make explicit that at that point in the exploration, an a-transition of L1 was
not enabled. In general, we annotate each state in a state space in this manner,
and furthermore, we also mark states in which the ‘preceding’ component state
is accepting, but the overall system state is not, with a selfloop labelled ¬accept.

The purpose of doing this is that with the additional information, it is possible
to construct a constraint LTS based on the result of the check. Again consider
the example. Similar to the procedure of extracting accepting traces from a state
space, we first action hide the state space w.r.t. A1 and reduce the outcome w.r.t.
weak trace equivalence. Next, we add a new accepting sink state, and make the
LTS complete w.r.t. A1∪{τ}, by adding transitions from each state s to the sink
state for all labels in A1 ∪ {τ} not occurring already on an outgoing transition
of s (either normally or in negated form) and adding selfloops for all actions
in A1 ∪ {τ} to the sink state. Next, we make all states without a ¬accept-
selfloop accepting, and finally, remove all transitions with a negated label from
the LTS. Note that in the example, the resulting constraint LTS C1 accepts all
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traces except for the traces starting with an a. For convenience, we have labelled
transitions with sets of actions here, to indicate that for every action in the set,
a transition exists from the indicated source state to the indicated target state.

Fig. 3. Initial Ri

Updating a Restriction LTS. For each Mi, we maintain
a restriction LTS Ri to allow iterating over the traces
through Mi. Initially, for each Mi, the structure of Ri

is as illustrated in Fig. 3: there is a single state which is
initial and accepting and it has selfloops for all labels in
A and for τ .

First of all, note that this LTS is deterministic; this is required to prevent
the state space of Mi ||| Ri from becoming very large. When updating Ri with
new constraints, we make sure that Ri remains deterministic. Secondly, note
that the initial Ri does not actually restrict the behaviour of Mi in Mi ||| Ri,
since all traces in (Ai ∪ {τ})∗ are accepted by it.

With this in mind, updating a restriction LTS Ri with a constraint C can be
performed by computing the language intersection [40] of Ri and C, i.e., an R′

i

is constructed such that the language of R′
i (the set of accepted traces) is equal

to the language of Ri intersected with the language of C. In this way, we remove
the bad behaviour that is encoded in C. The intersection of LTSs is defined by
Definition 8.

Definition 8 (Intersection of LTSs with accepting states). Given two
LTSs with accepting states that have a total transition relation G1 = 〈S1, A, T1,
sin1 , F1〉 and G2 = 〈S2,A, T2, s

in
2 ,F2〉 (note that they have the same alphabet),

we call K = G1 ∩ G2 the intersection of G1 and G2. Its LTS is defined as K =
〈S1 × S2,A, TK, 〈sin1 , sin2 〉,FK〉, where:

– TK = {〈s1, s2〉 �−→ 〈s′
1, s

′
2〉 | � ∈ A, s1

�−→T1 s′
1, s2

�−→T2 s′
2};

– FK = {〈s1, s2〉 | s1 ∈ F1, s2 ∈ F2}.

Note that the intersection of G1 and G2 can actually be computed by con-
structing the state space of G1 || G2. By applying trace equivalence reduction on
the resulting LTS, and involving the reduced version in subsequent ICC checks
(see line 3 of Algorithm 1), we restrict state space explosions caused by parallel
composition as much as possible. Furthermore, by our interpretation of accept-
ing system state, note that a system state is only accepting if the involved state
in the corresponding restriction LTS is also accepting, i.e., if the restriction LTS
accepts the trace.

Finally, resetting a restriction LTS, as referred to at line 12 of Algorithm1,
amounts to reverting it to its initial structure. One possible optimisation involves
updating the initial restriction LTSs whenever applicable, such that resetting
a restriction LTS does not always mean that all the learned restrictions are
discarded. For more on this, see Sect. 4.
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3.3 Soundness and Completeness

We provide an informal proof that ICC is both sound and complete. Complete-
ness relies on the fact that the state space is finite-state, and hence from a finite
number of states it is possible to reach an accepting state.

Lemma 1. Algorithm1 is sound and complete: it returns true if and only if
M � φ.

Proof. We split the proof into two parts, one for each direction.

⇒ The result true implies that at some point, Check1 returned true. This value
indicates that no new accepted trace could be generated from (M1 ||| R1↓) ||
P¬ϕ

↓A1 . Since we have tried all traces of M1 that are accepted by P¬ϕ, and
each has been rejected by other checks involving other components, there is
no path in M with a trace accepted by P¬ϕ. Therefore, the property holds
(M � φ).

⇐ M � φ implies that there is no trace accepted by M || P¬ϕ. Therefore,
there is also no trace accepted by M1 || P¬ϕ

↓A1 that is accepted by the
other components. The traces accepted by M1 || P¬ϕ

↓A1 can be captured
in finitely many LTSs L1, L′

1, . . . , since there are only finitely many states
in M1. The traces in each of these LTSs will be rejected by a subsequent
check in ICC. Therefore, after having considered all these LTSs, execution of
Check1 returns true, causing the procedure to return true. ��

4 Optimisations

The basic ICC procedure, as explained in the previous section, is correct, but
its performance in practice highly depends on applying several optimisations.
In this section, we discuss the ones we identified and implemented. Identifying
more opportunities to further optimise ICC remains future work.

Heuristics to Select an Initial Component Order. In Algorithm1, the ICC order
of the components M1, . . . ,Mn is fixed to the order in which they appear in the
system. However, this is not required. In fact, it seems more reasonable to base
such an order on the dependency w.r.t. ϕ. In general, the dependency relation
D can be defined as follows:

D = {(i, j) | i, j ∈ 1..n ∧ Ai ∩ Aj �= ∅}

Relation D can be used to partition the components based on their dependency
distance from P¬ϕ. If we say that P¬ϕ has index n+1 in the combination of M
and P¬ϕ, then we place all components directly related via D to n + 1 in one
equivalence class E1, all components with an index directly related to at least
one of the components in E1 in an equivalence class E2, etc. Then, when choosing
an order, we first select all components from E1, then those from E2, and so on.
Within an equivalence class, a further ordering can be applied, for instance based
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on the number of states in the LTSs, or the number of transitions that require
synchronisation with preceding LTSs in the ICC order. In our implementation,
we currently use relation D and do not try to further order the LTSs in each
class, but we are planning to investigate this further in the future.

Dynamically Changing the ICC Order During Analysis. In Algorithm 1, the ICC
order, once selected, remains fixed during execution of ICC. This is not necessary
for the procedure to be correct. In fact, it may be fruitful to frequently change
the position of components in the order. So far, we have identified two situations
in which changing the order frequently affects the performance of ICC positively.

First of all, consider the situation that after a Check i has returned true, with
i > 1, at line 3 of Algorithm 1, an LTS Lj is identified at line 10 to be rejected.
Just before line 13, in which we move to component Mj to perform the next
check, it may be smart to move Mi in the ICC order to the position just after
Mj , i.e., to position j + 1. Apparently, the behaviour relevant for P¬ϕ of Mj

depends to some extent on the behaviour of Mi, making it likely that the next
traces selected for Mj in Check j , if they have to be rejected, will also be rejected
by Mi.

Second of all, another place where the order can be reconsidered is just before
the next check is performed (line 3 of Algorithm 1). Based on the selected traces
accepted by Li−1 the next component can be selected. For instance, the shortest
trace accepted by Li−1 can be identified, and from the set of components still
to be involved in a check, we select one of the components with the strongest
dependency (in terms of number of actions and/or transitions) on that trace.

In our implementation, we have incorporated both strategies to dynamically
change the order. In the second case, we use the number of actions in the shortest
trace that need to synchronise with a component to select the next component
for a check. Changing the order can also be done in a number of ways; we have
chosen to shift each component at position i + 1 or higher to the right, where
the component ending up at position n + 1 is moved to position i + 1, until the
selected component has ended up at position i + 1. An alternative possibility is
to swap the positions of two components, but in that way, the initially selected
ICC order tends to be erased more quickly.

One final remark about changing the ICC order of components: in order not
to make the procedure incorrect, the restriction LTSs of components that are
moved to the left should be reset. The reason for this is that before moving such a
component, say Mi, the constraints learned about Mi depend on the traces that
have been selected for M1, . . . ,Mi−1, represented by L1, . . . ,Li−1. Once any of
these are changed, the constraints learned so far for Mi have to be reset, similar
to how the constraints also need to be reset when new constraints are added to
the restriction LTS of a previous component (lines 11-12 in Algorithm1). This
observation directly leads us to the next possible optimisation.

Updating Initial Restriction LTSs. The restriction LTS of a component that is
moved to the left in the ICC order needs to be reset. However, the constraints
learned about M1 actually never require this, since that component cannot be
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moved to the left. This can be further explained by noting that the validity of
the constraints for M1 does not depend on previously selected traces of other
components being sufficient to construct a counter-example. In that respect, the
contraints learned about M1 are more valuable for the progress of ICC then
the constraints learned about any of the other components, since the former
constraints are always relevant. For this reason, these constraints can safely be
added to the initial restriction LTS of M1.

In order to also learn constraints about other components that are persistent
to updates applied to restriction LTSs, an additional check Check ′′ can be added
right after line 10 in Algorithm1, at the moment when the smallest j has been
identified. This check can be defined as follows:

Check ′′ = explore Lj || (Mi ||| Ri↓) || P¬ϕ
↓Aj∪Ai

The purpose of performing Check ′′ is to determine whether the traces of Lj

should also be rejected when placed in parallel composition only with Mi. If this
is the case, then those traces should never be selected anymore. If we add this
insight as a new constraint to the initial restriction LTS of Mj , then every time
Mj ’s current restriction LTS is reset, we revert to an initial restriction LTS that
has these constraints still in them. In our implementation, we have added this
optimisation.

First Adding an Abstract Version of a Component to a Check. As a final opti-
misation, we propose to implement the check at line 3 of Algorithm 1 in two
steps instead of one. When introducing Mi into check Check i, note that for
the possible rejection of traces in L1, . . . ,Li−1, it is only relevant to consider the
behaviour in Mi that requires synchronisation with components M1, . . . ,Mi−1;
all other behaviour can be abstracted away. Also, the restriction LTS of Mi is
not relevant for the rejection of traces, only for the case when traces through Mi

can be selected to extend the current partial counter-example. In that case, the
restriction LTS ensures that no traces will be selected that have been selected
previously.

The possibility to only consider an abstract version of Mi provides the poten-
tial to reduce the size of state spaces in those cases where Mi rejects previously
selected traces. In cases where no traces can be rejected, a subsequent check as
defined at line 3 still has to be performed, since the abstract version of Mi does
not suffice to extend the counter-example. Therefore, this proposed optimisation
may primarily have a positive effect on the memory use of ICC, and to a lesser
extent on the running time.

Formally, we redefine Check i at line 3 now as the following two checks Check1
i

and Check2
i :

Check1
i = explore L1 || · · · || Li−1 || Mi↓

⋃
k∈1..i−1 Ak

|| P¬ϕ
↓
⋃

k∈1..i Ak

Check2
i = explore L1 || · · · || Li−1 || (Mi ||| Ri↓) || P¬ϕ

↓
⋃

k∈1..i Ak

This optimisation has also been incorporated in our implementation of ICC.
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5 Experiments

To validate the effectiveness of ICC, we conducted a number of representative
experiments, using the DAS-5 cluster [4], with nodes equipped with an Intel
Haswell E5-2630-v3 2.4 GHz CPU, 64 GB memory, and running CentOS
Linux 7.2. The selected models have been taken from various sources, namely
the BEEM benchmark set [37], the CADP toolbox distribution [24], and the
mCRL2 toolset distribution [15]. Table 1 lists the models, together with their
state space characteristics, the type of safety property checked, and whether
or not the property holds. The models suffixed ‘.1’ are altered versions of the
standard models. The alterations resulted in larger state spaces.

Table 1. Characteristics of the performed experiments

Model #states #transitions Property Satisfied

1394 69,518 123,614 Limited action occurrence Y

1394.1 563,040 1,154,447 Limited action occurrence Y

transit 3,480,248 37,394,212 Bounded response N

wafer stepper.1 6,099,751 29,028,530 Mandatory precedence N

Lamport8 62,669,317 269,192,485 Mutual exclusion N

Lann5 993,914 3,604,487 Mutual exclusion Y

Gas station c2 165 276 Bounded response Y

Gas station c3 1,197 2,478 Bounded response Y

HAVi3.2 19,554,248 80,704,326 Bounded response Y

Peterson7 142,471,098 626,952,200 Mandatory precedence Y

Szymanski5 79,518,740 922,428,824 Mutual exclusion Y

Regarding the property types, limited action occurrence states that at most
two occurrences of a given action a are allowed between two consecutive occur-
rences of another action b. The mandatory precedence property says that an
action a is always preceded by an action b. Bounded response states that after
an occurrence of a, a b of a given set of actions must occur. Limited action
exclusion is a property in which an action a cannot occur between two consec-
utive occurrences of actions b and c. In exact occurrence number, it is required
that an action a occurs an exact number of times, if action b has previously
occurred. Mutual exclusion refers to the standard property regarding access to
critical sections.

We compared the following approaches:

– ICC refers to an implementation of ICC (single-threaded) in the Refiner
exploration tool [45]. We have implemented the optimisations proposed in
Sect. 4.
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– OTF refers to on-the-fly property checking. We also used Refiner for this,
running on a single thread. It explores the state space, checks on-the-fly
whether the property holds and terminates if a counter-example is found.
Even though there exist much faster state space exploration tools, having
both ICC and OTF use the same implementation results in a fair compar-
ison. A better implementation of state space exploration could be used to
speed up both ICC and OTF, since this procedure is the main performance
bottleneck for both.

– PMC refers to partial model checking [23,32]. In PMC, the state space is
incrementally constructed by adding processes and minimising the interme-
diate results. The property can be checked once the state space is constructed.
We used the (single-threaded) Pmc tool of the Cadp toolbox for this.

We have not compared ICC with other compositional model checking tech-
niques, such as Assume-Guarantee [9,9,17,27,30,34], since no implementations
were available to us that are directly applicable on the type of models we con-
sider, namely networks of LTSs. In future work, we plan to perform an exten-
sive comparison between ICC and Assume-Guarantee. In this paper, we focus
on determining whether ICC is effective in breaking down the classical OTF
analyses into smaller checks. We have also not compared to the Spin model
checker [31]. For the BEEM models we consider here, Promela models exist,
however, the number of states in the resulting state spaces differ significantly
from the numbers produced here.

Table 2 presents the results, providing for each approach the runtime in sec-
onds. “T/O” indicates a timeout, which was set to 3 h. The maximum number of
states involved in a check at some point during the analysis is also reported; for
OTF, this is the number of explored states, for PMC this refers to the largest
LTS constructed during the construction, and for ICC, this is the maximum
number of states involved in a single ICC check, i.e., the total number of states
in the restriction LTSs, plus the number of explored states in the check. Finally,
for ICC, also the total number of performed checks is reported (#iters.).

In terms of the maximum number of involved states, which provides an indica-
tion for the maximum amount of memory used, ICC is very effective in breaking
down the monolithic analysis performed by OTF into smaller analyses, par-
ticularly when the model satisfies the property. For the Peterson7 case, only
0.00002% of the state space was ever explored in one check. In this respect, ICC
was much more effective than both OTF and PMC, which timed out. Notable
exceptions to this are the 1394 and the gas station models. We will further inves-
tigate the exact cause of ICC not performing very well in those cases in the near
future.

It is to be expected that for models that do not satisfy the property, OTF
is much more effective than the compositional model checking approaches. An
important concern for the latter techniques is that the size of the state space is
kept small, and therefore the state space is iteratively built. A straightforward
approach that directly explores the state space may therefore run into a counter-
example much more quickly. However, in the cases we considered, the runtimes
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of ICC and OTF were still comparable. Moreover, in two of the three cases
where the property is violated, ICC outperformed PMC both in runtime and
the number of explored states.

As already mentioned, ICC seems to be particularly effective when the model
satisfies the property. In a number of cases, ICC was even much faster than OTF.
In those cases, the rejection of tested path prefixes in ICC quickly led to rejecting
all potential candidates, and more importantly, it could avoid the exploration
of many states. This effect is absent when checking incorrect models. In those
cases, a counter-example can be constructed, but there are also many traces that
are initially promising, but need to be rejected later on.

Concluding, individual ICC checks are often very small, and the runtime of
ICC is often comparable to OTF. Furthermore, it should be noted that we have
not yet attempted to optimise the implementation of ICC, so it is very likely that
the reported runtimes can be further improved. Finally, the frequently drastic
reduction in memory use of model checking when using ICC is very encouraging
regarding the scalability of ICC. We expect that we can go far beyond what can
currently be analysed using OTF.

Table 2. Experimental results for OTF, PMC, and ICC; Times in seconds

Model Property satisfied OTF PMC ICC

Time #states Time #states Time #states #iters

1394 Y 9.35 69,518 26.13 1,061 10.48 5,659 3

1394.1 Y 51.04 563,040 36.15 1,061 155.66 219,981 5

transit N 7.76 50,970 1,044.03 1,437,433 5.69 10,443 5

wafer stepper.1 N 20.27 60,809 68.09 3,821 18.67 28,227 8

Lamport8 N 2.66 30,041 56.52 301,711 11.78 22,552 6

Lann5 Y 289.65 993,914 T/O 1.39 33 35

Gas station c2 Y 0.08 165 0.54 342 0.91 595 11

Gas station c3 Y 0.21 1,197 12.53 4,532 9.15 4,930 21

HAVi3.2 Y T/O 21.24 12 8.89 167 57

Peterson7 Y T/O T/O 7.11 34 73

Szymanski5 Y T/O T/O 2.67 48 21

6 Related Work

Regarding compositional model checking, a number of prominent approaches
need to be mentioned. First of all, partial model checking [23,32] is an approach
in which it is attempted to incrementally construct a state space bisimilar to
the original one, without actually constructing the latter. It is attempted to
keep the constructed state space small by carefully combining component LTSs
and applying bisimulation reduction on the intermediate results. However, the
order in which component LTSs are introduced in the analysis usually heavily
influences the effectiveness of the technique, and the best order is a-priori not
clear [16]. Saturation is similar to partial model checking, in that they both
attempt to incrementally construct a version of the system state space [35].
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Instead, ICC never involves more than one complete component LTS in a single
check. Moreover, if a component order is initially chosen which is not efficiently
leading to a solution, ICC with optimisations can change this order dynamically.

In [13,36], it has been investigated what the best system decompositions
are for a set of benchmarks, and what the best order is in which to combine
components again. Even though ICC is adaptive in this respect to some extent,
we experience that its performance is greatly affected by the initially selected
ICC order. In the future, we will study the results in the literature on this topic.

Another approach is to impose interaction constraints and to find relevant
invariants for combinations of components [5,6]. The use of interface automata
[1] allows reasoning about the possible interactions between components. In ICC
checks, we always assume that a component being checked can interact with
components not involved in the check. Subsequent checks will detect cases where
this assumption was not valid. It would be interesting to investigate how the
above techniques could positively influence the running time of ICC.

Assume-Guarantee (AG) [9,17,27,30,34] is another prominent technique. It
construct assumptions with the goal to prove that the system satisfies the prop-
erty. Given a system M1 || M2 and property ϕ, it tries to establish that both M1

satisfies a set of assumptions A, and that M2 satisfies ϕ under assumptions A.
If this holds, then M1 || M2 satisfies ϕ. Circular AG extends this approach to N
instead of 2 components, and constructs assumption LTSs using SAT solving [18].

Like restriction LTSs in ICC, assumptions are expressed in LTSs in AG.
How to keep these LTSs minimal is hard, as they tend to grow rapidly. L∗ [2] is
frequently applied [12,38], but sometimes, this seems to be unnecessary [39], and
other approaches have been investigated as well [20,21,28]. For ICC, we have
not experienced that the sizes of the restriction LTSs became problematic. This
is probably because ICC and AG attack the problem from opposite directions:
AG tries to establish that the property holds, whereas ICC tries to construct a
counter-example. In AG, the goal is that an assumption LTS overapproximates a
component while still reasoning about the property, whereas in ICC, the function
of a restriction LTS is merely to block certain traces in the component, and can
therefore often remain a much coarser approximation of the component LTS.
Finally, a fundamental difference between ICC and AG is that the latter tries to
avoid involving the actual component LTSs in the verification checks and instead
tries to establish that the assumptions are sufficient to prove that the property
is satisfied. In this way of working, it frequently happens that spurious counter-
examples are constructed, so any identified counter-examples in the complete,
abstract system must first be checked against the original system to establish
whether the counter-example is real. ICC, on the other hand, involves component
LTSs from the very start, and selects part of their behaviour for subsequent
checks instead of the complete component LTSs, with the goal to keep the parallel
composition of component behaviour small. As a result, ICC never produces
spurious counter-examples. Only partially constructed counter-examples can be
rejected in one of the checks, but once a complete counter-example has been
successfully constructed, it is by definition a real one.
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Counterexample-Guided Abstraction Refinement (CEGAR) [11] is a very well
established technique that computes abstractions of programs and refines them
based on spurious counter-examples. In spirit, ICC and CEGAR are very similar,
but the latter does not operate in a compositional manner and in contrast to ICC,
reasons with behavioural over-approximations of the program being verified.
Finally, the same observation regarding spurious counter-examples can be made
as above for Assume-Guarantee.

Although more tailored towards programs than models, thread-modular rea-
soning [22,29] is another related technique, designed to compositionally reason
about threads in multi-threaded programs. Besides the obvious similarities, the
fact that the inputs of the two approaches are very different makes it hard to
provide a clear comparison, or learn from these techniques to further improve
ICC.

One of the motivations behind the development of ICC is to reduce the
memory requirements. This makes ICC related to other memory-saving tech-
niques [19,25,33], but different from most other techniques of this type, we
observe that besides memory savings, also the runtimes can be positively affected
by ICC.

Finally, ICC is pleasantly parallel, since different ICC orders can be inspected
fully independently. Other parallel techniques, such as [8,41], still require fre-
quent communication between workers. In the future, we plan to investigate the
potential to perform ICC in parallel.

7 Conclusions

We presented a new compositional model checking technique, called Incremental
Counter-example Construction. Experiments point out that it can very effec-
tively reduce the number of states involved in a single check, thereby demon-
strating great potential for scaling up the technique to larger models. Moreover,
the runtime is frequently comparable to a traditional on-the-fly analysis, and in
cases where the model is correct, ICC can actually by significantly faster.

Future Work. ICC also seems applicable to check linear-time liveness or branch-
ing time properties. For those, checks could be performed using Nested Depth-
First Search [14] or by solving Boolean Equation Systems [32], respectively. We
plan to investigate this.

We also plan to investigate performing ICC in parallel, by having different
threads inspect different ICC orders, perhaps in line of our earlier work [42–
44,46]. We will further investigate the potential to optimise ICC, in addition to
the optimisations discussed in Sect. 4.

Finally, we will investigate to what extent the ICC approach is suitable for
symbolic model checking techniques.
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