
Fast, Flexible, and Minimal CTL
Synthesis via SMT

Tobias Klenze1,2(B), Sam Bayless1, and Alan J. Hu1

1 University of British Columbia, Vancouver, Canada
{sbayless,ajh}@cs.ubc.ca

2 Technische Universität München, Munich, Germany
tobias.klenze@mytum.de

Abstract. CTL synthesis [8] is a long-standing problem with appli-
cations to synthesising synchronization protocols and concurrent pro-
grams. We show how to formulate CTL model checking in terms of
“monotonic theories”, enabling us to use the SAT Modulo Monotonic
Theories (SMMT) [5] framework to build an efficient SAT-modulo-CTL
solver. This yields a powerful procedure for CTL synthesis, which is
not only faster than previous techniques from the literature, but also
scales to larger and more difficult formulas. Additionally, because it is a
constraint-based approach, it can be easily extended with further con-
straints to guide the synthesis. Moreover, our approach is efficient at
producing minimal Kripke structures on common CTL synthesis bench-
marks.

1 Introduction

Computation Tree Logic (CTL) is widely used in the context of model checking,
where a CTL formula specifying a temporal property, such as safety or live-
ness, is checked for validity in a program or algorithm (represented by a Kripke
structure). Both the branching time logic CTL and its application to model
checking were first proposed by Clarke and Emerson [8]. In that work, they also
introduced a decision procedure for CTL satisfiability, which they applied to
the synthesis of synchronization skeletons, abstractions of concurrent programs
which are notoriously difficult to construct manually. Though CTL model check-
ing has been a phenomenal success, there have been fewer advances in the field
of CTL synthesis, due to its high complexity.

In CTL synthesis, a system is specified by a CTL formula, and the goal is
to find a model of the formula — a Kripke structure in the form of a transition
system in which states are annotated with sets of atomic propositions (so called
state properties). The most common motivation for CTL synthesis remains the
synthesis of synchronization for concurrent programs, such as mutual exclusion
protocols. In this setting, the Kripke structure is interpreted as a global state

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-41528-4 8) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 136–156, 2016.
DOI: 10.1007/978-3-319-41528-4 8

http://dx.doi.org/10.1007/978-3-319-41528-4_8
http://dx.doi.org/10.1007/978-3-319-41528-4_8

Fast, Flexible, and Minimal CTL Synthesis via SMT 137

machine in which each global state contains every process’s internal local state.
The CTL specification in this setting consists of both structural intra-process
constraints on local structures, and inter-process behavioral constraints on the
global structure (for instance, starvation freedom). If a Kripke structure is found
which satisfies the CTL specification, then one can derive from it the guarded
commands that make up the corresponding synchronization skeleton [4,8].

In this paper, we introduce a novel method for CTL synthesis. We build on
the recent introduction of SAT modulo Monotonic Theories (SMMT) [5], cre-
ating a CTL satisfiability procedure for the case where the number of states in
the Kripke structure is bounded in advance. (Note, however, that the under-
lying CTL model checking theory is for the standard, unbounded semantics of
CTL.) Due to the CTL small model property [12], in principle a bounded CTL-
SAT procedure yields a complete decision procedure for unbounded CTL-SAT,
but in practice, neither bounded approaches, nor classical tableau approaches,
have been scalable enough for completeness to be a practical concern. Rather,
our approach (like similar constraint-solver based techniques for CTL [10,14]
and LTL [15,17]) is appropriate for the case where a formula is expected to
be satisfiable by a Kripke structure with a modest number of states (∼100).
Nevertheless, we will show that our approach solves larger and more complex
satisfiable CTL formulas, including ones with a larger numbers of states, much
faster than existing bounded and unbounded synthesis techniques. This makes
our approach particularly appropriate for CTL synthesis.

In addition to being more efficient than existing techniques, our approach is
also capable of synthesizing minimal models. As we will discuss below, previous
CTL synthesis approaches were either incapable of finding minimal models [3,8],
or could not do so with comparable scalability to our technique [10,14].

The paper is structured as follows: We begin with a review of related work
in Sect. 2. To make this paper self-contained, we go over the theory behind SAT
Modulo Monotonic Theories in Sect. 3 and some challenges in applying it to
CTL. In the same section, we show how to utilize this framework for bounded
CTL synthesis. Section 4 explains the most important implementation details
and optimizations. The experimental results of Sect. 5 demonstrate that our
implementation, based on the open-source SMT solver MonoSAT1 for Boolean
monotonic theories, is able to outperform other approaches in two families of
synthesis benchmarks: one derived from mutual exclusion protocols, and the
other derived from readers-writers protocols.

2 Related Work

The original 1981 Clarke and Emerson paper introducing CTL synthesis [8] pro-
posed a tableau-based synthesis algorithm, and used this algorithm to construct
a 2-process mutex in which each process was guaranteed mutually exclusive
access to the critical section, with starvation freedom.

Subsequently, although there has been steady progress on the general CTL
synthesis problem, the most dramatic gains have been with techniques that
1 http://www.cs.ubc.ca/labs/isd/Projects/monosat/

http://www.cs.ubc.ca/labs/isd/Projects/monosat/

138 T. Klenze et al.

are structurally-constrained, taking a CTL formula along with some additional
‘structural’ information about the desired Kripke structure, not specified in CTL,
which is then leveraged to achieve greater scalability than generic CTL synthe-
sis techniques. For example, in 1998, Attie and Emerson [2,3] introduced a CTL
synthesis technique for the case where the Kripke structure is known to be com-
posed of multiple similar communicating processes. They used this technique to
synthesize a Kripke structure for a specially constructed 2-process version of the
CTL formula (a ‘pair-program’) in such a way that the produced Kripke struc-
ture could be safely generalized into an N-process solution. This allowed them
to produce a synchronization skeleton for a mutex with 1000 or more processes,
far larger than other techniques. However, while this process scales very well,
only certain CTL properties can be guaranteed to be preserved in the resulting
Kripke structure, and in general the Kripke structure produced this way may be
much larger than the minimal solution to the instance. In particular, EX and AX
properties are not preserved in this process [2].

The similar-process synthesis techniques of Attie and Emerson rely on a
generic CTL synthesis method to synthesize these pair-programs. As such,
improvements to the scalability or expressiveness of generic CTL synthesis meth-
ods can be directly applied to improving this pair-program synthesis technique.
Their use of the synthesis method from [8] yields an initially large Kripke struc-
ture that they minimize in an intermediate step. We note that our approach is
particularly suited for synthesizing such pair-programs, not merely for perfor-
mance reasons, but also because it is able to synthesize minimal models directly.

On the topic of finding minimal models, Bustan and Grumberg [7] introduced
a technique for minimizing Kripke structures. However, the minimal models that
our technique produces can in general be smaller than what can be achieved by
starting with a large Kripke structure and subsequently minimizing it. This is
because minimization techniques which are applied on an existing Kripke struc-
ture after its synthesis only yield a structure minimal with respect to equivalent
structures (for some definition of equivalence, e.g., strong or weak bisimulation).
This does not necessarily result in a structure that is the overall minimal model
of the original CTL formula. For this reason, techniques supporting the direct
synthesis of minimal models, such as ours, have an advantage over post-synthesis
minimization techniques.

In 2005, Heymans et al. [14] introduced a novel, constraint-based approach
to the general CTL synthesis problem. They created an extension of answer set
programming (ASP) that they called ‘preferential ASP’ and used it to generate a
2-process mutex with the added property of being ‘maximally parallel’, meaning
that each state has a (locally) maximal number of outgoing transitions (without
violating the CTL specification). They argued that this formalized a property
that was implicit in the heuristics of the original 1981 CTL synthesis algorithm,
and that it could result in Kripke structures that were easier to implement as
efficient concurrent programs. As the formulation in their paper does not require
additional structural constraints (though it can support them), it is a general
CTL synthesis method. Furthermore, being a constraint-based method, one can

Fast, Flexible, and Minimal CTL Synthesis via SMT 139

flexibly add structural or other constraints to guide the synthesis. However, the
scalability of their method was poor.

Subsequently, high performance ASP solvers [13] built on techniques from
Boolean satisfiability solvers were introduced, allowing ASP solvers to solve much
larger and much more difficult ASP formulas. In 2012, De Angelis, Pettorossi,
and Proietti [10] showed that (unextended) ASP solvers could also be used to
perform efficient bounded CTL synthesis, allowing them to use the high perfor-
mance ASP solver Clasp [13]. Similar to [3], they introduced a formulation for
doing CTL synthesis via ASP in the case where the desired Kripke structure is
composed of multiple similar processes. Using this approach, they synthesized
2-process and 3-process mutexes with properties at least as strong as the orig-
inal CTL specification from [3]. The work we introduce in this paper is also
a constraint-solver-based, bounded CTL-synthesis technique. However, we will
show that our approach scales to larger and more complex specifications than
previous work, while simultaneously avoiding the limitations that prevent those
approaches from finding minimal models.

Our approach is based on SAT Modulo Monotonic Theories (SMMT), intro-
duced by Bayless et al. in 2015 [5]. This is a technique for building lazy SMT
solvers [11,18] for a class of theories they defined as Boolean monotonic theories.
The restriction to Boolean monotonic theories appears rather limiting, but in
this paper, we will show how SMMT can be used to build an SMT solver for the
theory of CTL model checking. We will then show that this ‘SAT modulo CTL’
solver can perform efficient and scalable CTL synthesis. We provide experimen-
tal comparisons to state-of-the-art techniques showing that this SMT-approach
can find solutions to larger and more complex CTL formulas than comparable
techniques, and does so without the limitations and extra expert knowledge that
previous approaches require.

3 SAT Modulo Monotonic Theories for CTL

Bayless et al. [5] introduced techniques for building efficient SMT solvers for
Boolean monotonic theories (SMMT), which are defined as follows:

Definition 1 (Boolean Monotonic Theory). A theory T with signature Σ
is Boolean monotonic if and only if:

1. The only sort in Σ is Boolean;
2. all predicates in Σ are monotonic; and
3. all functions in Σ are monotonic.

A predicate P: {0, 1}n �→ {0, 1} is Boolean positive monotonic iff, for all i:
P (. . . , si−1, 0, si+1, . . .) → P (. . . , si−1, 1, si+1, . . .)

A predicate P: {0, 1}n �→ {0, 1} is Boolean negative monotonic iff, for all i:
P (. . . , si−1, 1, si+1, . . .) → P (. . . , si−1, 0, si+1, . . .)

The definition of monotonicity for a function F: {0, 1}n �→ P(S) (for some
set S) is the same as above, but with “⊆” instead of “→”.

140 T. Klenze et al.

Theories operating over only Booleans are atypical in the SMT literature, and
would appear at first glance to be highly restrictive. However, [5] showed that
many common graph properties, such as reachability and maximum flow, can
be expressed as Boolean monotonic theories, and that the resulting SMT solver
(implemented in the lazy SMT solver MonoSAT) performs well in practice.
Subsequently, MonoSAT has been extended to support theories of finite state
machines, bit-vectors, and additional graph properties including acyclicity and
connected component counts.

To see how [5] uses Boolean monotonic theories, consider the theory of graph
reachability as an example. In that theory, a set of Boolean atoms determine
which edges are included (enabled) in a finite graph. Reachability over such a
graph is monotonic with respect to those edge atoms: given a graph in which
node a reaches node b, a must still reach b after adding additional edges to
the graph. One challenge of implementing lazy SMT solvers is that efficient
solvers typically include theory propagation procedures that make deductions
from partial assignments. However, because reachability is Boolean monotonic,
two concrete graphs are sufficient to capture the space of possible graphs under a
partial assignment: Gunder, containing only edges that are enabled by the partial
assignment, and Gover, in which additionally all unassigned edges are enabled.
If a reachability predicate does not hold in Gover, then it can safely be deduced
that it does not hold in any extension of the partial assignment. Similarly, if it
holds in Gunder, then it holds in all extensions of the partial assignment. These
facts are used by MonoSAT to implement efficient theory propagation.

Below, we show that MonoSAT can be extended to support a theory of
CTL model checking, allowing MonoSAT to express predicates of the form
Modelφ,K(T,A), where φ is a CTL formula over atomic propositions P , and K
is a Kripke structure with a fixed set S of states, T is a vector of |S|2 Booleans
controlling which transitions are in K, and A is a vector of |S||P | Booleans con-
trolling which atomic propositions hold in each state. Modelφ,K(T,A) is True
if and only if the Kripke structure K is a model for φ under assignment to these
transition and state property variables.

However, we face an immediate challenge: CTL model checking is neither
monotonic with respect to the set T of transitions in the Kripke structure, nor
with respect to the set A of property assignments in each state. Consider, for
example, a two state Kripke structure with transitions between both states.
φ = (EF a ∧ ¬(AG a)) evaluates to False if atomic proposition a is in neither
state, evaluates to True if a is in one, but not the other state, and evaluates
to False if a is in both states (a similar argument can be made for the non-
monotonicity of Modelφ,K(T,A) with respect to T).

Our solution begins with the observation that each individual CTL
operator, considered on its own in a non-nested formula, is monotonic.
We will use this observation to construct an alternative predicate,
ModelApproxφ,K(T1, A1, T2, A2), over two separate assignments of transitions
and states to K. Unlike Modelφ,K , ModelApproxφ,K is Boolean monotonic, and
we will show that it can be used either to safely over-approximate the semantics

Fast, Flexible, and Minimal CTL Synthesis via SMT 141

of CTL, or to safely under-approximate them. By combining this new monotonic
predicate with additional constraints on its arguments, we will then recover
the semantics required to support our original CTL model checking predicate
Modelφ,K(T,A).

3.1 A Monotonic Approximation of CTL

Below, we restrict our attention to the existentially quantified CTL operators
EX, EG and EU, along with propositional operators (¬,∧,∨), as well as True and
False, which are well known to form an adequate set. Any CTL formula can be
efficiently converted into a logically equivalent existential normal form (ENF) in
terms of these operators, linear in the size of the original formula [16].

First, we show that CTL formulas consisting of a single operator EX p, EG p
or p EU q have each, individually, a Boolean positive monotonic satisfiability
predicate (where p, q are atomic propositions). We let solves,φ(T,A) be the pred-
icate that denotes whether or not the formula φ holds in the initial state s of
the Kripke structure determined by the vector of Booleans T (transitions) and
A (state properties).

Lemma 1. solves,φ(T,A) is positive Boolean monotonic if φ is one of EX p,
EG p, or p EU q.

Proof. Take any T , A that determine a structure K for which the predicate
holds. Let K ′ be a structure determined by some T ′, A′ such that K ′ has the
same states, state properties and transitions as K, except for one transition that
is enabled in K ′ but not in K, or one state property which holds in K ′ but not
in K. Formally, there is exactly one argument in either T ′ or A′ that is 0 in T
(or A respectively) and 1 in T ′ (or A′ respectively). Then either (a) one of the
states satisfies one of the atomic propositions in K ′, but not in K, or (b) there
is a transition in K ′, but not in K.

We assume solves,φ(T,A) holds. Then, there must exist a witnessing infi-
nite sequence starting from s in K. If (b), the exact same sequence must exist
in K ′, since it has a superset of the transitions in K. Thus we can conclude
solves,φ(T ′, A′) holds. If (a), then the sequence will only differ in at most one
state, where p holds instead of ¬p (or q instead of ¬q). We note that for each of
the three CTL operators, this sequence will be a witness for K ′, if the original
sequence was a witness for K. Thus, solves,φ(T ′, A′) holds as well.

It is easy to see that ∧ and ∨ are positive monotonic in the same way, and ¬
is negative monotonic. Excluding negation, then, all the CTL operators needed
to express formulas in ENF have positive Boolean monotonic solve predicates,
while negation alone has a negative Boolean monotonic solve predicate.

Until now, we have considered the model checking algorithm to compute a
predicate that returns True iff the initial state of the Kripke structure satisfies
the formula. This can be extended to a function solve(φ,K) that evaluates the
truth value of φ for each state in the Kripke structure, and returns a bit vector

142 T. Klenze et al.

representing a set of states, that for each state is 1 iff that state satisfies φ. The
monotonicity properties above also hold for solve(φ,K), as every state in the
bitset can be viewed as an initial state for which the operators are monotonic.

We introduce for each CTL operator op an evaluation function solveop(X,K)
that evaluates the operator on a set of states X, instead of a subformula. This
is a standard interpretation of CTL (and how CTL model checking is often
implemented), and we refer to the literature for common ways to compute solveop

for each operator. Our function solve(φ,K) takes the top-most operator op of
φ: if it is an atomic proposition, it returns the set of states in which the atomic
proposition holds, otherwise it solves its argument(s) recursively and then applies
solveop on the returned set of states. One can think of the set X as defining
the states in which a fresh atomic proposition holds, and of solveop(X,K) as
computing the application of op on that atomic proposition.

Algorithm 1. solveApprox(φ, Kover, Kunder)
if φ is an atomic proposition then

return set of states satisfying φ in Kover

else if φ is a unary operator op with argument ψ then
if op is ¬ then // negative monotonic

X := solveApprox(ψ, Kunder, Kover)
return solveop(X, Kunder)

else // op ∈ {EX, EG}
X := solveApprox(ψ, Kover, Kunder)
return solveop(X, Kover)

else // φ is binary op ∈ {EU, ∧, ∨} with arguments ψ1, ψ2

X1 := solveApprox(ψ1, Kover, Kunder)
X2 := solveApprox(ψ2, Kover, Kunder)
return solveop(X1, X2, Kover)

Algorithm 1, solveApprox (φ, Kover, Kunder) takes a CTL formula φ and two
Kripke structures, Kover and Kunder. It returns a bit vector, representing a
set of states.2 We will show in Lemma 2 that for appropriate values of Kover

and Kunder, solveApprox computes a safe over-approximation of solve(φ,K)
for a third Kripke structure, K: solve(φ,K) ⊆ solveApprox (φ, Kover, Kunder).
Further, as Kunder and Kover converge, so do solveApprox (φ, Kover, Kunder)
and solve(φ,K). If Kunder = Kover = K, then solveApprox (φ, Kover, Kunder) =
solve(φ,K). This follows directly from Lemma 2.

In order for the over-approximation property of solveApprox given in the
following lemma to hold, Kover (determined by some T1, A1), Kunder (determined

2 A similar algorithm for evaluating CTL formulas on ‘partial Kripke structures’, in
the context of model checking, can be found in [6].

Fast, Flexible, and Minimal CTL Synthesis via SMT 143

Example: Initially, the SAT solver’s assignment Ainit = ∅ to transitions and
state properties is empty, which determines Kunder and Kover in the following way.

0: {}

1: {} 2: {}

3: {}

(a) Kunder under Ainit

0: {p}

1: {p} 2: {p}

3: {p}

(b) Kover under Ainit

As the SAT solver makes assignments to theory atoms trans(. . .) and sat(. . .)
(positive assignments affect Kunder’s T2, A2, negative Kover’s T1, A1), both struc-
tures converge. Take for instance this partial assignment Aex:

Aex =sat(1, p) ∧ ¬sat(2, p) ∧ trans(0, 1) ∧ trans(1, 3) ∧ trans(3, 0) ∧ trans(2, 2)

∧ ¬trans(0, 0) ∧ ¬trans(0, 2) ∧ ¬trans(0, 3) ∧ ¬trans(1, 0) ∧ ¬trans(1, 1)

∧ ¬trans(2, 0) ∧ ¬trans(2, 1) ∧ ¬trans(2, 3) ∧ ¬trans(3, 1) ∧ ¬trans(3, 3)

The atoms sat(0, p), sat(3, p), trans(1, 2), and trans(3, 2) are unassigned by Aex.
Aex determines Kunder and Kover in the following way:

0: {}

1: {p} 2: {}

3: {}

(c) Kunder under Aex

0: {p}

1: {p} 2: {}

3: {p}

(d) Kover under Aex

solveApprox(φ, Kover, Kunder) returns an over-approximation (resp. under-approx
with Kover and Kunder exchanged) of the set of states in which φ may hold in
extensions of the partial assignment. Assume Kover and Kunder are obtained from
Aex and φ = EX ¬p:

solveApprox(EX ¬p, Kover, Kunder)

= solveEX(solveApprox(¬p, Kover, Kunder), Kover)

= solveEX(solve¬(solveApprox(p, Kunder, Kover), Kunder), Kover)

= solveEX(solve¬({1}, Kunder), Kover)

= solveEX({0, 2, 3}, Kover)

= {1, 2, 3}
The initial state is not in the over-approximation of states, where EX ¬p holds
(0 �∈ solveApprox(EX ¬p, Kover, Kunder)), therefore EX ¬p does not hold in any
Kripke structure obtained from a full extension of the partial assignment Aex.

Fig. 1. Example of a partial assignment Aex determining to Kunder and Kover, and the
evaluation solveApprox of a formula on Kunder and Kover.

144 T. Klenze et al.

by some T2, A2) and K (determined by some T,A) must be Kripke structures
with the same number of states, and Kover must have a superset, and Kunder

a subset, of the transitions and state properties of K: T2 ⊆ T ⊆ T1 and A2 ⊆
A ⊆ A1. To illustrate how this will be used in the context of SMT, Fig. 1 shows
an example of how the SAT solver’s partial assignment determines Kover and
Kunder, and how solveApprox works on these structures.

Lemma 2. solve(φ,K) ⊆ solveApprox(φ, Kover, Kunder) and solve(φ,K) ⊇
solveApprox(φ, Kunder, Kover).

Proof. By induction over φ. If φ is an atomic proposition, then solveApprox
returns the set of states satisfying φ in Kover. solve(φ,K) will return the set of
states satisfying φ in K. The first claim holds, since A ⊆ A1.

If φ = op ψ with op a unary positive monotonic operator, solve(φ,K) is
solveop(X,K) for X = solve(ψ,K) ⊆IH solveApprox (ψ, Kover, Kunder) = X ′.
solveApprox (φ, Kover, Kunder) is solveop(X ′,K). The first claim holds, since
X ⊆ X ′ and solveop is positive monotonic. If op is unary negative monotonic, i.e.
¬, then solve(φ,K) is solveop(X,K) for X = solve(ψ,K) ⊇IH solveApprox (ψ,
Kunder, Kover) = X ′. solveApprox (φ, Kover, Kunder) is solveop(X ′,K). The first
claim holds, since X ⊇ X ′ and solveop is negative monotonic.

The proof obligations for solve(φ,K) ⊇ solveApprox (φ, Kunder, Kover) are
left out here, as well as the proof obligations for positive monotonic binary
operators. The proof for these proceeds similarly to the above cases.

3.2 CTL as a Boolean Monotonic Predicate

solveApprox (φ, Kover, Kunder) computes an over-approximation (resp., with
Kover and Kunder exchanged, an under-approximation) of the set of states in
which a CTL formula φ holds in Kripke structure K, so long as Kover and
Kunder are, as defined above, structures that are over-, and respectively under-
approximating K. We construct a corresponding Boolean monotonic predicate
ModelApproxφ,K(T1, A1, T2, A2) which holds iff the initial state s0 ∈ solveAp-
prox (φ, Kover, Kunder).3 Its monotonicity follows from the following lemma:

Lemma 3. solveApprox(φ, Kover, Kunder) is a function positive monotonic in
Kover and negative monotonic in Kunder.

Proof. By structural induction over φ. If φ is an atomic proposition, then
solveApprox returns the set of states satisfying φ in Kover. If a state or transi-
tion is added to Kover (call the resulting structure Kover

′), then solveApprox (φ,
Kover, Kunder) ⊆ solveApprox (φ, Kover

′, Kunder). If a state or transition is
removed from Kunder (resulting in Kunder

′), then solveApprox (φ, Kover, Kunder)
= solveApprox (φ, Kover, Kunder

′).

3 If T2 �⊆ T1 or A2 �⊆ A1, ModelApprox can be defined to evaluate in any arbitrary
way that maintains monotonicity. As discussed below, we exclude this case in our
implementation, by enforcing T1 = T2 and A1 = A2.

Fast, Flexible, and Minimal CTL Synthesis via SMT 145

Assume φ = op ψ with op a unary positive monotonic operator. Then
solveApprox (φ, Kover, Kunder) is the function composition of positive monotonic
solveop and solveApprox (ψ, Kover, Kunder), which is positive monotonic in Kover

and negative monotonic in Kunder by the induction hypothesis. The composed
function is then also positive monotonic in Kover and negative in Kunder.

Assume on the other hand that op is a unary negative monotonic operator, i.e.
¬. Then solveApprox (φ, Kover, Kunder) is the function composition of solve¬ and
solveApprox (ψ, Kunder, Kover), which is assumed by the induction hypothesis to
be positive monotonic in Kunder, and negative monotonic in Kover. Since solve¬
is negative monotonic in its first argument (and ignores its second argument),
the composed function is positive monotonic in Kover, and negative in Kunder.

The proof obligations for binary operators (all positive monotonic) are left
out here. The proof for these proceeds similarly to the above cases.

Corollary 1. ModelApproxφ,K(T1, A1, T2, A2) is positive monotonic in T1, A1

and negative monotonic in T2, A2.

Proof. By definition, ModelApproxφ,K(T1, A1, T2, A2) holds if, and only if, s0 ∈
solveApprox (φ, Kover, Kunder); therefore the monotonicity of ModelApprox fol-
lows directly from the monotonicity of solveApprox (Lemma 3).

We complete our theory of CTL model checking by forcing T1 = T2 and
A1 = A2. As we proved above, ModelApproxφ,K(T,A, T,A) = Modelφ,K(T,A),
and so in this way we recover the expected definition of CTL model checking
in our theory solver. The equalities T1 = T2 and A1 = A2 could be enforced by
adding a linear number of additional Boolean constraints to the SAT solver; in
our implementation we found it more efficient to enforce this equality internally
in the theory solver.

4 Implementation and Optimizations

Above, we showed how CTL model checking can be posed as a Boolean
monotonic theory. We then built a lazy SMT theory solver, following the theory
propagation techniques for Boolean monotonic theories described in [5]. We have
also implemented some additional optimizations which greatly improve the per-
formance of our CTL theory solver. One basic optimization that we implement
is pure literal filtering (see, e.g., [18]): For the case where Modelφ,K(T,A) is
assigned True (resp. False), we only need to check whether Modelφ,K(T,A) is
falsified (resp., made true) during theory propagation. In all of the instances we
will examine in this paper, Modelφ,K(T,A) is assigned True in the input for-
mula, and so this optimization greatly simplifies theory propagation. We discuss
several further improvements below:

In Sect. 4.1 we outline how our solver performs clause learning. In Sect. 4.2
we describe symmetry breaking constraints, which can greatly reduce the search
space of the solver, and in Sect. 4.3 we show how several common types of CTL
constraints can be cheaply converted into CNF, reducing the size of the for-
mula the theory solver must handle. Finally, in Sect. 4.4, we discuss how in the

146 T. Klenze et al.

common case of a CTL formula describing multiple communicating processes
we can (optionally) add support for additional structural constraints, similarly
to the approach described in [10]. These structural constraints allow our solver
even greater scalability, at the cost of adding more states into the smallest solu-
tion that can be synthesized. Thus, if structural constraints are used, iteratively
decreasing the bound may no longer yield a minimal structure.

4.1 Clause Learning

Supporting efficient clause learning (also called “justification set” or “conflict
set” learning in the SMT literature) is a critically important function of lazy SMT
theory solvers. Theory solvers can always return a naive conflict set consisting
of the entire conflicting (partial) assignment, however, efficient theory solvers
typically implement clause learning procedures which attempt to find smaller,
or sometimes even minimal, conflict sets.

Unlike our theory propagation implementation, which operates on formulas in
existential normal form, to perform clause learning we convert the CTL formula
into negation normal form (NNF), pushing any negation operators down to the
innermost terms of the formula. To obtain an adequate set, the formula may
now also include universally quantified CTL operators and Weak Until. Each of
these operators is handled separately.

Our procedure learn(φ, s) operates recursively on the NNF of the formula
and returns a conflict set of literals, the disjunction of which yields a CNF clause
which is learned by the SAT solver. The same conflict set is populated on every
level of the recursion, i.e. the learned literals have an additive effect on the
conflict clause. For instance, if the formula EX φ is in conflict with the partial
assignment, we first consider the operator EX. Our clause learning strategy for EX
in the state s (in this case, the initial state) is to force the SAT solver to enable
any disabled transitions from s, or to make φ true in any of the successor states.
Literals for the latter are computed recursively via learn(φ, t) for every enabled
transition (s, t). learn(φ, s) is defined as follows (for notation see Fig. 2):

– learn(p, s) (resp. learn(¬p, s)), where p is an atomic proposition. Add the
literal disableAPinState(p, s) (resp. enableAPinState(p, s)) to the conflict set.

– learn(op ψ, s) (resp. learn(ψ1 op ψ2, s)): Add the literals returned by the func-
tions learnop(ψ, s) (resp. learnop(ψ1, ψ2, s)) to the conflict set (see Fig. 2).

4.2 Symmetry Breaking

Due to the way we expose atomic propositions and transitions to the SAT solver
with theory atoms, the SAT solver may end up exploring large numbers of
isomorphic Kripke structures. We address this by enforcing extra symmetry-
breaking constraints which prevent the solver from considering (some) redun-
dant configurations of the Kripke structure. Symmetry reduction is especially
helpful to prove instances UNSAT, which aids the search for suitable bounds.

Fast, Flexible, and Minimal CTL Synthesis via SMT 147

Clause Learning functions learnop

learnEX(φ, s): Let N be the neighbors of s that do not satisfy φ. Let D be the
set of disabled transitions from s. Add enableTransitionSet(D) to the conflict
set, and learn(φ, n) for each n ∈ N .

learnAX(φ, s): Let n be a neighbor of s that does not satisfy φ. Add
disableTransition(s, n) to the conflict set, and learn(φ, n).

learnEF (φ, s) : Let R be all states reachable from s. Let D be the set of
disabled transitions from reachable states R to unreachable states. Add
enableTransitionSet(D) to the conflict set, and add learn(φ, r) for each r ∈ R.

learnAF (φ, s) : Let R be a set of states satisfying ¬φ that form lasso from s. Let
D be the set of transitions in the lasso. Add disableTransitionSet(D) to the
conflict set, and add learn(φ, r) for each r ∈ R.

learnEG(φ, s): Let R be the the states reachable from s via a path on which all
states satisfy φ. Let N be the set of successor states of R which do not satisfy φ.
Let D be the set of disabled transitions leaving R. Add enableTransitionSet(D)
to the conflict set, and add learn(φ, n) for each n ∈ N .

learnAG(φ, s): Find a path of transitions D from s to a state r that doesn’t
satisfy φ. Add disableTransitionSet(D) to the conflict set, and add learn(φ, r).

learn∧(φ, ψ, s): If φ does not hold in the over-approximation (but ψ does), add
learn(φ, s). If ψ does not hold in the over-approximation (but φ does), add
learn(ψ, s). If both do not hold, then construct a temporary conflict set for
each, and add the smaller set to the conflict.

learn∨(φ, ψ, s): Add learn(φ, s) and learn(ψ, s) to the conflict.
learnEW (φ, ψ, s) : Let R be the states satisfying φ and reachable via φ-satisfying

states from s. Let D be the set of disabled transitions from states in R. Let
P be the set of successors of R that are not in R. Add D to the conflict set,
add learn(ψ, r) for each r ∈ R, and add learn((φ ∨ ψ), p) for each p ∈ P .

learnAW (φ, ψ, s) : Find a path starting from s such that all except the last state
satisfy φ, and no state satisfies ψ. Let D be the set of transitions on that
path; add disableTransitionSet(D) to the conflict set. Let R be the set of
states on that path, except for the last state of the path, n. Add learn(φ, n)
and learn(ψ, r) for each r ∈ R to the conflict set.

learnEU (φ, ψ, s) : Same as learnEW , but D is restricted to transitions to states
outside of R.

learnAU (φ, ψ, s) : If there exists a finite path starting from s such that all except
the last states on the path satisfy φ, add learnAW (φ, ψ, s) to the conflict set.
Else, add learnAF (ψ, s) to the conflict set.

Notation: enableAPinState(p, s) returns the literal that assigns property p
to state s. enableTransition(s, t) returns the literal for transition s → t.
enableTransitionSet(D) returns {enableTransition(s,t) | (s, t) ∈ D}. disableAPin-
State,disableTransition,disableTransitionSet return corresponding negated literals.
For existentially quantified CTL operators, transitions of Kover are used, for uni-
versally quantified CTL operators transitions of Kunder. solveApprox(φ, Kover,
Kunder) gives the set of states satisfying a subformula φ.
Notice that some functions (e.g., learnAG) are only correct if every state has an
infinite path (AG EX True), which is why we enforce this property in our solver.

Fig. 2. Clause learning functions returning sets of literals.

148 T. Klenze et al.

Let label(si) be the binary representation of the atomic propositions of state
si, and let out(si) be the set of outgoing edges of state si. Let s0 be the initial
state. The following constraint enforces an order on the allowable assignments
of state properties and transitions in the Kripke structure.

∀i, j :[i < j ∧ i �= 0 ∧ j �= 0] →
[label(si) ≤ label(sj) ∧ (label(si) = label(sj) → |out(si)| ≤ |out(sj)|)]

4.3 Preprocessing

Given a CTL specification φ, we identify certain common sub-expressions which
can be cheaply converted directly into CNF, which is efficiently handled by
the SAT solver at the core of MonoSAT. We do so if φ matches

∧
i φi, as is

commonly the case when multiple properties are part of the specification. If
φi is purely propositional, or of the form AG p with p purely propositional, we
eliminate φi from the formula and convert φi into a logically equivalent CNF
expression over the state property assignment atoms of the theory.4 This requires
a linear number of clauses in the number of states in K. We also convert formulas
of the form AG ψ, with ψ containing only propositional logic and at most a single
Next-operator (EX or AX). Both of these are very common sub-expressions in the
CTL formulas that we have examined.

4.4 Wildcard Encoding for Concurrent Programs

As will be further explained later, the synthesis problem for synchronization
skeletons assumes a given number of processes, which each have a local transition
system. The state transitions in the full Kripke structure then represent the
possible interleavings of executing the local transition system of each process.
This local transition system is normally encoded into the CTL specification.

Both [3,10] explored strategies to take advantage of the case where the local
transition systems of these processes are made explicit. [10] were able to greatly
improve the scalability of their answer-set-programming based CTL synthesis
procedure by deriving additional ‘structural’ constraints for such concurrent
processes. As our approach is also constraint-based, we can (optionally) sup-
port similar structural constraints. In experiments below, we show that even
though our approach already scales better than existing approaches without
these additional structural constraints, we also benefit from such constraints.

Firstly, we can exclude any global states with state properties that are an ille-
gal encoding of multiple processes. If the local state of each process is identified
by a unique atomic proposition, then we can enforce that each global state must
make true exactly one of the atomic propositions for each process. For every
remaining combination of state property assignments, excluding those deter-
mined to be illegal above, we add a single state into the Kripke structure, with a
4 Since AG p only specifies reachable states, the clause is for each state s a disjunction

of p being satisfied in s, or s having no enabled incoming transitions. This changes
the semantics of CTL for unreachable states, but not for reachable states.

Fast, Flexible, and Minimal CTL Synthesis via SMT 149

pre-determined assignment of atomic propositions, such that only the transitions
between these states are free for the SAT solver to assign. This is in contrast to
the normal synthesis method, in which states are completely undetermined (but
typically fewer are required).

Secondly, since we are interested in interleavings of concurrent programs,
on each transition in the global Kripke structure we enforce that only a single
process may change its local state, and it may change its local state only in a
way that is consistent with the its local transition system.

The above two constraints greatly reduce the space of transitions in the global
Kripke structure that are left free for the SAT solver to assign (and completely
eliminate the space of atomic propositions to assign in each state). However
these constraints make our procedure incomplete, since in general more than a
single state with the same atomic propositions (but different behavior) need to
be distinguished. To allow multiple states with equivalent atomic propositions,
we also add a small number of ‘wildcard’ states into the Kripke structure, whose
state properties and transitions (incoming and outgoing) are not set in advance.
In the examples we consider in this paper, we have found that a small number
of such wildcard states (between 3 and 20) are sufficient to allow for a Kripke
structure that satisfies the CTL formula, while still greatly restricting the total
space of Kripke structures that must be explored by the SAT solver.

We disable symmetry breaking when using the wildcard encoding, as the
wildcard encoding is incompatible with the constraint in Sect. 4.2.

5 Experimental Results

There are few CTL synthesis implementations available for comparison. Indeed,
the original CTL synthesis/model-checking paper [8] presents an implementation
of CTL model checking, but the synthesis examples were simulated by hand. The
only publicly available, unbounded CTL synthesis tool we could find is Prezza’s
open-source CTLSAT tool5, which is a modern implementation of the classic
tableau-based CTL synthesis algorithm [8].

We also compare to De Angelis et al.’s encoding of bounded CTL synthesis
into ASP [10]. De Angelis et al. provide encodings6 specific to the n-process
mutual exclusion example, which exploit structural assumptions about the syn-
thesized model (for example, that it is the composition of n identical processes).
We label this encoding “ASP-structural” in the tables below. For ASP-structural,
we have only the instances originally considered in [10].

To handle the general version of CTL synthesis (without added structural
information), we also created ASP encodings using the methods from De Ange-
lis et al.’s paper, but without problem-specific structural assumptions and opti-
mizations. We label those results “ASP-generic”. For both encodings, we use the

5 https://github.com/nicolaprezza/CTLSAT
6 http://www.sci.unich.it/∼deangelis/papers/mutex FI.tar.gz

https://github.com/nicolaprezza/CTLSAT
http://www.sci.unich.it/~{}deangelis/papers/mutex_FI.tar.gz

150 T. Klenze et al.

latest version (4.5.4) of Clingo [13], and for each instance we report the best
performance over the included Clasp configurations.7

We compare these tools to two versions of MonoSAT: MonoSAT-
structural, which uses the wildcard optimization presented in Sect. 4.4, and
MonoSAT-generic, without the wildcard optimization.

With the exception of CTLSAT, the tools we consider are bounded synthesis
tools, which take as input both a CTL formula and a maximum number of states.
For ASP-structural, the state bounds follow [10]. For the remaining tools, we
selected the state bound manually, by repeatedly testing each tool with different
bounds, and reporting for each tool the smallest bound for which it found a
satisfying solution. In cases where a tool could not find any satisfying solution
within our time or memory bounds, we report out-of-time or out-of-memory.

5.1 The Original Clarke-Emerson Mutex

The mutex problem assumes that there are n processes that run concurrently
and on occasion access a single shared resource. Instead of synthesizing entire
programs, the original Clarke-Emerson example [8] considers an abstraction of
the programs called synchronization skeletons. In the instance of a mutex algo-
rithm, it is assumed that each process is in one of three states: non-critical
section (NCS), the try section (TRY) or the critical section (CS). A process
starts in the non-critical section in which it remains until it requests to access
the resource, and changes to the try section. When it finally enters the critical
section it has access to the resource, and eventually loops back to the non-critical
section. The synthesis problem is to find a global Kripke structure for the com-
position of the n processes, such that the specifications are met. Our first set
of benchmarks are based on the Clarke and Emerson specification given in [8],
that includes mutual exclusion and starvation freedom for all processes.

Results. Table 1 presents our results on the mutex formulation from [8]. Both
versions of MonoSAT scale to much larger instances than the other approaches,
finding solutions for 5 and 6 processes, respectively. CTLSAT, implementing
the classical tableau approach, times out on all instances.8 Only the -generic
versions can guarantee minimal solutions, and MonoSAT-generic is able to
prove minimal models for several cases.

As expected, structural constraints greatly improve efficiency for both ASP-
structural and MonoSAT-structural relative to their generic counterparts.

7 These are: “auto”, “crafty”, “frumpy”, “handy”, “jumpy”, “trendy”, and “tweety”.
8 Notably, CTLSAT times-out even when synthesizing the original 2-process mutex

from [8], which Clarke and Emerson originally synthesized by hand. This may be
because in that work, the local transition system was specified implicitly in the
algorithm, instead of in the CTL specification as it is here.

Fast, Flexible, and Minimal CTL Synthesis via SMT 151

Table 1. Results on the original Clarke-Emerson mutual exclusion example. Table
entries are in the format time(states), where states is the number of states in the
synthesized model, and time is the run time in seconds. For ASP-structural, we only
have the manually encoded instances provided by the authors. An asterisk indicates
that the tool was able to prove minimality, by proving the instance is UNSAT at the
next lower bound. TO denotes exceeding the 3 h timeout. MEM denotes exceeding
16GB of RAM. All experiments were run on a 2.67 GHz Intel Xeon x5650 processor.

Approach # of processes

2 3 4 5 6

CTLSAT TO TO TO TO TO

ASP-generic 3.6 (7*) 1263.7 (14) TO MEM MEM

ASP-structural 0.0 (12) 1.2 (36) - - -

MonoSAT-generic 0.0 (7*) 1.4 (13*) 438.6 (23*) 1744.9 (42) TO

MonoSAT-struct 0.2 (7) 0.5 (13) 4.5 (23) 166.7 (41) 1190.5 (75)

5.2 Mutex with Additional Properties

As noted in [14], the original Clarke-Emerson specification permits Kripke
structures that are not maximally parallel, or even practically reasonable. For
instance, our methods synthesize a structure in which one process being in NCS
will block another process in TRY from getting the resource — the only transi-
tion such a global state has is to a state in which both processes are in the TRY
section. In addition to the original formula, we present results for an augmented
version in which we eliminate that solution9 by introducing the “Non-Blocking”
property, which states that a process may always remain in the NCS:

AG (NCSi → EX NCSi) (NB)

In addition, in the original paper there are structural properties implicit in
the given local transition system, preventing jumping from NCS to CS, or from
CS to TRY. We encode these properties into CTL as “No Jump” properties.

AG (NCSi → AX ¬CSi) ∧ AG (CSi → AX ¬TRYi) (NJ)
We also consider two properties from [10]: Bounded Overtaking (BO), which

guarantees that when a process is waiting for the critical section, each other
process can only access the critical section at most once before the first process
enters the critical section, and Maximal Reactivity (MR), which guarantees that
if exactly one process is waiting for the critical section, then that process can
enter the critical section in the next step.
9 While the properties that we introduce in this paper mitigate some of the effects

of underspecification, we have observed that the formulas of many instances in our
benchmarks are not strong enough to guarantee a sensible solution. We are mainly
interested in establishing benchmarks for synthesis performance, which is orthogonal
to the task of finding suitable CTL specifications, which resolve these problems.

152 T. Klenze et al.

Results. We repeat our experimental procedure from Sect. 5.1, except with var-
ious combinations of additional properties. This provides a richer set of bench-
marks, most of which are harder than the original.

Table 2 presents our results. As before, the -structural constraints greatly
improve efficiency, but nevertheless, MonoSAT-generic outperforms ASP-
structural. MonoSAT-generic is able to prove minimality on several bench-
marks, and on one benchmark, MonoSAT-structural scales to 7 processes.

Table 2. Results on the mutual exclusion example with additional properties
(described in Sect. 5.2). As with Table 1, entries are in the format time(states). ORIG
denotes the original mutual exclusion properties from Sect. 5.1. As before, although
problem-specific structural constraints improve efficiency, MonoSAT-generic is com-
parably fast to ASP-structural on small instances, and scales to larger numbers of
processes. MonoSAT-structural performs even better.

Approach # of processes

2 3 4 5 6 7

Property: ORIG ∧ BO

ASP-generic 3.4 (7*) 1442.0 (14) TO/MEM MEM MEM MEM

ASP-structural 0.0 (12) 2.3 (36) - - - -

MonoSAT-gen 0.0 (7*) 11.1 (13*) 438.3 (23*) 1286.6 (42) TO TO

MonoSAT-str 0.1 (7) 0.6 (13) 5.3 (23) 59.5 (41) 375.3 (75) 10739.5 (141)

Property: ORIG ∧ BO ∧ MR

ASP-generic 10.1 (9*) TO MEM MEM MEM MEM

ASP-structural 0.8 (10) 950.9 (27) - - - -

MonoSAT-gen 0.0 (9*) 6.0 (25*) TO TO TO TO

MonoSAT-str 0.1 (10) 8.7 (26) TO TO TO TO

Property: ORIG ∧ NB ∧ NJ

ASP-generic 34.8 (9*) TO MEM MEM MEM MEM

ASP-structural 0.1 (10) 7326.1 (27) - - - -

MonoSAT-gen 0.0 (9*) 1275.7 (22*) TO TO TO TO

MonoSAT-str 0.2 (10) 1.6 (26) 5314.7 (51) TO TO TO

Property: ORIG ∧ NB ∧ NJ ∧ BO

ASP-generic 15.4 (9*) TO MEM MEM MEM MEM

ASP-structural 0.1 (10) TO - - - -

MonoSAT-gen 0.0 (9*) 127.7 (22*) TO TO TO TO

MonoSAT-str 0.1 (10) 1.3 (24) TO TO TO TO

Property: ORIG ∧ NB ∧ NJ ∧ BO ∧ MR

ASP-generic 10.7 (9*) TO MEM MEM MEM MEM

ASP-structural 0.1 (10) 1917.6 (27) - - - -

MonoSAT-gen 0.0 (9*) 4.4 (25*) TO TO TO TO

MonoSAT-str 0.1 (10) 2.7 (26) TO TO TO TO

Fast, Flexible, and Minimal CTL Synthesis via SMT 153

5.3 Readers-Writers

To provide even more benchmarks, we present instances of the related Readers-
Writers problem [9]. Whereas the Mutex problem assumes that all processes
require exclusive access to a resource, the Readers-Writers problem permits some
simultaneous access. Two types of processes are distinguished: writers, which
require exclusive access, and readers, which can share their access with other
readers. This is a typical scenario for concurrent access to shared memory, in
which write permissions and reading permissions are to be distinguished. The
local states of each process are as in the Mutex instances.

We use Attie’s [2] CTL specification. We note however that this specification
allows for models which are not maximally parallel, and in particular disallows
concurrent access by two readers. In addition to this original formula, we also
consider one augmented with the Multiple Readers Eventually Critical (MREC)
property. This ensures that there is a way for all readers, if they are in TRY, to
simultaneously enter the critical section, if no writer requests the resource.

AG (
∧

wi

NCSwi
→ (

∧

ri

TRYri
→ EF

∧

ri

CSri
)) (RW-MREC)

This property turns out not to be strong enough to enforce that concurrent
access for readers must always be possible. We introduce the following property,
which we call Multiple Readers Critical. It states that if a reader is in TRY, and
all other readers are in CS, it is possible to enter the CS in a next state – as
long as all writers are in NCS, since they have priority access over readers.

AG (
∧

wi

NCSwi
→ (TRYri

∧

rj �=ri

CSrj
→ EX

∧

ri

CSri
)) (RW-MRC)

Using this property, we are able to synthesize a structure for two readers and
a single writer, in which both readers can enter the critical section concurrently,
independently of who enters it first, without blocking each other.

Results. We run benchmarks on problem instances of various numbers of read-
ers and writers, and various combinations of the CTL properties. ASP-structural
has identical process constraints, which make it unsuitable to solve an asymmet-
ric problem such as Readers-Writers (we exclude it from these experiments). As
with the Mutex problem, as CTLSAT is unable to solve even the simplest prob-
lem instances, we do not include benchmarks for the more complex instances.

Our experiments on each variation of the Readers-Writer problem are pre-
sented in Table 3. We observe that in general, Readers-Writers instances are
easier to solve than Mutex instances with the same number of processes. At the
same time, the additional properties introduced by us restrict the problem fur-
ther, and make the instances harder to solve than the original Readers-Writers
formulation. Taken together with the results from Tables 1 and 2, this compari-
son further strengthens our argument that MonoSAT-generic scales better than
ASP-generic. The results also confirm that the structural MonoSAT solver mak-
ing use of the wildcard encoding performs much better than MonoSAT-generic.

154 T. Klenze et al.

Table 3. Results on the readers-writers instances. Property (RW) is Attie’s specifica-
tion [2]. Data is presented as in Table 1, in the format time(states).

Approach # of processes (# of readers, # of writers)

2 (1, 1) 3 (2, 1) 4 (2, 2) 5 (3, 2) 6 (3, 3) 7 (4, 3)

Property: RW

CTLSAT TO TO TO TO TO TO

ASP-generic 0.6 (5*) 9.5 (9*) TO MEM MEM MEM

MonoSAT-gen 0.0 (5*) 0.0 (9*) 2.8 (19*) 30.0 (35*) 5312.7 (74) TO

MonoSAT-str 0.1 (5) 0.5 (9) 0.7 (19) 2.9 (35) 98.8 (74) 384.4 (142)

Property: RW ∧ NB ∧ NJ

ASP-generic 6.8 (8*) 2865.5 (16) MEM MEM MEM MEM

MonoSAT-gen 0.0 (8*) 1.4 (16*) 110.4 (27*) 843.8 (46*) TO TO

MonoSAT-str 0.1 (9) 0.2 (16) 3.4 (27) 35.9 (54) TO TO

Property: RW ∧ NB ∧ NJ ∧ RW-MREC

ASP-generic 2.4 (8*) 120.6 (22) MEM MEM MEM MEM

MonoSAT-gen 0.0 (8*) 238.4 (22*) TO TO TO TO

MonoSAT-str 0.1 (9) 0.25 (23) 5.3 (52) 159.1 (127) TO TO

Property: RW ∧ NB ∧ NJ ∧ RW-MRC

ASP-generic 2.4 (8*) TO MEM MEM MEM MEM

MonoSAT-gen 0.0 (8*) 1114.1 (22) 18.1 (27*) 251.6 (46*) TO TO

MonoSAT-str 0.1 (9) 0.2 (23) 2.5 (28) 28.0 (47) TO TO

6 Conclusion and Future Work

We have demonstrated a novel approach to CTL synthesis that greatly outper-
forms existing tools, with the ability to flexibly add additional constraints (e.g.,
about the structure of the desired solution), and without sacrificing general-
ity (by e.g., assuming identical processes). In many cases, we are also able to
compute a provably minimal satisfying Kripke structure.

Our approach is based on formulating CTL model checking in terms of
monotonic theories, enabling use of the SAT Modulo Monotonic Theories
(SMMT) approach to build an efficient, lazy SAT Modulo CTL solver. This
success reinforces the claim that monotonic theories, and more generally the
lazy SMT approach, are a performant and versatile basis for SMT solvers.

There are many directions for future work. Although we have not tested this
yet, MonoSAT has support for optimization constraints, which might allow one
to synthesize maximally parallel solutions, as described in [14]. At the implemen-
tation level, we have many ideas for improving performance and scalability. We
have expended little effort to optimize the CTL model checker at the heart of the
theory solver. With improved performance, more applications may be feasible.
For example, we believe our solver is suitable for the repair problem [1], because

Fast, Flexible, and Minimal CTL Synthesis via SMT 155

we can easily specify constraints of the existing system, repair possibilities, and
the specification of correctness. Another promising approach to scalability is
to leverage techniques like Attie and Emerson’s [3], which rely on synthesiz-
ing small 2-process Kripke structures and generalizing them to vast networks of
similar processes; using our techniques in conjunction with theirs should allow
much more realistic complexity in the pairwise synthesized programs. In a more
theoretical direction, we have implemented preliminary support for fairness con-
straints. If this proves robust and scalable, it may open the door toward synthesis
of more expressive temporal logics.

Acknowledgments. This work was supported in part by a grant from the Natural
Sciences and Engineering Research Council of Canada. We also thank Javier Esparza
for his encouragement and helpful advice.

References

1. Attie, P., Cherri, A., Dak Al Bab, K., Sakr, M., Saklawi, J.: Model and program
repair via SAT solving. In: Formal Methods and Models for Codesign (MEM-
OCODE), pp. 148–157. ACM/IEEE (2015)

2. Attie, P.C.: Synthesis of large concurrent programs via pairwise composition. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 130–145.
Springer, Heidelberg (1999)

3. Attie, P.C., Emerson, E.A.: Synthesis of concurrent systems with many similar
processes. ACM Trans. Program. Lang. Sys. (TOPLAS) 20(1), 51–115 (1998)

4. Attie, P.C., Emerson, E.A.: Synthesis of concurrent programs for an atomic
read/write model of computation. ACM Trans. Program. Lang. Sys. (TOPLAS)
23(2), 187–242 (2001)

5. Bayless, S., Bayless, N., Hoos, H.H., Hu, A.J.: SAT modulo monotonic theories.
In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

6. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999)

7. Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Trans. Comput.
Logic 4(2), 181–206 (2003)

8. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS, vol.
131, pp. 52–71. Springer, Heidelberg (1982)

9. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with readers and
writers. Commun. ACM 14(10), 667–668 (1971)

10. De Angelis, E., Pettorossi, A., Proietti, M.: Synthesizing concurrent programs using
answer set programming. Fundamenta Informaticae 120(3–4), 205–229 (2012)

11. de Moura, L., Bjørner, N.: Satisfiability modulo theories: an appetizer. In: Oliveira,
M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 23–36. Springer,
Heidelberg (2009)

12. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. In: Symposium on Theory of Computing, STOC
1982, pp. 169–180. ACM (1982)

156 T. Klenze et al.

13. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

14. Heymans, S., Van Nieuwenborgh, D., Hadavandi, E.: Synthesis from temporal spec-
ifications using preferred answer set programming. In: Coppo, M., Lodi, E., Pinna,
G.M. (eds.) ICTCS 2005. LNCS, vol. 3701, pp. 280–294. Springer, Heidelberg
(2005)

15. Jacobs, S., Bloem, R.: Parameterized synthesis. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 362–376. Springer, Heidelberg (2012)

16. Martin, A.: Adequate sets of temporal connectives in CTL. Electron. Notes Theor.
Comput. Sci. 52(1), 21–31 (2002). EXPRESS 2001, 8th International Workshop
on Expressiveness in Concurrency (Satellite Event of CONCUR 2001)

17. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007)

18. Sebastiani, R.: Lazy satisfiability modulo theories. J. Satisfiability Boolean Model.
Comput. (JSAT) 3, 141–224 (2007)

	Fast, Flexible, and Minimal CTL Synthesis via SMT
	1 Introduction
	2 Related Work
	3 SAT Modulo Monotonic Theories for CTL
	3.1 A Monotonic Approximation of CTL
	3.2 CTL as a Boolean Monotonic Predicate

	4 Implementation and Optimizations
	4.1 Clause Learning
	4.2 Symmetry Breaking
	4.3 Preprocessing
	4.4 Wildcard Encoding for Concurrent Programs

	5 Experimental Results
	5.1 The Original Clarke-Emerson Mutex
	5.2 Mutex with Additional Properties
	5.3 Readers-Writers

	6 Conclusion and Future Work
	References

