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Abstract. In this paper, we present LearnLib, a library for active
automata learning. The current, open-source version of LearnLib was
completely rewritten from scratch, incorporating the lessons learned from
the decade-spanning development process of the previous versions of
LearnLib. Like its immediate predecessor, the open-source LearnLib is
written in Java to enable a high degree of flexibility and extensibility,
while at the same time providing a performance that allows for large-scale
applications. Additionally, LearnLib provides facilities for visualizing the
progress of learning algorithms in detail, thus complementing its applica-
bility in research and industrial contexts with an educational aspect.

1 Introduction

Active automata learning, from its early beginnings almost thirty years ago [6],
inspired a number of applications in quite a number of fields (see [19] for a
survey). However, it took almost a decade for the software verification and testing
community to recognize its value of being able to provide models of black-box
systems for the plethora of model-based tools and techniques. More precisely,
it was not until the seminal works of Peled et al. [36], employing automata
learning to model check black-box systems, and Steffen et al. [18], who used it
to automatically generate test cases for legacy computer-telephony integrated
systems, that this use case of automata learning was discovered.

Since then, however, active automata learning has enjoyed quite a success
story, having been used as a valuable tool in areas as diverse as automated
GUI testing [13], fighting bot-nets [12], or typestate analysis [5,41]. Most of
these works, however, used their custom, one-off implementation of the well-
known L∗ learning algorithm [6], and hence invested relatively little effort for
optimizations, or using a more sophisticated (but harder to implement and lesser-
known) algorithm altogether.1

1 An elaborate discussion on the theoretical aspects of active automata learning, as
well as on the challenges that arise in practice, are outside the scope of this paper.
We refer the interested reader to [39] for an introduction focusing on these matters.
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We started developing the LearnLib2 library to provide researchers and prac-
titioners with a reusable set of components to facilitate and promote the use of
active automata learning, and to enable access to cutting-edge automata learn-
ing technology. From the beginnings of the development of LearnLib, started in
2003, until now, more than a decade has passed. In these years, many lessons
were learned on what makes for a usable, efficient and practically feasible product
that fulfills this goal (cf. [25,35,37]).

These lessons form the basis of the new LearnLib presented in this paper.
The new LearnLib is not just an overhaul of the prior version, but completely
re-written from scratch. It provides a higher level of abstraction and increased
flexibility, while simultaneously being the fastest version of LearnLib to date
(cf. Sect. 4). As a service to the community and to encourage contributions by
and collaborations with other research groups, we decided to make LearnLib
available under an open-source license (the Apache License, version 2.0 3). In the
remainder of this paper we highlight two aspects that we address with LearnLib.

Advanced Features. This is what we consider the strongest case for preferring
a comprehensive automata learning framework such as LearnLib over a custom
implementation. While implementing the original version of L∗ is not a challeng-
ing task, the situation is different for more refined active learning algorithms,
such as Rivest & Schapire’s [38], Kearns & Vazirani’s [30] or even the very recent
TTT algorithm [28]. While we found these algorithms to consistently outper-
form L∗, the latter remains the most widely used. Also, several other advanced
optimizations such as query parallelization or efficient query caches are typi-
cally neglected. Through LearnLib’s modular design, changing filters, algorithm
parameters or even the whole algorithm is a matter of a few lines of code, yield-
ing valuable insights on how different algorithms perform on certain input data.
Many of these features rely on AutomataLib, the standalone finite-state machine
library that was developed for LearnLib, which provides a rich toolbox of data
structures and algorithms for finite-state machines. The design of AutomataLib
is presented in Sect. 2, while Sect. 3 provides a more comprehensive overview of
LearnLib’s feature set.

Performance. The implementation of a learning algorithm comes with many
performance pitfalls. Even though in most cases the time taken by the actual
learning algorithm is an uncritical aspect (compared to the time spent in execut-
ing queries, which may involve, e.g., network communication), it should be kept
as low as reasonably possible. Besides, an efficient management of data struc-
tures is necessary to enable learning of large-scale systems without running into
out-of-memory conditions or experiencing huge performance slumps. In Learn-
Lib, considerable effort was spent on efficient implementations while providing
a conveniently high level of abstraction. This will be detailed in Sect. 4.

Finally, we conclude the paper by briefly discussing envisioned future work
in Sect. 5.

2 http://www.learnlib.de.
3 https://www.apache.org/licenses/LICENSE-2.0.
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Fig. 1. Architecture of AutomataLib

2 AutomataLib

One of the main architectural changes of the open-source LearnLib is that it uses
a dedicated, stand-alone library for representing and manipulating automata,
called AutomataLib.4 While AutomataLib is formally independent of LearnLib,
its development process is closely intertwined with the one of LearnLib. For this
reason, AutomataLib mainly focuses on deterministic automata, even though
selected classes of non-deterministic automata are supported as well (e.g., NFAs).

AutomataLib is divided into an abstraction layer, automata implementations,
and algorithms (cf. Fig. 1). The abstraction layer comprises a set of Java inter-
faces to represent various types of automata and graphs, organized in a com-
plex, fine-grained type hierarchy. Furthermore, these interfaces were designed
in a generic fashion, to integrate existing, third-party automata implementa-
tions into AutomataLib’s interface landscape with as little effort and run-time
overhead as possible. For instance, a proof-of-concept adapter for the BRICS
automaton library5 could be realized in as little as 20 lines of Java code.

Adapters like for the BRICS library form one part of the implementation
layer. The other part are generic automaton implementations, e.g., for DFAs or
Mealy machines, that provide good defaults for general setups, and are also used
by most algorithms in LearnLib to store hypotheses.

Sample algorithms shipped with AutomataLib include minimization, equiv-
alence testing, or visualization (via GraphVIZ ’s6 dot tool). The set of func-
tionalities will be continuously extended, with a strong focus on functionality
either directly required in LearnLib, or desirable in a typical automata learning
application context.

An important aspect is that the algorithms operate solely on the abstraction
layer, meaning that they are implementation agnostic: they can be used with
a (wrapped) BRICS automaton as well as with other automaton implementa-
tions. Furthermore, the generic design enables a high degree of code reuse: the
minimization (or equivalence checking) algorithm can be used for both DFA and
Mealy machines, as it is designed to only require a deterministic automaton,
instead of a concrete machine type (or even implementation).
4 http://www.automatalib.net/.
5 http://www.brics.dk/automaton/.
6 http://www.graphviz.org/.
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3 LearnLib

LearnLib provides a set of components to apply automata learning in practical
settings, or to develop or analyze automata learning algorithms. These can be
grouped into three main classes: learning algorithms, methods for finding coun-
terexamples (so-called Equivalence Queries), and infrastructure components.

Learning Algorithms. LearnLib features a rich set of learning algorithms, cov-
ering the majority of algorithms which have been published (and many beyond
that). Care was taken to develop the algorithms in a modular and parame-
terizable fashion, which allows us to use a single “base” algorithm to realize
several algorithms described in the literature, e.g., by merely exchanging the
involved counterexample analysis strategy. Perhaps the best example for this is
the L∗ algorithm [6], which can be configured to pose as Maler & Pnueli’s [31],
Rivest & Schapire’s [38], or Shahbaz’s [26] algorithm, Suffix1by1 [26], or
variants thereof. Other base algorithms available in LearnLib are the Observa-
tion Pack [21] algorithm, Kearns & Vazirani’s [30] algorithm, the DHC [34]
algorithm, and the TTT [28] algorithm. These, too, can be adapted in the way
they handle counterexamples, e.g., by linear search, binary search (à la Rivest
& Schapire), or exponential search [29]. With the exception of DHC, all these
algorithms are available in both DFA and Mealy versions. Furthermore, LearnLib
features the NL∗ algorithm for learning NFAs [8].

Equivalence Tests and Finding Counterexamples. Once a learning algo-
rithm converges to a stable hypothesis, a counterexample is needed to ensure
further progress. In the context of active learning, the process of searching for
a counterexample is also referred to as an equivalence query. “Perfect” equiva-
lence queries are possible only when a model of the target system is available. In
this case, LearnLib uses Hopcroft and Karp’s near-linear equivalence checking
algorithm [4,20] available through AutomataLib. In black-box scenarios, equiv-
alence queries can be approximated using conformance tests. AutomataLib pro-
vides implementations of the W-method [14] and the Wp-method [16], two of
the few conformance tests that can find missing states. Often, the cheapest and
fastest way of approximating equivalence queries is searching for counterexam-
ples directly: LearnLib implements a random walk (only for Mealy machines),
randomized generation of tests, and exhaustive generation of test inputs (up to
a certain depth).

Infrastructure. The third class of components that come with LearnLib provide
useful infrastructure functionality such as a logging facility, an import/export
mechanism to store and load hypotheses, or utilities for gathering statistics. An
important component for many practical applications are (optimizing) filters,
which pre-process the queries posed by the learning algorithm. A universally
useful example of such a filter is a cache filter [32], eliminating duplicate queries
that most algorithms pose. Other examples include a parallelization component
that distributes queries across multiple workers [22], a mechanism for reusing sys-
tem states to reduce the number of resets [7], and for prefix-closed systems [32].
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Fig. 2. Performance comparison between the new LearnLib and libalf. Left: run-time of
the classic L∗ algorithm on a series of randomly generated automata with state counts
between 10 and 1000. Right: run-time of five comparable algorithms from LearnLib
and libalf on a DFA with 500 states.

For a learning algorithm to work in practice, some interface to the system
under learning (SUL) needs to be available. While this is generally specific to the
SUL itself, LearnLib provides SUL adapters for typical cases, e.g., Java classes,
web-services, or processes that are interfaced with via standard I/O.

4 Evaluation

We are aware of two other open-source automata learning libraries that provide
implementations of textbook algorithms, complemented by own developments:

libalf7. The Automata Learning Framework [9], was developed primarily at
the RWTH Aachen. It is available under LGPLv3 and written in C++. Its
active development seems to have ceased; the last version was released in
April 2011.

AIDE8. The Automata-Identification Engine, under active development, is
available under the open-source license LGPLv2.1 and written in C#.

The ambitions behind LearnLib go further: It is specifically designed to easily
compose new custom learning algorithms on the basis of components for coun-
terexample analysis, approximations of equivalence queries, as well as connectors
to real life systems. Moreover, LearnLib provides a variety of underlying data
structures, and various means for visualizing the algorithm and its statistics.
This does not only facilitate the construction of highly performant custom solu-
tions, but also provides a deeper understanding of the algorithms’ characteristics.
The latter has been essential, e.g., for designing the TTT algorithm [28], which
almost uniformly outperforms all the previous algorithms.

Performance. As we have mentioned earlier, the open-source LearnLib is the
fastest version of LearnLib to date, and moreover the fastest automata learning

7 http://libalf.informatik.rwth-aachen.de/.
8 http://aide.codeplex.com/.
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implementation that we are aware of. We have conducted a preliminary perfor-
mance evaluation, comparing the new LearnLib to libalf and the old, closed-
source version of LearnLib (which we will refer to as JLearn in order to avoid
confusion). A visualization of some of the results comparing LearnLib and libalf
is shown in Fig. 2. It can be clearly seen that in the considered setting, Learn-
Lib is more than an order of magnitude faster than libalf (even though the
former is implemented in Java while the latter is implemented in C++). More
importantly, the gap grows with the size of the system to be learned. In our
experiments, the open-source LearnLib also outperformed JLearn on a similar
scale. More detailed performance data can be found on the LearnLib website.9

Applications. The performance data demonstrates that LearnLib provides a
robust basis for fast and scalable active automata learning solutions. Conse-
quently, in its ten years of continued development, LearnLib has been used in
a number of research and industry projects, of which we briefly present some
of the more recent ones. A more complete list can be found on the LearnLib
homepage. LearnLib has been used to infer models of smart card readers [11]
and of bank cards [3]. The models were used to verify security properties of
these systems. In [2,15], models of communication protocols are inferred using
LearnLib. The models are used to verify the conformance of protocol implemen-
tations to the corresponding specifications. At TU Dortmund, LearnLib has been
used in an industry project [40] to generate models of a web application. The
models were used to test regressions in the user interface and in the business
processes of this application. The authors of [33] propose a method for gener-
ating checking circuits for functions implemented in FPGAs. The method uses
models of the functions that are inferred with LearnLib. LearnLib is also used in
other tools: PSYCO [17,23] is a tool for generating precise interfaces of software
components developed at CMU and NASA Ames. The tool combines concolic
execution and active automata learning (i.e., LearnLib). Tomte, developed at the
Radboud University of Nijmegen [1] leverages regular inference algorithms pro-
vided by LearnLib to infer richer classes of models by simultaneously inferring
sophisticated abstractions (or “mappers”).

5 Conclusion

In this paper we have presented LearnLib, a versatile open-source library of
active automata learning algorithms. LearnLib is unique in its modular design,
which has furthered the development of new learning algorithms (e.g., the TTT
algorithm [28]) and tools (e.g., Tomte [1] and PSYCO [17,23]).

While in many aspects the open-source LearnLib by far surpasses the capa-
bilities of the previous version, there are two major features which have yet to
be ported. The first is LearnLib Studio (cf. [35]), a graphical user interface for
LearnLib, and the second is an extension for learning Register Automata. An
extension for learning Register Automata with the theory of equality only was

9 http://learnlib.de/features/performance.
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available upon request for the old LearnLib in binary form [24,27]. We are cur-
rently working on a generalized approach [10], which will be included in the
open-source release.
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