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Abstract. We present Rahft (Refinement of Abstraction in Horn
clauses using Finite Tree automata), an abstraction refinement tool for
verifying safety properties of programs expressed as Horn clauses. The
paper describes the architecture, strength and weakness, implementa-
tion and usage aspects of the tool. Rahft loosely combines three pow-
erful techniques for program verification: (i) program specialisation, (ii)
abstract interpretation, and (iii) trace abstraction refinement in a non-
trivial way, with the aim of exploiting their strengths and mitigating their
weaknesses through the complementary techniques. It is interfaced with
an abstract domain, a tool for manipulating finite tree automata and
various solvers for reasoning about constraints. Its modular design and
customizable components allows for experimenting with new verification
techniques and tools developed for Horn clauses.

1 Constrained Horn Clause Verification and Our
Approach

A constrained Horn clause (CHC) is a first order predicate logic formula usually
written in the form p(X) ← φ, p1(X1), . . . , pk(Xk) (k ≥ 0) using Constraint Logic
Programming (CLP) syntax, where φ is a first order logic formula (constraint)
with respect to some background theory, Xi,X are (possibly empty) tuples of dis-
tinct variables, and p1, . . . , pk, p are predicate symbols. There is a distinguished
predicate symbol false which is interpreted as False. Clauses with false head are
called integrity constraints. A set of CHCs is called a (CLP) program.

An interpretation of a set of CHCs P is a set of constrained facts of the form
A ← φ where A is an atom and φ is a formula with respect to some background
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theory. An interpretation that satisfies each clause is called a model (a solution in
some works [6,34]). In Horn clause verification, integrity constraints represent the
safety properties to be verified; other clauses represent the program’s behaviours.
The CHC verification problem is to check whether there exists a model of P .

Several verification tools have been developed for CHCs, including SeaHorn
[24], QARMC [21], VeriMap [16], Convex polyhedral analyser [31], TRACER
[29], ELDARICA [27], and Trace abstraction refinement tool [37]. They exploit
either Formulation I or Formulation II for Horn clause verification.

Formulation I (deductive): P has a model if and only if P �� false (false is
not derivable from P ). In CLP terminology, P � A if and only if the query ← A
succeeds in P . In this formulation it is sufficient to show that the query ← false
fails finitely or infinitely. Formulation I forms the basis of the tools described
in [25,37]. As the minimal model of P contains exactly the set of atoms that
succeed [28], we have another formulation of the CHC verification problem [20].

Formulation II (model-based): P has a model if and only if false �∈ M [[P ]],
where M [[P ]] is the minimal model of P . In Formulation II it is sufficient to find
a model M ′ ⊇ M [[P ]], where false �∈ M ′. It forms the basis of tools based on
abstract interpretation, interpolation or predicate abstraction [21,24,31].

The program in Fig. 1(a) is a simple but challenging problem for many veri-
fication tools. l(X, Y) ≡ X ≥ Y ∧ Y ≥ 0 is a model of the program, whose solution
requires the discovery of the invariants X ≥ Y and Y ≥ 0. For example neither
QARMC [21] nor SeaHorn [24] (using only the PDR engine [7]) terminates on
this program. However, SeaHorn (with PDR and the abstract interpreter IKOS
[8]) solves it. Rahft solves it with the pre-processing step alone.

Rahft exploits both of the above formulations using techniques based on
abstract interpretation over the domain of convex polyhedra, trace abstraction-
refinement using finite tree automata (FTAs) and program specialisation using
constraint specialisation [30]. The motivations behind this combination are: (i)
to benefit from a powerful and scalable technique such as abstract interpretation
[13] for verifying properties of programs, (ii) to refine abstract interpretation
through automata theoretic operations which offers the advantages of simplicity
and generality [31] and (iii) to construct highly parametric and configurable
verification tools through program transformation [16].

2 RAHFT Architecture and Interface

Figure 1(b) gives an overview of Rahft. It compiles to a standalone command
line utility that accepts a set of CHCs as input. It consists of two modules
namely, Abstraction (green box) and Refinement (red box). Rahft takes a file
containing a set of CHCs P as input and returns safe or unsafe respectively if
P has or does not have a model.

2.1 Abstraction

The Abstraction module takes a set of CHCs P as input and returns safe, unsafe
or a trace representing the abstract derivation of false together with the set of all



Rahft: A Tool for Verifying Horn Clauses Using Abstract 263

Fig. 1. (a) Example program; (b) the architecture of Rahft. (Color figure online)

derivations (traces) (both represented as FTAs) used while applying abstraction
interpretation to P . It consists of the following components:

Pre-processor (PP): Pre-processing is a model-preserving source-to-source
program transformation of Horn clauses. In principle, any such transformation
can be used as a pre-processor, but we use constraint specialisation [30]. The spe-
cialisation consists of strengthening the constraints in the clauses using abstract
interpretation [13] and query-answer transformation [3,17] of the original pro-
gram. The specialisation is independent of the abstract domain and the back-
ground theory underlying the clauses and does not unfold the clauses at all. This
has been proven to be an effective transformation [30] for verifying Horn clauses
[15] and as a pre-processor to other Horn clause verification tools such as [21].

Abstract Interpreter (AI): The AI implements a fixed point algorithm over
the domain of convex polyhedra [12] based on abstract interpretation [13]. It
constructs an over-approximation M of the minimal model of a program P ,
where M contains at most one constrained fact p(X) ← φ for each predicate p.
The constraint φ is a conjunction of linear inequalities, representing a convex
polyhedron. The set of traces used during abstract interpretation of P can be
captured by an FTA, say AP , using M as shown in [32]. An FTA is a mathe-
matical model capable of capturing tree structured computations (Horn clauses
derivations) (see [31] for the correspondence between a program and an FTA).

The approximation M and the pre-processed clauses can be used by other
Horn clause tools, for example [21]. These tools can strengthen M (which may
contain some useful invariants) incrementally to construct a model of P rather
than starting from a coarse abstraction (p(X) ← true for each predicate p of P ).

Verifier: The verifier receives M and AP and checks the safety of the clauses
based on some simple condition. The clauses are safe if there is no constrained
fact for false in M (M is called safe inductive invariant or a model of P ) or
there are no error traces rooted at false. Otherwise we do not know whether the
clauses are unsafe or whether the approximation was too imprecise. In this case,
the verifier picks a trace, say t ∈ AP , representing the abstract derivation of
false (if any) from the set of traces. If t is feasible (while simulating in P ), then
P is unsafe and t is a counterexample, otherwise we refine P .
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2.2 Refinement

The Refinement module takes as input a program P and two FTAs (i) recog-
nising the set of all possible traces of P ; and (ii) recognising a set of infeasible
traces. A difference automaton is computed from these automata which recog-
nises all traces except the infeasible ones. A refined program is obtained as
output using the difference automaton and P . Rather than eliminating a single
infeasible trace in each refinement iteration, we generalise it using an interpolant
automaton [25,32,37] thereby eliminating a possibly infinite number of infeasible
traces. The refinement offers the advantages of simplicity and generality which
is independent of the abstract domain and background theory underlying the
clauses. The Refinement module consists of following components:

Finite tree automata manipulator (FTAM): FTAM takes as input two FTAs
and outputs their difference automaton. The FTA difference construction needs
determinisation; we built upon an optimised determinisation algorithm by Gal-
lagher, Ajspur and Kafle [19] which scales well in practice, generating transitions
of the determinised automaton in a very compact form called product form.

Clause generator (CG): Given a set of clauses P , and an automaton recog-
nising an over-approximation of all feasible traces of P , CG produces a set of
clauses which is equisatisfiable to P . For this purpose, we exploit a correspon-
dence between the traces using the clauses and the language of FTAs to generate
a new set of clauses.

The refinement offers two advantages: (i) the refinement is manifested in the
clauses generated – we do not need to keep track of the previous refinements;
and (ii) the original predicates get split in refined clauses which help improve
the precision of analysis [20].

2.3 Implementation

Rahft is implemented in Ciao [26] and is available from https://github.com/
bishoksan/RAHFT. It consists of a collection of reusable Prolog modules which
rely on state-of-the-art specialised external libraries written in C and C++ for
handling constraints. We use the Yices SMT solver [18] and the Parma Polyhedra
Library [2] for handling the constraints and the FTA library [19] for manipulat-
ing FTAs. The construction of an interpolant tree automaton uses an algorithm
presented in [36] for computing an interpolant of two formulas. The code con-
sists of over 7,000 lines of Ciao Prolog code split over 42 modules, interfaced
to the above-mentioned external libraries. The implementation of iterative fix-
point algorithms is inspired by the approach to the abstract interpretation of
logic programs described by Codish and Søndergaard [10]. Data structures for
manipulating Horn clauses are based on terms and the internal Prolog data-
base, reusing the optimizations of the underlying machine (e.g., clause indexing)
rather than reimplementing them in our tool. The glue code that ties together
the general purpose Prolog engine and the specialised solvers written in C and
C++ is generated via the Ciao foreign interface [26].

https://github.com/bishoksan/RAHFT
https://github.com/bishoksan/RAHFT
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2.4 Strength and Weakness

Rahft is a verification tool for safety properties of programs expressed as Horn
clauses; it can be used as a back end solver by different front end tools outputting
in CLP form. It handles clauses whose underlying theory is linear arithmetic;
other theories are not supported currently. It accepts input in CLP form.

Since different components of Rahft are loosely coupled, the tool can be
reconfigured (with a very little effort) to produce verification tools solely based
on (i) program transformation as in iterated specialisation approach [15] by iter-
ating the pre-processing component, (ii) abstract interpretation, only with the
AI component, (iii) trace abstraction refinement [25,37] by iterating the FTAM
component, and (iv) a sensible combination thereof – all followed by a lightweight
verifier which checks the safety of the clauses based on some condition. Since
our tool uses both state abstraction and trace abstraction, it allows application
of a wide range of tools and techniques.

We have evaluated Rahft on software verification benchmarks from a variety
of sources [4,5,22,23,27,29] and the results show that it compares favourably (in
time and the number of instances solved) with the other state-of-the-art Horn
clause verification tools (see [30–32] for the details).

Convex polyhedra is an expensive abstract domain and is a potential bottle-
neck for verification of large code bases. Instead, we can use cheaper domains
supported by the Parma Polyhedra Library such as octagons or intervals at the
cost of precision. Rahft is also limited by the hard-coded limits of the libraries
and the Prolog implementation used (e.g. arity limit of the predicates), which
may be too restrictive for some verification problems and we intend to improve
this by some suitable data representation. We are aware of some examples from
SV-COMP if not many which cross this limit.

We can leverage state-of-the-art interpolating SMT solvers [9,33] for the tree
interpolant generation which can be used for constructing an interpolant tree
automaton; our current implementation does not scale well. Furthermore we
aim to handle more advanced data structures such as arrays, maps and sets,
requiring more expressive theories than linear arithmetic. One way to achieve
this is by composing abstract domains as described in [11,14]; we are also aware
of the support for the reduced product of domains in the PPL library.

Rahft is able to generate a model (a counterexample) if it proves the safety
(unsafety) a program. We need bookkeeping to generate these witnesses with
respect to the original program; and sometimes it becomes rather challenging
because of the use of external libraries, tools or the transformations applied.

3 Future Work

Future work will involve making Rahft a more flexible tool so that the user
can configure other parameters such as abstract domains and pre-processors. We
are also planning for a detailed performance measurement of the tool to detect
bottlenecks; and work on language-based optimisations to minimize them. Gen-
eration of a model or a counterexample with respect to the original program,
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handling clauses with richer background theories (arrays, uninterpreted func-
tions) is on our to-do list. In addition, we are extending Rahft to consider Horn
clauses in SMT-LIB format [1], though several Horn clause verification tools use
standard CLP notation [16,21,31].
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