
Challenges and Tool Implementation of Hybrid
Rapidly-Exploring Random Trees

Stanley Bak1, Sergiy Bogomolov2, Thomas A. Henzinger3,
and Aviral Kumar4(B)

1 Air Force Research Laboratory, Dayton, OH, USA
2 Australian National Unviersity, Canberra, Australia

3 IST Austria, Klosterneuberg, Austria
4 Indian Institute of Technology Bombay, Mumbai, India

aviralkumar2907@gmail.com

Abstract. A Rapidly-exploring Random Tree (RRT) is an algorithm
which can search a non-convex region of space by incrementally building
a space-filling tree. The tree is constructed from random points drawn
from system’s state space and is biased to grow towards large unexplored
areas in the system. RRT can provide better coverage of a system’s pos-
sible behaviors compared with random simulations, but is more light-
weight than full reachability analysis. In this paper, we explore some
of the design decisions encountered while implementing a hybrid exten-
sion of the RRT algorithm, which have not been elaborated on before.
In particular, we focus on handling non-determinism, which arises due
to discrete transitions. We introduce the notion of important points to
account for this phenomena. We showcase our ideas using heater and
navigation benchmarks.

1 Introduction

Hybrid automata are mathematical models that combine discrete and contin-
uous dynamics. This formalism can be used to analyze many real word sys-
tems. Hybrid automata analysis and particularly reachability analysis are com-
putationally expensive and might be even intractable for large systems. Non-
deterministic behavior, e.g. uncertain inputs, make analysis even more challeng-
ing [2,5,7,12]. Simulation based techniques [6] belong to a promising class of
techniques to automatically detect system bugs. At the same time, these meth-
ods cannot provide any mathematical guarantees on the system safety.

Rapidly-exploring random trees (RRTs) [8,13] have been developed to
address this problem. RRTs were originally proposed in the motion planning
community in order to provide a fast and efficient way of to explore the search
space towards given goal states. Bhatia and Frazzoli [4] and Esposito et al. [10]
explored the application of RRTs for hybrid automata to provide an efficient way

DISTRIBUTION A. Approved for public release; Distribution unlimited. (Approval
AFRL PA #88ABW-2016-4898, 30 SEP 2016).

c© Springer International Publishing AG 2017
A. Abate and S. Boldo (Eds.): NSV 2017, LNCS 10381, pp. 83–89, 2017.
DOI: 10.1007/978-3-319-63501-9 6



84 S. Bak et al.

to generate a system simulations which provide some coverage guarantees. Plaku
et al. [14] used motion planning techniques for falsification of hybrid automata.

In this paper, we discuss our experience with RRTs and particularly its adap-
tation to hybrid automata. We note that handling of system non-determinism
poses a special challenge. For this purpose, we introduce a notion of important
points, where an important point refers to a system state where either invariant
is violated or a transition guard becomes enabled or disabled. Our algorithm
uses sets of important points to find a sweet-spot between simulation time and
state space coverage.

2 Preliminaries

In this paper, we consider systems modelled in terms of hybrid automata [1].

Definition 1. A hybrid automaton is a tuple

H = (S, Inv,E,G, J, U, f , I, F ),

where

– Q is a discrete and finite set, called modes
– X maps each mode to corresponding continuous state space, i.e. q −→ Xq,

where Xq ∈ R
dim(Xq) is the continuous state space associated with q ∈ Q

– S = Q × X is the Cartesian product of discrete and continuous state space
– Inv maps each mode to the corresponding continuous invariant, i.e. q

Inv−−→
Invq where Invq ⊆ Xq represents domain of the continuous variables associ-
ated with q ∈ Q

– E ⊆ Q × Q is the set of discrete transitions between modes
– G maps discrete transitions to guard conditions, i.e., (qi, qj)

G−→ G(qi,qj),
where G(qi,qj) ⊆ Xqi is the guard condition associated with (qi, qj) ∈ E

– J maps discrete transitions to reset functions, i.e., (qi, qj)
J−→ J(qi,qj) where

J(qi,qj) : G(qi,qj) → Xqj is the reset function associated with (qi, qj) ∈ E

– U maps each mode to the corresponding set of control input signals, q
U−→ Uq

where q ∈ Q and Uq ⊆ R
dim(Uq)

– f maps each mode to the function that describes the associated continuous
dynamics q

f−→ fq, where fq : Xq × Uq → Ẋq

In the following, we briefly recall an algorithm to compute RRTs [9,13] (see
Algorithm 1 for more details) for purely continuous systems. The algorithm incre-
mentally constructs a tree of feasible trajectories. A RRT is represented by a
graph G = (V,E), where the set V consists of the end points of feasible trajecto-
ries and E(vi, vj) represents the trajectory followed, and is labelled with u ∈ U ,
i.e. the control signal needed to reach vj from vi, within a time interval of the
length T .



Challenges and Tool Implementation of Hybrid RRTs 85

Initially, the RRT contains a single mode xinit. A random point xrand ∈ X
is generated in each iteration (Generate-Random), and the nearest neighbour
xnear ∈ V to xrand is found in the tree where distance is defined by some
distance metric ρ (Nearest-Neighbour). Now, a new candidate to be added
to the tree, xnew is found by applying control signal u for some time horizon
T . The chosen control signal u minimizes the distance between xrand and xnew

(Min-Control-Signal and Extend) The above mentioned steps are repeated
until either we reach a ε neighbourhood of xtarget or exceed number of iterations
Kmax.

3 RRT for Hybrid Automata

In this section, we discuss necessary changes to Algorithm 1 to account for
mixed discrete-continuous nature of hybrid automata. We modify the proce-
dure Generate-Random to reflect the fact that, in the new setting, the state
space consists of both discrete and continuous states. Therefore, in order to
select a random point, we randomly select (1) a discrete mode q ∈ Q and (2)
a continuous point which satisfies the invariant Invq. In order to define a dis-
tance measure in the hybrid state space in the Nearest-Neighbour procedure,
we follow the approach suggested by Bhatia and Frazzoli [4]. In particular, the
distance between two nodes z1 = (q, x1) and z2 = (q, x2) lying in the same dis-
crete mode is given by D(z1, z2) = d(x1, x2) where d(., .) is a standard L1, L∞
or Euclidean measure. For two states which belong to different discrete modes,
distance is given by a tuple

D(z1, z2) = (δ(q1, q2), min
∀q∈qnext

d(x1, G(q1, q))),

where δ(q1, q2) denotes the number of nodes on the shortest path from mode q1
to mode q2 in graph induced by the discrete structure of the hybrid automaton
H and

Procedure RRT(xinit, xtarget, ε)
V = xinit, E ← ∅, k = 1, xnew = +∞;
while k ≤ Kmax ∧ d(xnew, xtarget) > ε do

xrand = Generate-Random();
xnear = Nearest-Neighbour(xrand, V, ρ);
umin = Min-Control-Signal(xrand, xnear);
xnew = Extend(xnear, umin);
V ← V ∪ xnew;
E ← E ∪ (xnew, xnear, umin);
k = k + 1;

end
Algorithm 1: Algorithm to construct a RRT. The algorithm starts with the
single mode xinit and grows the tree uniformly until xtarget or a threshold
on number of iterations Kmax has been reached. The tuple (V,E) stores the
current state of the RRT. The used distance measure is referred to as ρ.



86 S. Bak et al.

qnext = {q ∈ Q|(δ(q, q2) < δ(q1, q2)) ∧ E(q1, q)}.

Geometrically speaking, qnext is the set of nodes which are at one edge dis-
tance from q1 and which reduce the path length to q2 from q1 by one discrete
jump. The procedure, Min-Control-Signal finds the control input u ∈ U
which minimizes the distance between xrand and a state reachable from xnear

within the time frame T . Now, we observe that due to possible non-determinism
in the hybrid automaton behavior, the state reachable within the time frame T
is not uniquely defined. In the next section, we discuss this issue in more details.

4 Non-determinism Handling

We recall that hybrid automata exhibit non-determinism due to discrete mode
switches. In particular, for the discrete modes q and q′, the mode switch is
enabled as long as the system is in the set Invq ∩ G(q, q′) ∩ Invq′ . For example,
in the heater example (see Fig. 1) the transition from mode qoff to qon is enabled
for the temperature interval [18; 20.1]. Therefore, the procedure Min-Control-
Signal might need to consider multiple trajectories while simulating the system
behavior up to the time horizon of T time units. In more details, a decision
on whether to stay in the current mode or take a transition has to be made
for every sampled time moment during the simulation process where a guard is
enabled. This observation leads to an exponential number of induced simulations
in the worst case. In order to mitigate this problem and restrict the number of
considered simulations, we suggest the notion of an important point.

Definition 2. A state reachable along a simulation is important if the mode
invariant is violated or guard becomes either enabled or disabled exactly at time
moment this state has been reached.

We illustrate the notion of important points on the automaton from Fig. 1.
In particular, the simulation starting in the mode qoff at the temperature 21◦

will lead to two important points when the temperature reaches 20.1◦ (transi-
tion from qoff to qon becomes enabled) and 18◦ (invariant of qoff gets violated).
Therefore, by restricting simulations to important points only, we can drastically
restrict our search space.

These ideas are formally summarized in Algorithm2. The algorithm has two
loops. The outer loop iterates over discretized (sampled) version of the input

Fig. 1. Hybrid automaton for a heater [3].



Challenges and Tool Implementation of Hybrid RRTs 87

set U . Based on the chosen control input, the algorithm numerically integrates
differential equations and looks up whether a reached state is important. For
every important point, we add its successor states along enabled transitions to
the set S of important points. Note that, if multiple transitions are enabled, we
add multiple points in one step, i.e. all successor states along enabled transitions.
In this way, we make sure to extend the RRT with nodes featuring new discrete
modes for every discovered important point. At the same time, we always add
the last simulation point to the set S to ensure it is not empty, even in case no
important points have been discovered along the considered trajectory.

Procedure Min-Control-Signal(xrand, xnear)
S ← ∅ ;
q = Mode(xnear);
x = Cont(xnear);
for u ∈ Discretize(U) do

t = 0;
while t ≤ T do

x = Ode-Solver(q, x, δ, u);
if x is important then

S = S ∪ (u,Succ(x));
end
t = t + δ;

end
S = S ∪ (u, x);

end
return umin from (umin, xmin) = argminu,x∈S ρ(x, xnear);

Algorithm 2: A version of the procedure Min-Control-Signal which
accounts for possible non-determinism in discrete switches. The function Dis-
cretize returns a discretized version of the input set U . The functions Mode
and Cont return the discrete and continuous parts of a state, respectively.
Ode-Solver numerically integrates differential equations for provided mode,
initial state, time step and control input. Succ returns successor states reach-
able along enabled transitions. The set S stores tuples (u, x) of important
points and corresponding control inputs.

5 Experimental Results

Our implementation uses an input format similar to the Pysim hybrid automaton
simulator built in to Hyst [3]. This allows models to be created in SpaceEx [12]
and then converted and used within our RRT tool with minimal manual modi-
fication. We evaluate our algorithms on the heater benchmark [3] and the navi-
gation benchmark [11].

Navigation Benchmark. This benchmark describes the motion of an object on
a 2D plane with differential equations of the form: x′ = vx, y′ = vy,v =
(vx, vy),v′ = A(v − vd) + u where



88 S. Bak et al.

A =
[−1.2 −0.8
−0.8 −1.2

]

and u = (u1, u2) is the set of control inputs which perturb the differential equa-
tions and vd is a target velocity constant, defined individually for every discrete
mode. The control inputs are constrained by u1, u2 ∈ [−0.1, 0.1]. We ran our
algorithms for a total of 10000 iterations on the 5 × 5 navigation benchmark
instance. Figure 2a contains a generated RRT for this benchmark instance.

Heater Benchmark. The hybrid automaton for the heater benchmark is shown
in Fig. 1. Again, we ran our algorithm for 10000 iterations, which resulted in
Fig. 2b.

Fig. 2. (a) RRT generated for a 5 × 5 instance of the navigation benchmark; (b) RRT
for the heater benchmark. We use different colors to illustrate the tree growth in every
iteration. (Color figure online)

For both the considered benchmark classes, we observe a rather uniform state
space coverage, which confirms the validity of our implementation.

6 Conclusion

In this paper, we have described our experiences with RRTs for hybrid automata.
In order to account for possible non-determinism due to discrete mode switches,
we have introduced the notion of important points, which intuitively captures
time moments where a mode invariant becomes invalid or transitions become
enabled/disabled. The evaluation shows that our algorithms lead to a reasonable
state space coverage.

Acknowledgment. This work was partly supported by the Austrian Science Fund
(FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award)
and by the ARC project DP140104219 “Robust AI Planning for Hybrid Systems”.



Challenges and Tool Implementation of Hybrid RRTs 89

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoret. Comput. Sci. 138(1), 3–34 (1995)

2. Bak, S., Bogomolov, S., Henzinger, T.A., Johnson, T.T., Prakash, P.: Scalable sta-
tic hybridization methods for analysis of nonlinear systems. In: 19th International
Conference on Hybrid Systems: Computation and Control (HSCC 2016), pp. 155–
164. ACM (2016)

3. Bak, S., Bogomolov, S., Johnson, T.T.: HyST: a source transformation and transla-
tion tool for hybrid automaton models. In: 18th International Conference on Hybrid
Systems: Computation and Control, Seattle, Washington. ACM, April 2015

4. Bhatia, A., Frazzoli, E.: Incremental search methods for reachability analysis
of continuous and hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC
2004. LNCS, vol. 2993, pp. 142–156. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24743-2 10

5. Bogomolov, S., Frehse, G., Grosu, R., Ladan, H., Podelski, A., Wehrle, M.: A box-
based distance between regions for guiding the reachability analysis of SpaceEx.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 479–494.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 35

6. Bogomolov, S., Greitschus, M., Jensen, P.G., Larsen, K.G., Mikucionis, M.,
Strump, T., Tripakis, S.: Co-simulation of hybrid systems with SpaceEx and
Uppaal. In: 11th International Modelica Conference (Modelica 2015), Linköping
Electronic Conference Proceedings, pp. 159–169. Linköping University Electronic
Press, Linköpings universitet (2015)

7. Bogomolov, S., Mitrohin, C., Podelski, A.: Composing reachability analyses of
hybrid systems for safety and stability. In: Bouajjani, A., Chin, W.-N. (eds.)
ATVA 2010. LNCS, vol. 6252, pp. 67–81. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15643-4 7

8. Cheng, P., LaValle, S.M.: Resolution complete rapidly-exploring random trees. In:
ICRA, pp. 267–272. IEEE (2002)

9. Dang, T., Nahhal, T.: Randomized simulation of hybrid systems for circuit valida-
tion. Technical report (2006)

10. Esposito, J.M., Kim, J., Kumar, V.: Adaptive RRTs for validating hybrid robotic
control systems. In: Erdmann, M., Overmars, M., Hsu, D., van der Stappen, F.
(eds.) Algorithmic Foundations of Robotics VI, pp. 107–121. Springer, Heidelberg
(2005). doi:10.1007/10991541 9

11. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004). doi:10.1007/978-3-540-24743-2 22

12. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22110-1 30

13. Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Tech-
nical report (1998)

14. Plaku, E., Kavraki, L., Vardi, M.: Hybrid systems: from verification to falsification
by combining motion planning and discrete search. Formal Methods Syst. Des. 34,
157–182 (2009)

http://dx.doi.org/10.1007/978-3-540-24743-2_10
http://dx.doi.org/10.1007/978-3-540-24743-2_10
http://dx.doi.org/10.1007/978-3-642-31424-7_35
http://dx.doi.org/10.1007/978-3-642-15643-4_7
http://dx.doi.org/10.1007/978-3-642-15643-4_7
http://dx.doi.org/10.1007/10991541_9
http://dx.doi.org/10.1007/978-3-540-24743-2_22
http://dx.doi.org/10.1007/978-3-642-22110-1_30

	Challenges and Tool Implementation of Hybrid Rapidly-Exploring Random Trees
	1 Introduction
	2 Preliminaries
	3 RRT for Hybrid Automata
	4 Non-determinism Handling
	5 Experimental Results
	6 Conclusion
	References




