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Abstract. We consider the problem of reasoning over an expressive
constraint language for unbounded strings. The difficulty comes from
“recursively defined” functions such as replace, making state-of-the-art
algorithms non-terminating. Our first contribution is a progressive search
algorithm to not only mitigate the problem of non-terminating reason-
ing but also guide the search towards a “minimal solution” when the
input formula is in fact satisfiable. We have implemented our method
using the state-of-the-art Z3 framework. Importantly, we have enabled
conflict clause learning for string theory so that our solver can be used
effectively in the setting of program verification. Finally, our experimen-
tal evaluation shows leadership in a large benchmark suite, and a first
deployment for another benchmark suite which requires reasoning about
string formulas of a class that has not been solved before.

Keywords: String solving · Progressive search · Termination · Web
security

1 Introduction

Web applications provide critical services over the Internet and handle sensitive
data. Unfortunately, many of them are vulnerable to attacks by malicious users.
According to the Open Web Application Security Project [16], the most serious
web application vulnerabilities include: (#1) Injection flaws (such as SQL injec-
tion) and (#3) Cross Site Scripting (XSS) flaws. Both vulnerabilities involve
string-manipulating operations and occur due to inadequate sanitisation and
inappropriate use of input strings provided by users. Therefore, reasoning about
strings is necessary to ensure the security of web applications [18,21].

In web applications, recursively defined string functions also play an impor-
tant role. For example, the string function replace which is used frequently in
sanitizers in order to prevent insecure user inputs, can be recursively defined as
follows:

Y=replace(X,r,Z)
def
= (X �∈ /.�r.�/ ∧ Y=X) ∨
(X=X1·X2·X3·X4 ∧ X2·X3 ∈ /r/ ∧ length(X3)=1 ∧
X1·X2 �∈ /.�r.�/ ∧ Y=X1·Z·Y1 ∧ Y1=replace (X4,r,Z))
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The first disjunct corresponds to the base case where the input X does not contain
any substring that matches the regular expression r. The resulting string Y will
be the same as X. In the other disjunct, the first substring of X that matches r
is X2·X3. So we replace this substring by Z and then make a recursive call for the
remaining part X4. (The greedy version, using as many characters as possible in
the match against r, can be defined and treated in a similar manner.)

Unfortunately, reasoning about unbounded strings defined recursively is in
general an undecidable problem. As a concrete example, string functions such as
replace that are applied to any number of occurrences of a string (even limited
to single-character strings) would make the satisfiability problem undecidable
[6,7]. We must therefore be content with an incomplete solution.

Even so, we do not yet have an algorithm that is plausibly effective in prac-
tice. To generally handle recursive functions, a state-of-the-art technique [21] is
“unfold-and-consume” which is to incrementally reduce recursive functions via
splitting (and/or unfolding) process, until their subparts are bounded with con-
stant strings/characters to be consumed. This technique has shown very promis-
ing results. However, because the main purpose of [21] is vulnerability detection,
i.e., generating attack inputs for each satisfiable query, and that every query
is invoked with a timeout limit, there was less emphasis on the detection of
unsatisfiable queries. By contrast, in the setting of program verification, or in
using verification technologies to speed up concolic testing [3,12], the problem
of determining unsatisfiability becomes paramount. In short, we can no longer
depend on a timeout, and must seek a terminating algorithm as far as possible.

The main contribution of this paper is an algorithm whose goal is to deter-
mine if a string formula is unsatisfiable, and if not, to be able to generate a
solution for it. The key feature of our algorithm is a pruning method on the
subproblems, in a way that is directed. More specifically, our algorithm aims to
detect non-progressive scenarios (Sect. 4.2) with respect to a criterion of mini-
mizing the “lexicographical length” of the returned solution, if a solution in fact
exists. Informally, in the search process based on reduction rules, we can soundly
prune a subproblem when the answer we seek can be found more efficiently else-
where. If a subproblem is deemed non-progressive, it means if the original input
formula is satisfiable, then another satisfiable solution of shorter “length” will be
found. If, on the other hand, the input formula is unsatisfiable, then any pruning
is obviously sound. A technical challenge we will overcome is that at the point
of pruning, the satisfiability of the input formula is unknown.

An additional important feature of our algorithm is applicable only when
the input formula is unsatisfiable. Here, we want to produce a set of conflict
clauses, a generalization of the input formula, that is now known to be unsat-
isfiable (Sect. 5.2). The benefits of such learning is of course well-known. It is,
for example, at the heart of the attractiveness of SMT solvers. However, the key
technical challenge is, how conflict clause learning can work in tandem with the
pruning of non-progressive formulas, because at the time of pruning, again, the
unsatisfiability of the input formula is unknown.

Finally, we present an experimental evaluation with two case studies. First
is on the well-known Kudzu benchmark [18] where we show that (a) our new
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algorithm surpasses four state-of-the-art solvers in its ability to detect unsatis-
fiable formulas or generate a model in satisfiable formulas (and in good running
time), and (b) the number of unsatisfiable cores is very small, thus paving the
way to accelerate the consideration of large collections of formulas. The second
case study considers web applications used in the Jalangi framework [19], and
shows how we can deal with the replace operation in string formulas. No other
system has been demonstrated on this class of problems, and thus the purpose
of our evaluation is simply to show that we are applicable.

2 Motivation

The common reason for non-termination in string solving is non-progression.
For example, after applying some reduction steps, if the reduced problem is
not easier to solve than the original one, then it may lead to non-terminating
computations. To illustrate, let us first look at the JavaScript example in Fig. 1.

Fig. 1. A JavaScript example using replace operation

The program takes as its input a JSON [10] string. Here is an example of a string
input:

[{“content” : “ip=1.1.1.1&dom=nus.edu.sg”},
{“content” : “ip=0.0.0.0&dom=google.com”}]

Specifically, we store the JSON data in an array. Each element of the array is
an object. Inside an object, we declare a property with its name and its value
(i.e., a {name : value} pair). To access the value, we simply refer to the name
of the property we need (e.g., we use a[0].content to access the value of the first
element of the array a). In Fig. 1, the program first decodes the input string by
replacing all occurrences of "ip" with "ip address" and "dom" with "domain".
Then it parses the decoded string into an array arr, and splits the value of the
first element of this array into two parts using “&” delimiter. Finally, it shows
the resulting string s in a web browser by updating the innerHTML attribute of
the info element.
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Now, suppose we want to detect XSS vulnerabilities in the program. We then
need to determine the security sink and source of XSS attacks. Here, the security
sink is innerHTML, while the corresponding source is an input JSON string (i.e.
input). Next, against the sink, we define the specification for XSS attacks which
is some (regular) grammar encoding a set of strings that would constitute an
XSS attack. For simplicity, we choose: all the strings that contain "<script".
Lastly, in order to generate a test input that leads to an XSS attack, we will
need to solve the formula:

contains(s,"<script") ∧ tmp=replace(input,"ip","ip address")
∧ res=replace(tmp,"dom","domain") ∧ arr=parse(res) ∧

c=split(arr[0].content,"&") ∧ s=c[0]·""·c[1]
to make it easier for presentation, we simplify the formula into:

res=replace(input,"ip","ip address") ∧
contains(res,"<script")

If we now perform some intuitive steps of “unfolding” the definition of
replace, we will reduce the simplified formula into two disjuncts. Since the
first one is unsatisfiable due to the conflict between res �∈ /.� "ip" .�/ and
contains(res,"<script"), we proceed to find a solution in the second disjunct,
that is

input=X1·"ip"·input1 ∧ X1·"i"�∈ /.� "ip" .�/ ∧
res=X1·"ip address"·res1 ∧

res1=replace(input1,"ip","ip address") ∧
contains(res,"<script")

After applying the unfolding step some n−1 times, we still have to find a solution
in the following formula:

input=X1·"ip"·input1 ∧ X1·"i"�∈ /.� "ip" .�/ ∧
res=X1·"ip address"·res1 ∧ input1=X2·"ip"·input2 ∧

X2·"i"�∈ /.� "ip" .�/ ∧ res1=X2·"ip address"·res2 ∧ ... ∧
resn=replace(inputn,"ip","ip address") ∧

contains(res,"<script")

Obviously, this will lead us to a non-terminating computation.
As a matter of fact, non-termination is common in string solving. In addition

to the case of solving constraints on (JavaScript) recursive string operations (e.g.
replace, split, match), we also have non-termination when handling member-
ship predicates with unbounded Kleene-star regular expressions.

Example 1. Unbounded regular expressions:

X=Y·Z·T ∧ Y ∈ /a�/ ∧ Z ∈ /b�/ ∧ T ∈ /c�/ ∧
length(Y)=length (Z) ∧ length(Z)=length (T) ∧ X=X1·"d"·X2
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Since the first 6 constraints state that X can be any string in the context-sensitive
language { an·bn·cn | n≥0 }, automata techniques and the alike which approxi-
mate strings using context free grammars, are not able to handle this example.
Instead, to generally deal with unboundedness of regular expressions which are
constructed by using Kleene-star operators, state-of-the-art techniques [21,23]
represent the membership predicate X∈/a�/ as an equation between string vari-
able X and star(a,N) function which can be defined recursively as below:

X=star(a,N)
def
= (X = "") ∨ (X=a·star(a,M) ∧ N=M+1)

To facilitate the solving process, [21,23] will need to apply the definition of star
functions to incrementally reduce them (according to the unfold-and-consume
technique). However, they cannot handle Example 1 as they will go into an
infinite loop of searching for a solution. We will discuss this example more in
Sect. 4.

Finally, we note that the problem of non-terminating reasoning is not solely
due to the recursive definitions we employ in this paper. For example, the non-
termination problem also happens when we do splitting on unbounded string
variables. Below is a well-known example.

Example 2. Overlapping variables:

X · "a" = "b" · X

The classic work [15] is able to solve the satisfiability problem of word equations
(and not including recursively defined string operations). In this work, the big
advance was to discover a termination criteria within the reasoning steps, and
prominent amongst these was the “splitting” step. For the above example, such
a step would split X in the left hand side to obtain a new formula X·"a"="b"·X
∧ X="b"·Y . This can then be simplified into Y·"a"="b"·Y ∧ X="b"·Y . Notice
that the last formula is, in some sense, equally difficult to solve as the original one.
The huge contribution of [15] was thus to provide a bound for the number of times
such “non-progressive” steps that needs to be made. However, the elaboration
of this bound is extremely complex and is not considered feasible for a direct
implementation.

3 The Core Language

We introduce the core constraint language in Fig. 2. In our implementation, the
string theory solver is a component of Z3 solver [9]. Though Z3 supports more
primitive types, we only mention string type and integer type in Fig. 2.

Variables: We deal with two types of variables: Vstr consists of string variables
(X, Y , Z, T , and possibly with subscripts); and Vint consists of integer variables
(M , N , P , and possibly with subscripts).

Constants: Correspondingly, we have two types of constants: string and integer
constants. Let Cstr be a subset of Σ� for some finite alphabet Σ. Elements of
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Fig. 2. The syntax of our core constraint language

Cstr are referred to as string constants or constant strings. They are denoted by
a, b, and possibly with subscripts. Elements of Cint are integers and denoted by
m, n, and possibly with subscripts.

Terms: Terms may be string terms or length terms. A string Tstr term (denoted
D, E, and possibly with subscripts) is either an element of Vstr, an element
of Cstr, or a function on terms. More specifically, we classify those functions
into two groups: recursive and non-recursive functions. An example of recursive
function is replace, while an example of non-recursive function is concat. The
concatenation of string terms is denoted by concat or interchangeably by ·
operator. For simplicity, we do not discuss string operations such as match,
split, exec which return an array of strings. We note, however, these operations
are fully supported in our implementation.

A length term (Tlen) is an element of Vint, an element of Cint, length function
applied to a string term, a constant integer multiple of a length term, or their
sum.

In addition, Tregexpr represents regular expression terms. They are con-
structed from string constants by using operators such as concatenation (·),
union (+), and Kleene star (�). However, regular expression terms are only used
as parameters of functions such as replace and star.

Following [21], we use the star function in order to reduce a membership
predicate involving Kleene star to a word equation. The star function takes two
parameters as its input. The first parameter is a regular expression term while
the second is a non-negative integer variable. For example, X ∈ (r)� is modelled
as X = star(r,N), where N is a fresh variable denoting the number of times
that r is repeated.

Literals: They are either string equations (As) or length constraints (Al).

Formulas: Formulas (denoted F , G, H, I, and possibly with subscripts) are
defined inductively over literals by using operators such as conjunction (∧), and
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negation (¬). Note that, each theory solver of Z3 considers only a conjunction
of literals at a time. The disjunction will be handled by the Z3 core. We use
Var(F ) to denote the set of all variables of F , including bound variables.

Define L to be the quantifier-free first-order two-sorted language over which
the formulas described above are constructed. This logic can be considered as
equality logic facilitated with recursive and non-recursive functions, along with
length constraints.

As shown in [21], to sufficiently reason about web applications, string solvers
need to support formulas of quantifier-free first-order logic over string equations,
membership predicates, string operations and length constraints. Given a for-
mula of that logic, similarly to other approaches such as [21,23], our top level
algorithm will reduce membership predicates into string equations where Kleene
star operations are represented as recursive star functions. After such reduction,
the new formula can be represented in our core constraint language L in Fig. 2.

4 Algorithm

In Sect. 4.1, we first present the background and limitation of existing meth-
ods. In Sect. 4.2, we then present the foundations of our progressive algorithm,
along with the formal statements about its soundness and semi-completeness.
Implementation details are discussed later in Sect. 5.

4.1 Preliminaries

This paper builds on top of the string solver S3 [21]. Essentially, the S3 solver
is a string theory plug-in built into the Z3 SMT solver [9], whose architecture
is summarised as follows. Z3 core component consists of three modules: the
congruence closure engine, a SAT solver-based DPLL layer, and several built-
in theory solvers such as integer linear arithmetic, bit-vectors. The congruence
closure engine can detect equivalent terms and then classify them into different
equivalence classes which are shared among all theory solvers. Each theory solver
can consult the Z3 core to detect equivalent terms if needed. In particular, the
string theory solver has a bi-directional interaction with a built-in integer theory
solver [21,23].

In the string theory solver, the search for a solution is driven by a set of rules.

Definition 1 (Derivation Rule). Each rule is of the general form

(RULE-NAME)
F

∨m
i=1 Gi

where F , Gi are conjunctions of literals1, F ≡ ∨m
i=1 Gi, and Var(F ) ⊆

Var(Gi). 	

1 As per Fig. 2.
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An application of this rule transforms a formula at the top, F , into the formula
at the bottom, which comprises a number (m) of reducts Gi.

Definition 2 (Derivation Tree). A derivation tree for a formula F is obtained
by applying a derivation rule R to F . If the rule produces the single reduct false,
then the tree comprises the single node labelled with F . Otherwise, let the reducts
of R be Gi, 1 ≤ i ≤ m. Then the tree comprises a root node labelled with F and
there are m child nodes, labelled with Gi, 1 ≤ i ≤ m. 	

The concepts of descendant and ancestor nodes are defined in the usual way.

A derivation tree rooted at formula F is built using some search strategy. The
search strategy used by Z3 is a form of Depth First Search. This importantly
means that the process can be nonterminating even though there is a finite
path leading to a satisfying assignment to the variables in F . In navigating the
construction of the derivation tree, we backtrack when we encounter a false
formula. If all the leaf nodes of a subtree rooted at F are false , we can decide
that the formula F is unsatisfiable.

On the other hand, when we encounter a formula for which no derivation
rules can be applied, we can in fact terminate and decide that F is satisfiable.
To ensure the soundness of this step, we employ a standard procedure of instan-
tiating steps which enumerates and thus performs a brute-force method. This
method looks for satisfying assignments for all the string variables in the root
nodes of a dependency graph for string variables — a string variable in a root
node does not depend on the values of any string variables. Consequently, when
we terminate and declare satisfiability, it also means that every string variable
has been successfully grounded. This brute-force method is part of Z3-str, S3, Z3-
str2, and is also adopted by this paper. We will henceforth assume this method
tacitly, and not discuss it further.

Note that we control the branching order in navigating the derivation tree
by dictating the order of the rules to be applied, as well as the order in which
the reducts to be considered. In general, this order can affect significantly the
overall performance of the algorithm. However, because of the way our progres-
sive algorithm works, and in particular because of its pruning step (introduced
later), the choice of order becomes much less important. For this reason, when
we present our algorithm in detail below, we shall not impose any order on the
application of derivation rules.

We next discuss the set of rules used by our solver. Then we will illustrate
the application of rules and show an example of the derivation tree later in
Example 3. The set of rules is described in two parts:

• one-reduct rules: in Figs. 3 and 4;
• multi-reduct rules: in Fig. 5.

We first describe the one-reduct rules in Fig. 3. These rules are to propagate
length constraints, so that these constraints can be sent to integer theory solver.
They are triggered by the encounter with a string constant, a string variable, a
concatenation, and a string equation. In the figure, we use Var(F ), Constant(F ),
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Concat(F ), and Equality(F ) to denote the set of variables, constants, concate-
nations, and equations of F respectively. Note that we need to mark them in
those corresponding sets so that these rules are applied once for each constant,
variable, concatenation, and equation.

Fig. 3. Length constraint propagation rules

We comment here that in a practical implementation, it is useful to have some
more rules, for example, to deal with membership predicates and string opera-
tions. But for a more focused presentation, we shall not discuss them further.

Fig. 4. Simplification rules for string constraints

Next, consider Fig. 4 which shows three basic simplification rules. First, the
(CON) rule is to detect a contradiction in the string theory. Second, the (SUB)
rule is to substitute all variables X in F with C, where C is either grounded or
semi-grounded. A string is grounded if it is a constant string. It is called semi-
grounded if it is either a star function, or a concatenation of which at least a
component is either grounded or semi-grounded. For example, “a” is grounded,
while “a” · Y2 is semi-grounded. Finally, the (SIM) rule is to eliminate matching
constant strings on both sides of an equation. For each formula in the derivation
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tree, only one rule is applied at a time. For each application, only one literal is
considered at a time. For example, in (SUB) rule, only X = C is involved. The
choice of which literal to be involved is decided by Z3.

We comment here that in our implementation, we do employ other specialized
rules. For example, because the string theory solver also receives the informa-
tion of length constraints from the integer theory solver, we can craft a more
specialized instance of the (CON) rule of Fig. 4 where a variant side condition is
that the lengths of D and E are different. Further, our implementation accom-
modates string operations such as substring, indexOf , with new simplification
rules. Again, for presentation purposes, we shall not discuss these detailed rules
further.

Finally, we present the remainder of our rules: multi-reduct rules, which we
call splitting rules. Before proceeding, note that in the rules in Figs. 3 and 4, no
disjunction is introduced. The disjunctions are only introduced in the splitting
rules, which we will present in two parts: the unfolding (UNF) rules, and the
variable-splitting (SPL) rules.

Fig. 5. Split rules and unfold rules for star functions

An unfolding rule applies the definition of a recursive function, replacing the
head with the body that typically contains a number of disjuncts (cf. the replace
function presented in Sect. 2). We describe such a rule using an unfolding rule
schema (UNF) for a recursive function E as follows:

(UNF)
F ∧ D1 · D2 = E · D3

∨
(F ∧ D1 · D2 = Ei · D3)

E is defined as
∨

Ei

A variable-splitting rule is used to split a string variable into sub-variables. We
shall describe such a rule using a variable-splitting rule schema (SPL) as follows:
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(SPL)
F ∧ D1 · D2 = E1 · E2

(F ∧ D1 = E1 ∧ D2 = E2) ∨ (F ∧ ∃Z : D1 = E1·Z ∧ Z·D2 = E2 ∧ length(Z)>0)

∨ (F ∧ ∃T : E1 = D1·T ∧ D2 = T ·E2 ∧ length(T ) > 0)

The specific instances of (SPL) and (UNF) rules used in this paper are listed in
Fig. 5. There are 3 split rules to deal with string equations and 2 unfold rules for
star functions. The notation aj

i denotes the substring of a from bound i to j.
We now discuss the relationship between the splitting rules and the issue of

non-termination. Intuitively, the aim of the splitting rules is to reduce/break the
current formula into “sub-formulas”, where the complexity is reduced. A problem
arises when the rule reduces the current formula into sub-formulas, where the
complexity is actually not reduced. In other words, even though we have reduced
the formula, we are in fact not any closer in finding a satisfying solution nor in
finding a proof for unsatisfiability. This is the main reason for non-termination.

Let us now illustrate, in more detail, the issue of non-termination. We use
Example 3, a simplified version of Example 1. Here, non-termination comes
from dealing with recursive function star which is used to represent Kleene star
regular expressions. We note that both Examples 3 and 1 address the same non-
progression problem in dealing with unbounded strings. Our purpose in choosing
Example 3 to present is for simplicity.

Example 3. Recursive function star:

X = star(“a”, N) ∧ X = Y1 · “b” · Z

Figure 6 summarizes the main steps of solving Example 3. (For simplicity, we
ignore existential variables.) Similarly to solving Example 1, here we also need
to unfold the definition of star(“a”, N) function and normalize the formula to
DNF. An application of the unfold rule (UNF-�1) would result in a disjunction
of two reducts:

X = “” ∧ X = Y1·“b”·Z and
X = “a”·star(“a”,M) ∧ N = M + 1 ∧ X = Y1·“b”·Z

The first reduct leads to a contradiction:

(SUB)
X = “” ∧ X = Y1·“b”·Z

(CON)
X = “” ∧ “” = Y1·“b”·Z

false

This contradiction appears in the tree depicted in Fig. 6, but is hidden in the
part of the tree that was abbreviated away for brevity.

In the second reduct, by substituting X with Y1· “b” ·Z, we introduce a new
constraint Y1·“b”·Z = “a”·star(“a”,M). Now the only way to proceed is to
split Y1 into two parts: “a” and Y2 (for brevity, we omitted the base case where
Y1 = “”). After substituting Y1 with “a”·Y2 and simplifying the formula, we
obtain a new constraint: Y2·“b”·Z = star(“a”,M). If we repeat this process of
unfolding the definition of star function, clearly we will go into an infinite loop.
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Fig. 6. Derivation tree for Example 3

4.2 Progressive Search Strategy

As mentioned earlier, the key idea to achieve progression is to prune away a
subtree when we are sure that a shorter solution can be found elsewhere. We
first need to define a measure to decide which solution is shorter. This measure
is parameterized by a sequence of variables. We use σ, τ to denote sequences.

Definition 3 (Lexical Length of a Solution). Given a formula F , let
σ = (x1, x2, . . . , xn) be a sequence of variables constructed from a non-empty
subset of Var(F ). For each solution α of F , i.e. α is an assignment [x1 =
a1, x2 = a2, . . . , xn = an, . . . ], the lexical length of α is defined as a n-tuple
(length(a1), length(a2), . . . , length(an)). We use Lenσ(α) to denote the lexi-
cal length of α w.r.t. the sequence σ. 	


We now use a lexical order to sort the solution set of a formula F based on
the lexical length of each solution. If F has a solution then its minimum lexical
length w.r.t. a sequence σ, denoted by l(σ, F ), is defined as the lexical length of
a minimal solution of F . If F has no solution then its minimum lexical length
is denoted by �. We assume that ∀σ, F : l(σ, F )≤�. We now can compare two
arbitrary formulas based on their minimum lexical length of solutions.

Definition 4 (Total Order for Formulas). Given two formulas F and G
and let σ be a sequence of variables constructed from a non-empty subset of the
common variables of F and G, a total order �σ is defined as follows:
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F �σ G
def
= l(σ, F ) ≤ l(σ,G) 	


We define equality =σ and strict inequality ≺σ in the obvious way. We now
outline three important properties2 of ≺σ:

• [Prop-1]: If F ≡ (G ∨ H) where Var(F ) ⊆ Var(H) and ∃σ : F ≺σ G
then F =σ H

• [Prop-2]: If (G ∨ H) ⇒ F and ∃σ : F =σ G then F =σ (G ∨ H)
• [Prop-3]: If ∃σ : F =σ G and τ is a prefix of σ then F =τ G

Among them, we want to direct the attention towards the third property. It is
used to ensure the soundness of the proposed method later. It states that if two
formulas F and G have the same minimum lexical length of solutions w.r.t. a
sequence σ, then they also have the same minimum lexical length of solutions
w.r.t. a sequence τ , where τ is a prefix of σ.

Input: I : Fml , τ : a sequence on Var(I)

Output: SAT/UNSAT

〈1〉 if solve(I, τ , ∅) return SAT else return UNSAT

function solve(H : Fml, σI: a sequence, γ: a list of pairs of a formula and a sequence)

〈2〉 if (H ≡ false ) return false
〈3〉 if (there is no rule to apply) return true
〈4〉 ∨

Gi ← applyRule(H) /* Apply a derivation rule */

〈5〉 Let Υ be the set of all the reducts Gi

〈6〉 foreach reduct G ∈ Υ do /* Choose G by following Z3 heuristics */

〈7〉 if (G contains a recursive term or a non-grounded concatenation)

〈8〉 if (∃(F, σ) ∈ γ s.t. F ≺σ G) return false /* PRUNE !!! */

〈9〉 Let σH be a sequence on Var(H) s.t. σI is a prefix of σH /* CONDITION 1 */

〈10〉 γ ← γ ∪ 〈H, σH〉
〈11〉 endif

〈12〉 if solve(G, σI, γ) return true
〈13〉 if (G contains a recursive term or a non-grounded concatenation)

〈14〉 γ ← γ \ {H, σH}
〈15〉 endfor

〈16〉 return false

end function
Algorithm S3P. Progressive Search

Now we show how to prune a derivation subtree when we are sure that
a solution with shorter lexical length can be found elsewhere. We do this by
augmenting the strategy already described in Sect. 4.1 with a new step which
enables us to prune the proof tree.

Definition 5 (Progressive Pruning). Let there be a derivation tree rooted at
an input formula I, and let τ be a sequence of all the variables of I. Let F be
a formula labelling a node in the tree. A set of prunable subtrees of F is a set
of its descendants Gi such that there exists a sequence σ constructed from all
variables of F satisfying the two conditions:
2 All the proofs are in our technical report [22].
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• τ is a prefix of σ and
• F ≺σ G.

We then prune derivation subtrees rooted at formulas Gi. 	

The first condition ensures that a minimal solution of a formula F w.r.t. a
sequence of all variables of F is also a minimal solution of F w.r.t. a sequence
of all variables of the input formula I (according to [Prop-3]). Meanwhile, the
second condition ensures that whenever we prune G, we still preserve a minimal
solution of formula F w.r.t. a sequence of all of the variables of F .

We now present our algorithm as AlgorithmS3P. Line 2 corresponds to the
case when we find a contradiction. In Line 6, we iterate over the set of sub-
formulas; the ordering between them is not important. (In fact, in our imple-
mentation, we simply follow the heuristics of Z3.) Line 8 represents the key
feature of our algorithm; it implements our pruning step (by returning false).
Line 9 prepares for the pruning of a descendant of the current formula H (by
ensuring that the first condition of Definition 5 is met).

Theorem 1 (Soundness). Given an input formula I, if Algorithm S3P

• returns SAT: then I is satisfiable;
• returns UNSAT: then I is unsatisfiable.

	

We now consider the completeness of Algorithm S3P. Before we can formal-

ize this property, we need to discuss the condition check in line 8. This check
determines the lexical order between two formulas, and is by no means a prim-
itive operation. In fact, we do not know if the check is, in general, decidable.
Our completeness result below nevertheless assumes that we have a decision pro-
cedure for this check. Later, in Sect. 5.1, we present an implementation which,
though not a decision procedure, is sound and practical. We follow this up in
Sect. 6 with an experimental evaluation.

Theorem 2 (Semi-completeness). Suppose the given input formula I is sat-
isfiable. Then Algorithm S3P will return SAT, and produce a minimal solution
w.r.t some sequence τ of all the variables of I. 	


5 Implementation

We first show how to implement the pruning step of our search algorithm. Then
we present the conflict clause learning for string theory, especially in the setting
of Z3.
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5.1 The Pruning Step

To implement the pruning step of the Algorithm S3P, we have to keep track
of the set γ which contains pairs of the current formula H and some sequence
σH of all of the variables of H. When backtracking, such pair will be removed
from γ correspondingly. Let τ be the sequence of all of the variables of the input
formula I. The sequence σH is constructed by concatenating the sequence τ with
additional variables from Var(H). Specifically, σH = τ � δ where Var(δ) =
Var(H) \ Var(τ). For Example 3, after the first unfolding:

τ is (N,X, Y1, Z) and γ is {(X = star(“a”, N) ∧ X = Y1 · “b” · Z, τ)}.

We now show how to implement the condition check in line 8 of Algo-
rithm S3P. Suppose the current formula is G, if

• we find a pair (F , σ) in γ and a substitution θ such that Gθ ⇒ F , and
• the substitution θ is a progressive substitution (as defined in Definition 6

below) w.r.t a sequence σ.

then the condition check is satisfied. Obviously, θ must not introduce new con-
flicts in Gθ, which prevents Gθ from being false trivially.

Definition 6 (A Progressive Substitution). Let G be a formula, and σ be a
sequence of subset variables of G. A substitution θ is progressive w.r.t a sequence
σ if for every solution α of G, there exists a solution β of Gθ such that Lenσ(β) <
Lenσ(α). 	

For Example 3, in the second unfolding, the current formula is

G ≡ Y2·“b”·Z = star(“a”,M) ∧ Y1 = “a”·Y2 ∧ N = M + 1 ∧ X = Y1·“b”·Z
Obviously, there exists F ≡ X = star(“a”, N)∧X = Y1·“b”·Z and a substitution
θ = [M/N,N/N +1,X/“a”·X,Y1/“a”·Y1, Y2/Y1, Z/Z], such that the implication
check Gθ ⇒ F succeeds. Furthermore, the substitution θ is progressive w.r.t the
sequence τ , that is (N,X, Y1, Z). This is because if length(N) = k in a solution
α (if any) of G, we have length(M) = k − 1. Then, we have length(N) = k − 1
in the corresponding solution α′ of Gθ. Because Lenτ function returns a 4-tuple
whose first element is length(N), θ is progressive. As a result, we can stop the
second unfolding.

Lemma 1. The implementation of the pruning step is sound 	


5.2 Conflict Clause Learning

We present our conflict clause learning technique for string theory, with the focus
on the case when non-progression is detected. Specifically, in the implementation
of the pruning step, suppose there exists (F, σ) in γ and a substitution θ such
that Gθ ⇒ F and θ is progressive w.r.t σ. A corollary of Lemma 1 is that we have
F ≺σ G (see the proof of Lemma 1 in [22]). Now, in addition to returning false
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as in line 8 of Algorithm S3P, we also mark Ĝ as a possible conflict clause. We
derive Ĝ from G by removing all equations in solved form which is defined for
both string and integer theories as below. If later we can not find any solution in
solving F , then we can conclude F is unsatisfiable and produce a conflict clause
Ĝ. The soundness of this learning is stated in Lemmas 2 and 3.

Definition 7 (String Solved Form). A string equation is in solved form
if it is in the form of X = f(Y1, . . . , Yn, a1, . . . , am), where X ∈ Vstr,
Y1, . . . , Yn ∈ Vstr, a1, . . . , an ∈ Cstr, X �∈ {Y1, . . . , Yn}, and f is a non-recursive
function. 	


For example, X = concat(Y,Z) is in solved form. X = concat
(Y, concat(Y1, Y2)) can be rewritten into two formulas X = concat(Y,Z) and
Z = concat(Y1, Y2), which are both in solved form. Similarly, we can define a
solved form in integer theory:

Definition 8 (Integer Solved Form). An equation is in solved form if it is in
the form of M = g(N1, .., Nn, p1, . . . , pm), where M∈Vint, V1, .., Vn∈Vint ∪ Vstr,
p1, . . . , pm∈Cint ∪ Cstr, M �∈ {N1, . . . , Nn}, and g is a function. 	


Now, suppose some formula G contains an equation X = f(· · · ) in solved
form, we are able to eliminate variable X by substituting X with f(· · · ) in G. To
obtain Ĝ, we need to remove all equations in solved form from G. The purpose
of deriving Ĝ is to obtain the core reason for pruning G, which helps us to
extract a smaller unsatisfiable core for the input formula. For Example 3, G is
Y2·“b”·Z = star(“a”,M)∧Y1 = “a”·Y2∧N = M +1∧X = Y1·“b”·Z. So we have
3 equations Y1 = “a”·Y2, N = M + 1, and X = Y1·“b”·Z which are in solved
form. Therefore, we mark Ĝ ≡ Y2 · “b” · Z = star(“a”,M) as a possible conflict
clause. Later, when we can decide the unsatisfiability of the input formula, based
on the implication graph, we can trace back to extract an unsat core for the input
formula. Specifically, it is X = star(“a”, N) ∧ X = Y1 · “b” · Z.

Lemma 2. Suppose the pruning condition check is applied for specific formulas
F and G. Then F can be written into the form G ∨ Gr and the following holds:
if Gr is unsatisfiable, F is unsatisfiable. 	

Lemma 3. Ĝ is satisfiable iff G is satisfiable. 	


Now we present the detailed implementation of obtaining Ĝ in Z3, given
that Z3 manages theory terms via its congruence closure engine. First, we give
an overview on how Z3 builds its equivalence classes. Given an equation, its two
sides will be represented as two nodes in an equivalence class. For Example 3,
since G is Y2·“b”·Z = star(“a”,M)∧Y1 = “a”·Y2 ∧N = M +1∧X = Y1·“b”·Z,
we have 4 equivalence classes as follows:

• X, Y1·“b”·Z
• Y2·“b”·Z, star(“a”,M)
• Y1, “a”·Y2

• N , M + 1
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Note that given a node e representing a term Q, we are able to access all nodes
representing terms that take term Q as their parameters (e.g., for string term
D and E, we can access the nodes representing length(D), concat(D,E)). We
call the later parent nodes of e.

There are three steps to remove an equation V = f(· · · ) in solved form. First,
we mark the node representing variable V . A node e is marked when:

• it represents a single variable V (V can be either a string variable or an
integer variable),

• the size of its equivalence class is greater than 1,
• its parent nodes are not in the same equivalence class as e, and
• not all of remaining nodes in the equivalence class of e contain recursive

functions.

Second, we substitute the value of all marked nodes in their parent nodes with
the value of another node in the equivalence classes of the marked nodes. Finally,
we need to traverse all unmarked nodes in the equivalence classes to create a
conjunction of all equations. For Example 3, according to above conditions, nodes
representing X, Y1, and N will be marked in their corresponding equivalence
classes. Then, we can traverse all unmarked nodes to obtain the formula Ĝ ≡
Y2·“b”·Z = star(“a”,M).

6 Evaluation

We implemented our algorithm into S3 [21] which itself was built on top of
the Z3 framework [9]. Our solver is called S3P which stands for Progressive
S3. To evaluate our solver, we conduct two case studies which involve practical
benchmark constraints generated from testing JavaScript web applications. All
experiments are run on a 3.2 GHz machine with 8GB memory.

In the first case study, we used a large and popular set of benchmark con-
straints generated using the Kudzu symbolic execution framework [18]. State-
of-the-art string solvers are also evaluated using this benchmark suite, making
it convenient for us to provide detailed comparisons on the applicability and
efficiency of our new solver.

Note that the constraints in Kudzu’s benchmarks have already been pre-
processed and/or over-simplified. In particular, the string lengths have been
bounded and recursive string function such as replace have been transformed
to primitive operators so that the underlying solver of Kudzu [18] can handle.
Because strong support for the replace function is critical for enhancing security
analysis of web applications, we conduct a second case study, of a smaller scale,
but with special focus on the replace function. The main purpose is to show
that S3P is more applicable than existing solvers in such domain applications.

Kudzu Benchmarks: In this case study, we use the set of constraints which
can be downloaded at: http://webblaze.cs.berkeley.edu/2010/kaluza. They were
generated using Kudzu [18], a symbolic execution framework for JavaScript,

http://webblaze.cs.berkeley.edu/2010/kaluza
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Table 1. Constraints generated
by Kudzu

Norn CVC4 S3 Z3-str2 S3P

Sat 27068 33227 34961 34931 35270

Unsat 11561 11625 11799 11799 12014

Unk 0 0 0 524 0

Error 6187 0 0 0 0

TO (20s) 2468 2432 524 30 0

Time (s) 178960 50346 16547 6309 6972

Table 2. Usefulness of unsatisfi-
able cores for Kudzu framework

# unsat files 12014

S3P Time 1129 s

S3P with unsat core # unsat cores 59

% skipped 99.5

Time 11 s

when testing 18 subject applications consisting of popular AJAX applications.
The generated constraints are of boolean, integer and string types. Integer con-
straints also include ones on length of string variables, while string constraints
include string equations, membership predicates. To compare with other solvers,
we choose to use the SMT-format version of Kaluza benchmark as provided
in [14].

This case study consists of two parts. The first part is to evaluate our non-
progression detection technique. Table 1 shows the result of solving Kudzu con-
straints by S3P, compared with 4 state-of-the-art solvers: Norn (v1.0), CVC4
(v1.4), S3 (v17092015), Z3-str2 (v1.0.0). While Norn is automata-based string
solver, the others, including S3P, are word-based string solvers, in which string
is treated as a basic type.

It can be seen that automata-based solvers such as Norn are not good at
handling constraints generated from concolic testing of web applications. This
is because such constraints are usually of multi-sorted theory, including both
string constraints and integer constraints, such as those coming from the string
lengths.

In fact, for the case of Kudzu constraints, all word-based string solvers domi-
nate Norn. Not counting S3P, Z3-str2 is the solver that produces the best result.
Z3-str2 also terminates on 524 benchmarks where Norn, CVC4 and S3 all time
out. Specifically, Z3-str2 terminates with an Unknown answer if the input formula
contains the so-called “overlapping variables” [23].

Compared with Z3-str2, S3P can in fact decide the satisfiability of these 524
benchmarks. S3P achieves this by employing the proposed technique for non-
progression detection. Specifically,

• if an input formula is unsatisfiable, S3P is able to decide the unsatisfiability
of that formula. For example, it can decide the unsatisfiability of 215 input
formulas in those 524 benchmarks.

• otherwise, being able to effectively prune away non-progressive paths, S3P has
a chance of finding solutions in other search branches. As such, the remaining
of those 524 benchmarks are decided as satisfiable with the correct models.
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In fact, for each of the 35270 benchmarks which S3P declares to be satisfiable,
we conjoin the model generated by S3P with the original input formula and pass
it to the other 4 solvers. As a result, all 4 solvers can now decide, with an answer
confirming the satisfiability, even on those benchmarks they could not decide
before. In other words, all models produced by S3P are cross-checked and all the
solvers reach a consensus for every single case.

In the second part of this case study, we focus on benchmarks which are
unsatisfiable, in order to demonstrate our conflict clause learning technique.
More specifically, we will extract the unsatisfiable cores from those input con-
straints, and show the potential usefulness of the cores in a dynamic symbolic
execution (DSE) framework (e.g. Kudzu). To do this, we compare the result of
solving 12014 unsatisfiable formulas in Kudzu benchmarks by two versions of
S3P. The first version (S3P) will solve each formula independently. In contrast,
when deciding a formula as unsatisfiable, the second version will cache its unsat
core. Subsequently, it will attempt to skip a formula if the formula is discharged
by some cached unsat core. The result is summarized in Table 2. There are two
important observations:

• By extracting and caching the unsatisfiable cores of 59 formulas, we can skip
checking the satisfiability of the remaining formulas (99.5 %) (which in fact
represent infeasible paths to the attack against the sink). Overall, we achieve
the speedup of about 102x faster.

• Unsatisfiable cores are also useful for validating/debugging the result. By
inspecting a much smaller number of constraints compared to the original
ones, we are able to validate the final result. For example, we are able to
confirm that all unsatisfiable answers are correct by inspecting them manually.

Jalangi Benchmarks: This second case study is to focus on the replace
string function. As such, we collect constraints generated by testing web appli-
cations using the concolic tester in Jalangi framework [19], and do not make any
preprocessing with those constraints. These applications are annex, tenframe,
calculator, go, and shopping. Note that all of them are not vulnerable to XSS
attacks.

Let us first present the set-up to collect this set of constraint benchmarks.
For each web application, we choose a sink point, that is innerHTML. Then we
symbolically execute paths from a source to the sink. These path constraints will
be combined with attack specifications at the sink. The resulting formulas are
sent to a constraint solver.

Table 3. Constraints generated by Jalangi

# benchmarks # constraints # replace operation Time of S3P

48 624 96 143.7 s
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Table 3 summarizes the statistics of those formulas, along with the running
time of S3P. In 48 benchmarks, there are 624 constraints and 96 constraints
are involved in replace operation. So the percentage of replace operation is
about 15 %.

More importantly, replace operation appears in all benchmarks. The reason
is that after a source point, a web application usually provides some sanitiz-
ing mechanism, for example, by replacing all “<” with “&lt; ” and “>” with
“&gt; ”. As such, the path constraints usually involve the replace function. For
a concrete example, after symbolically executing the program, a DSE framework
will combine the path constraints with the specifications for attacks, to create
queries for the constraint solver. A specification for innerHTML sink can be all
the strings that contain “ < script”. Then a simplified example of a common
pattern is:

input1 = replace(input, “<”, “&lt; ”)∧ input2 = replace(input1, “>”, “&gt; ”) ∧
output = input2 · “</br>” ∧ contains(output, “<script”)

Given that Z3-str2, CVC4, and Norn cannot deal with replace operation, the
only work which is comparable in term of the expressiveness as our solver, is S3.
However, S3 timeouts for all of those formulas because it goes into infinite loops
(similarly to what we have shown in Sect. 2). In contrast, S3P can decide the
unsatisfiability of all benchmarks. Since S3P is the only solver that is applicable
in those constraints (which are generated from testing web applications), we
believe it will make a remarkable contribution to ensuring the security of web
applications.

7 Related Work

There is a vast literature on the problem of string solving. Practical methods for
solving string equations can loosely be divided into bounded and unbounded
methods. Bounded methods (e.g., HAMPI [13], CFGAnalyzer [4,11]) often
assume fixed length string variables, then treat the problem as a normal con-
straint satisfaction problem (CSP). These methods can be quite efficient in find-
ing satisfying assignments and often can express a wider range of constraints
than the unbounded methods. However, as also identified in [18], there is still a
big gap in order to apply them to constraints arising from the analysis of web
applications.

To reason about feasibility of a symbolic execution path from high-level pro-
grams, of which string constraints are involved, one approach [6,18] is to pro-
ceed by first enumerating concrete length values, before encoding strings into
bit-vectors. In a similar manner, [17] addresses multiple types of constraints for
Java PathFinder. Though this approach can handle many operators, it provides
limited support for replace, requiring the result and arguments to be concrete.
Furthermore, it does not handle regular expressions. In summary, all of them
have similar limitations such as performance [21].
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Unbounded methods are often built upon the theory of automata or regu-
lar languages. We will be brief and mention a few notable works. Java String
Analyzer (JSA) [8] applies static analysis to model flow graphs of Java programs
in order to capture dependencies among string variables. A finite automata is
then derived to constrain possible string values. The work [20] used finite state
machines (FSMs) for abstracting strings during symbolic execution of Java pro-
grams. They handle a few core methods in the java.lang.String class, and
some other related classes. They partially integrate a numeric constraint solver.
For instance, string operations which return integers, such as indexOf , trig-
ger case-splits over all possible return values. A recent work [5] provides an
automata-based technique for solving string constraints, and further, a method
for counting the number of solutions to such constraints. A recent string solver
Norn [1,2] is also based on automata techniques.

Using automata and/or regular language representations potentially enables
the reasoning of infinite strings and regular expressions. However, most of exist-
ing approaches have difficulties in handling string operations related to integers
such as length, let alone other high-level operations addressed in this paper.
More importantly, to assist web application analysis, it is necessary to reason
about both string and non-string behavior together. It is not clear how to adapt
such techniques for the purpose, given that they do not provide native support
for constraints of the type integer.

Most of recent work on string solving are based on unbounded methods with
string as a primitive data type. Examples are Z3-str [24], CVC4 [14], S3 [21], Z3-
str2 [23]. However, none of them addresses the non-termination issues in string
solving as in this paper. Though in [23], the authors address non-termination
in splitting overlapping string variables, they currently can not decide the sat-
isfiability of such formulas. In contrast, we generalize common non-termination
issues that appear in solving string constraints generated from reasoning about
web applications. Along with that is a progressive algorithm which we believe
is applicable to not just S3, but also other solvers in this family of word-based
string solvers.

8 Conclusion

This paper presents a progressive algorithm for solving string constraints for
the intended purpose of analyzing practical web applications. Its main feature
is its ability to handle the termination problem when unfolding recursive defin-
itions which define the constraints. This, together with another feature of con-
flict clause learning, were demonstrated to show usefulness in pruning the search
space and new levels of results in Javascript benchmarks arising from web appli-
cations. Finally, because our algorithm deals with recursive definitions in a some-
what general manner, we believe it can be extended to support reasoning about
unbounded data structures, for example heap-allocated data structures.
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