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ABSTRACT
The need for software security in untrusted environments
is ever increasing. White-box cryptography aims to ensure
the security of cryptographic algorithms when the attacker
has full access to their implementations. However, there
is no secure white-box implementation of standard block
ciphers such as DES and AES known to date: All published
techniques have been practically broken.
In this paper, we revisit white-box cryptography and pro-

pose a family of white-box secure block ciphers SPACE with
several novel features. The design of SPACE is such that
the key-extraction security in the white box reduces to the
well-studied problem of key recovery for block ciphers (AES
in our example) in the standard black-box setting. More-
over, to mitigate code lifting, we introduce the notion of
space hardness. It measures the difficulty of compressing
the white-box implementation of a cipher, and quantifies se-
curity against code lifting by the amount of code that needs
to be extracted from the implementation by a white-box at-
tacker to maintain its functionality. SPACE includes several
variants with different white-box code sizes. Therefore, it is
applicable to a wide range of environments and use cases.
One of the variants called N-SPACE can be implemented
with different code sizes while keeping the cipher itself un-
changed.
SPACE offers a high level of space hardness: It is diffi-

cult to find a compact but still functional representation of
SPACE given its white-box implementation. This property
has several useful consequences for applications. First, it
gets more challenging for a DRM attacker (e.g. in a pay TV
setting) to scale a code-lifting attack and to distribute the
break. Moreover, this paves the way for mass-surveillance
resistant cryptography : If a large proportion of users dedi-
cates a significant part of their computers’ storage (e.g. HDD)
to white-box SPACE implementations, it will be much more
complex or even infeasible for governmental agencies to deal
with the keys of all users simultaneously due to the limited
storage available, forcing them to focus on targeted attacks
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instead. This consequence is especially important given
Snowden’s revelations on the extent of the mass surveil-
lance practice by NSA and GCHQ. Finally, the usage of
SPACE ciphers can mitigate the damage of having malware
in security-critical systems such as networks processing top-
secret data: As those are typically insulated from the Inter-
net, the capacity of the communication channel from inside
to outside the system is often limited, making it infeasible
for Trojans to transmit the necessary key material.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords
white-box cryptography; space-hard cipher; code lifting; de-
composition; key extraction; DRM; pay TV; mass surveil-
lance; Trojans; malware

1. INTRODUCTION

1.1 Background
White-box cryptography, introduced by Chow et al. in

2002, aims to protect software implementations of cryp-
tographic algorithms in untrusted environments [13, 14].
An increasing number of applications are emerging that re-
quire substantial security in purely software environments,
e.g. set-top boxes, PCs, tablets and smartphones, even if
hardware-assisted security mechanisms are available such
as the ARM TrustZone. Here, the attacker has full con-
trol over the execution environment of a cryptographic al-
gorithm, both in static and dynamic ways by decompiler
and debugger tools, e.g. IDA Pro and IL DASM.

The major goal of white-box cryptography is to protect
the confidentiality of secret keys in such a white-box envi-
ronment. In addition, code lifting is a threat [13, 42, 33],
where the attacker attempts to isolate the program code
from the implementation environment and directly uses the
code itself as a larger key, instead of finding the underlying
compact secret key.

Given the spread of software-only applications in embed-
ded as well as desktop and server systems, it comes as no
surprise that white-box cryptography receives a lot of atten-
tion from industry, especially in pay TV and other DRM set-
tings. As it inherently addresses resistance to malware and
Trojans, white-box cryptography will find more and more
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applications in banking and other security-critical settings
as well.

1.2 Previous Work
White-box implementations of DES and AES were first

proposed by Chow et al. in [13, 14]. Their approach was to
find a representation of the algorithm as a network of look-
ups in randomized and key-dependent tables. In the wake
of these seminal papers, several further variants of white-
box implementations for DES and AES were proposed [12,
44, 23, 26]. However, all published white-box solutions for
DES and AES to date have been practically broken by key
extraction and table-decomposition attacks [3, 43, 35, 34,
25].
Security against key extraction and code lifting in those

white-box implementations is based upon external encod-
ings, which are randomly drawn bijections added to the in-
put and output of the target block cipher. Such a block
cipher becomes an encoded variant of the original algorithm,
which is inappropriate when standard encryption schemes
are required for interoperability, e.g. on the standard DRM
platform Marlin [27] or in banking.
Dedicated white-box block ciphers have recently been pro-

posed by Biryukov et al. in [4]. They are based on the
ASASA structure that consists of two secret nonlinear lay-
ers (S) and three secret affine layers (A), with affine and
nonlinear layers interleaved. Similarly to [13, 14], the white-
box implementation of ASASA uses table look-ups. The se-
curity of ASASA against key extraction in the white-box
setting relies on the hardness of the decomposition problem
for ASASA. To estimate the security against code lifting at-
tacks without external encodings, the work [4] introduces a
security requirement of weak white-box security: It should be
computationally hard for an attacker to find any compact
equivalent representation of the cipher, i.e. table decompo-
sition in the white-box environment should be computation-
ally hard. Indeed, this makes code lifting attacks difficult
in terms of the amount of data that needs to be extracted
from the white-box environment. Unfortunately, efficient
decomposition attacks on ASASA have been proposed [19,
32, 22].
To summarize the design approaches so far, the secu-

rity against key recovery and table-decomposition attacks
of most existing white-box implementations relies on the
hardness of the decomposition problem given multiple se-
cret nonlinear and linear layers. It is pointed out in [4] that
the white-box implementations of AES and DES in [13, 14]
can be considered as the 3-layer ASA, which is much weaker
than the 5-layer ASASA. However, the decomposition of se-
cret nonlinear and linear layers is a relatively new problem
with only a few papers [7, 11, 40] dedicated to its study.
Indeed, although more layers make the construction more
secure, recent cryptanalysis [6] suggests that even as many
as 9 layers (SASASASAS) are susceptible to attacks. Thus,
the assurance on the security of (AS)i against decomposition
is yet to be provided.
In this paper, we take a different approach and base the

decomposition security of our ciphers in the white box on
the problem of key recovery for block ciphers in the standard
black-box setting.

1.3 Our Contributions
In this paper, we propose a family of white-box secure

block ciphers. Our ciphers are designed to satisfy the fol-
lowing properties:

White-box security is based on black-box security:
In white-box environments, the security of our con-
structions relies on the well-studied problem of key re-
covery for block ciphers such as AES. Thus, key extrac-
tion and table-decomposition attacks are computation-
ally infeasible as long as the underlying block cipher
is secure against key recovery attacks in the standard
black-box setting.

Space hardness: To quantitatively evaluate the difficulty
of code lifting attacks, we introduce a security require-
ment called (M,Z)-space hardness which is a gener-
alization of the weak white-box security notion of [4].
The notion of (M,Z)-space hardness allows us to claim
that if the amount of code to be isolated from the white-
box implementation by an attacker is less than M , a
construction is secure against code lifting. Namely, the
success probability that the code correctly encrypts (or
decrypts) a random input is less than 2−Z . Indeed,
weak white-box security corresponds to the case of
(M, 0)-space hardness.

Furthermore, even if the attacker succeeds in code lift-
ing, the property of space hardness discourages him
from illegally distributing the code due to its large size,
as it is infeasible to find any compact implementation
unless the secret key is known.

No external encoding: To be applicable to the wide range
of situations and use cases, our ciphers do not require
any external operations such as external encodings for
their white-box security.

Variable white-box implementation size: In order to
provide a high degree of compatibility across platforms
and resource restrictions, our constructions include sev-
eral variants with different but fixed code sizes as well
as a variant with variable code sizes while keeping the
cipher itself unchanged.

Our family of white-box secure block ciphers consists of
two types of constructions: SPACE and N-SPACE.

SPACE includes four variants: SPACE-8, -16, -24 and
-32, which are implementable in different but fixed sizes of
code, ranging from a few KB to some GB. The table sizes
of SPACE-8, -16, -24 and -32 are suited for L1/L2 cache
(e.g. 32 KB to 256 KB), L3 cache (e.g. 8 MB), RAM (e.g. a
few GB) and HDD (e.g. many GB), respectively. Moreover,
we propose 4-SPACE as an example of N-SPACE. It of-
fers four implementation variants with different code sizes
from a few KB to several GB, while keeping the cipher itself
unchanged: 4-SPACE-8, -16, -24 and -32.

Our constructions offer implementation advantages over
known white-box AES implementations and are competitive
to (AS)i structures in white-box environments. In particu-
lar, at the comparable levels of (M ,Z)-space hardness, the
white-box implementations of SPACE-16, -24, and -32 re-
quire exactly the same number of table look-ups as ASASA-
1, -2, and -3, respectively, see Table 4.

Since the underlying internal block cipher can be freely
chosen depending on the user requirements, a wide range of
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implementation properties in the black box can be attained.
If one chooses a software-oriented lightweight block cipher
such as PRIDE [1] and SIMON/SPECK [2] as the under-
lying block cipher, an implementation with very low RAM
and code size requirements is possible [18]. With AES in-
side, the black-box performance can be optimized by using
bit-sliced implementations or AES-NI.

1.4 Related Work: Memory Hardness
The concept of memory hardness was proposed in the con-

text of password hashing [37, 21, 5]: It forces the attacker
to consume a large amount of memory while computing a
target function. The purpose is to prevent efficient paral-
lel brute-force attacks by dedicated password-cracking hard-
ware and GPUs.
As opposed to that, the goal of (M,Z)-space hardness is

to mitigate the copying of functionality. It states a bound
on the data required to be extracted from the white-box
environment for successfully processing a random input with
probability of more than 2−Z . In other words, it aims to
effectively increase the key size to M .

2. ATTACK MODELS
In this paper, we deal with two attack models: black-box

model and white-box model.

2.1 In the Black Box
The black-box model is a classical attack model in the

field of symmetric-key cryptography.

2.1.1 Attacker’s Abilities
This model assumes that the attacker is able to access

inputs and outputs of the cipher with known- or chosen-
plaintexts or ciphertexts. Adaptive queries can be allowed.

2.1.2 Security Requirements
As the attacker aims to recover the secret key or to distin-

guish the block cipher from a randomly drawn permutation,
some standard security requirements in the black-box model
can be informally summarized as follows.

Key recovery security: It is computationally hard to re-
cover the key of the block cipher.

Distinguishing security: It is computationally hard to dis-
tinguish the block cipher from a randomly drawn per-
mutation.

The hardness of a key recovery is evaluated by the time
complexity accompanied by data and memory complexities
of finding the key. For instance, a 128-bit security implies a
time complexity of at least 2128 encryptions. The complex-
ity of a distinguishing attack is formally evaluated by the
number of queries necessary.

2.2 In the White Box
The white-box model originates from the seminal results

by Chow et al. [13, 14].

2.2.1 Attacker’s Abilities
This model assumes that the attacker has full control over

the execution environment of a cipher, both in static and
dynamic ways with the aid of arbitrary trace execution, ex-
amination of sub-results and keys in memory, insertion of

P

Block Cipher

(e.g. AES-128)

C

P

C

K

Figure 1: Table-based white-box implementations:
The key K is scrambled by a network of table look-
ups

break-points, modification of internal variables, and many
more.

2.2.2 Security Requirements
The main goal of the white-box attacker is to extract the

secret key given the full access to the cipher’s implementa-
tion and its internals. Therefore, typical security require-
ments in the white-box setting are as follows.

Key extraction security: It is computationally hard to
extract the secret key of the block cipher.

Code lifting security: Instead of a secret key, the attacker
can directly use the implementation itself as a larger
effective key. In particular, he can isolate the program
code where the key is embedded in order to copy the
functionality of encryption/decryption routines and to
utilize it in a stand-alone manner. In some aspects,
this is also referred to as global deduction by De Mul-
der [33].

If a code lifting attack succeeds, the attacker gets the advan-
tage which is almost the same as key extraction, i.e. he can
encrypt/decrypt any plaintext/ciphertext. Unless a public-
key primitive is used or external encodings are involved, it
is challenging to completely prevent code lifting attacks. To
evaluate the difficulty of this attack, the notions of weak
white-box security and incompressibility have been intro-
duced in [33, 4]. The details of these will be given in the
next section. In this paper, we adopt a more general security
notion: space hardness.

3. KNOWN WHITE-BOX TECHNIQUES
The white-box techniques published so far can be divided

into two groups: white-box implementations of existing block
ciphers such as DES and AES on the one hand, and dedi-
cated designs of block ciphers for the white-box environment
on the other.

3.1 White-box Implementation of DES/AES
White-box implementations of DES and AES were first

proposed by Chow et al. in [13, 14]. Their approach was to
represent the block cipher EK as a network of look-ups in
randomized key-dependent tables, see Fig. 1. The key value
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is masked by random variables and is scrambled into the
tables.
Each table is protected by applying secret invertible en-

codings before and after the table. For example, the white-
box implementation of AES [14] employs secret nonlinear
and linear components as secret encodings to protect the
tables. In order to preserve the functionality of the cipher,
the output encoding gi of the i-th table is the inverse func-
tion of the input encoding f i+1 of the (i+1)-th input table,
that is, (gi)−1 = f i+1.
Finally, external encodings IN and OUT are added to

the input and output of the block cipher EK . Therefore,
the action of the composite transform is OUT ◦EK ◦ IN−1,
where IN and OUT are secret bijections. The purpose of
external encodings is to protect the tables of the first and
last rounds. This also mitigates code lifting by hiding the
actual block cipher EK between encodings.
For example, in the DRM setting, the external encoding

IN is first applied on the server side after encrypting the
content P and returns C′ = IN ◦ EK(P ). Then, the DRM
client software, running on the user’s device, decrypts C′

to P ′ = OUT ◦ DK ◦ IN−1(C′) and outputs the encoded
content P ′ = OUT (P ), where DK is the inverse of the block
cipher EK . The remaining encoding is removed in the user’s
content player which is placed closer to the playback device
to obtain the original content P , see Fig. 2.
Following the papers by Chow et al. [13, 14], several fur-

ther variants of white-box implementations of DES and AES
were proposed [12, 44, 23, 26].

3.1.1 Problems with Security
All published white-box implementations of DES and AES

are practically broken [3, 43, 35, 34, 25]. In addition to these
dedicated attacks, Michiels et al. [31] proposed a generic ta-
ble decomposition attack on a wide class of white-box im-
plementations of SPN ciphers.
As mentioned in [30], since AES and DES were designed

with the black-box security in mind, it seems difficult to
provide white-box security at the same time. This is still an
open problem.

3.1.2 On External Encodings
The crucial drawback of this approach is the usage of ex-

ternal encodings. Due to external encodings at the input
and output of the block cipher EK , the algorithm becomes
an encoded variant of the cipher, i.e. a different cipher. This
can be inappropriate when interoperability is necessary as
it is the case for the standard DRM platform Marlin which
specifies AES-128 as the content protection algorithm [27].
Banking is also an application where interoperability plays
an important role.
Furthermore, to obtain original plaintexts after white-box

decryption, the additional decoding operation has to be per-
formed in a secure environment. The natural question arises
as to why the entire decryption is not performed in this
secure environment in the first place. Therefore, as also
mentioned in [42, 33], the applications of white-box imple-
mentations with external encodings are mainly restricted to
proprietary DRM settings.
However, if the external encodings are removed to avoid

the issues mentioned above, the white-box implementation
becomes much weaker [14] because the first- and last-round
tables become directly accessible to the attacker.

Server Side

P

Enc

C

IN

C’

DecC’ IN-1

Untrusted

OUT P’

P’ OUT-1 P

Trusted Client Software

playerTrusted

Client Side

Figure 2: External encodings for DRM: IN and OUT
are external encodings. Enc is the block cipher EK

and Dec is its inverse DK

A

A

A

Nonlinear

Nonlinear

S S S S

S S S S

Affine

Affine

Affine

Figure 3: ASASA construction: 5 layers of inter-
leaved secret affine and secret nonlinear (S-boxes)
operations

3.2 Dedicated Cipher: ASASA
Dedicated block ciphers for white-box environments were

proposed by Biryukov et al. in [4]. They are based on the
ASASA structure consisting of two secret nonlinear layers
(S-boxes, S) and three secret affine layers (A) in the inter-
leaved order, see Fig. 3. The security of the block ciphers
against key recovery attacks relies on the hardness of de-
composing the ASASA structure. Unlike the white-box im-
plementations of AES and DES, the ASASA structure does
not require external encodings. To estimate the security
of ASASA against code lifting attacks, the notion of weak
white-box security was introduced.

Definition 1 (Weak White-box Security [4]).
The function F is an T -secure weak white-box implementa-
tion of EK if it is computationally hard to obtain an equiv-
alent key of size less than T given full access to F .

In other words, it should be computationally hard for an
attacker to find any compact equivalent function which is
smaller than T . Accordingly, an attacker requires code of
size T to copy the functionality of the cipher completely.
Weak white-box security enables the estimation of the dif-
ficulty of code lifting by the amount of data needed to be
extracted from the white-box environment. This property
is also called incompressibility by De Mulder [33].

Biryukov et al. also define strong white-box security. This
property corresponds to MQ-problems used in public-key
cryptography and is related to one-wayness as defined by
De Mulder [33].
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3.2.1 Security Issues
Decomposition and key recovery attacks on ASASA struc-

tures have recently been proposed [19, 32, 22]. The security
of constructions based on multiple secret nonlinear and lin-
ear layers is still to be explored and seems hard to evaluate,
despite several cryptanalytic efforts [7, 11, 40]. Recent at-
tacks point out that even the 9-layer variant SASASASAS
does not offer a sufficient security level [6]. The assurance
on the security of (AS)i against decomposition attacks is yet
to be provided.

4. OUR DESIGN GOALS
In this section, we outline our design goals for a new family

of white-box secure block ciphers.

4.1 Security
To quantitatively evaluate the difficulty of code lifting

without relying on external encodings, one could take the
notion of weak white-box security [4], which can assess the
amount of data required to copy the full functionality. How-
ever, the white-box security of a cipher when the size of the
available code (table) is less than M is unclear.
To reveal the tradeoff between the data available and

attacker’s advantage, we introduce a novel security notion
coined (M,Z)-space hardness.

Definition 2 ((M,Z)-space hardness). The imple-
mentation of a block cipher EK is (M,Z)-space hard if it
is infeasible to encrypt (decrypt) any randomly drawn plain-
text (ciphertext) with probability of more than 2−Z given any
code (table) of size less than M .

(M,Z)-space hardness enables us to estimate the code size
M to be isolated from white-box environments to encrypt
(decrypt) any plaintext (ciphertext) with a success proba-
bility larger than 2−Z as well as to derive more fine-grained
security claims. Weak white-box security [4] can be seen as
a special case of (M ,Z)-space hardness and corresponds to
(M, 0)-space hardness.
Security requirements in the black- and white-box envi-

ronments are given as follows.

Security in the black box: The cipher should be secure
against key recovery attacks and distinguishing attacks,
i.e. there are no attacks more efficient than generic
attacks such as brute force.

Security in the white box: The cipher should be secu-
rity against key extraction attacks, and mitigation of
code lifting attacks in terms of (M ,Z)-space hard-
ness: An attacker needs to obtain codes (tables) whose
size is larger than M to compute any plaintext or ci-
phertext with probability larger than 2−Z .

4.2 Functionality
To be applicable to a wide range of situations and use

cases, the cipher should not require any additional functions
such as external encodings.

4.3 Performance
In both black-box and white-box environments, the per-

formance of the cipher should be competitive to known prim-
itives such as whitebox AES [14, 44] and ASASA construc-
tions [4].
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Figure 4: Ciphers with fixed code size: SPACE

To make our ciphers implementable in multiple settings
including those with restricted resources, we provide several
variants with different code sizes (SPACE), and a variant
enabling multiple code sizes while keeping the cipher itself
unchanged (N-SPACE).

5. SPACE: FIXED SPACE
This section proposes a block cipher called SPACE, at-

taining our design goals in the black-box and white-box set-
tings as well as offering several variants with different but
fixed code sizes.

5.1 The Design
SPACE is an ℓ-line target-heavy generalized Feistel net-

work [38] which encrypts an n-bit plaintext under a k-bit
secret key to an n-bit ciphertext, where the size of each line
is na (= n/ℓ) bits, as shown in Fig. 4.

Let the n-bit state of round r be Xr = {xr
0, x

r
1, . . . , x

r
ℓ−1},

xr
i ∈ {0, 1}na . X0 and XR are a plaintext and a ciphertext,

respectively, where R is the number of rounds. Each round
updates the state as:

Xr+1 =
(
F r
na

(xr
0)⊕ (xr

1||xr
2|| . . . ||xr

ℓ−1)
)
||xr

0,

where F r
na

: {0, 1}na → {0, 1}nb . Here || denotes the con-
catenation, and nb = n−na. The function F r

na
(x) is defined

as

F r
na

(x) = (msbnb(EK(C0||x)))⊕ r,

where EK is a block cipher with n-bit block and k-bit key,
msbu(x) selects the most significant u bits of x, and C0 is
an (nb (= n− na))-bit binary zero value. The last XOR of
r plays the role of a round constant (see Fig. 5).

Let F ′
na

(x) = msbnb(EK(C0||x)). It is an na-bit to nb-
bit function. Each round updates the state by looking up
the leftmost line value in the table for F ′

na
(x), adding the

constant r to the result to compute F r
na

(x), XORing it to
the other lines, and rotating the lines by one position to the
left.

In the white-box environment, F ′
na

(x) is implemented by
table look-ups. SPACE has only one table of F ′

na
(x) that

is reused in each round. This single-table implementation
makes the evaluation of (M,Z)-space hardness easier.
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na

(x)⊕ r

We instantiate the SPACE family with four concrete block
ciphers for k = 128 and AES-128 as the underlying block ci-
pher EK :

• SPACE-(8, R) : n = 128, ℓ = 16, na = 8, F r
8 :

{0, 1}8 → {0, 1}120

• SPACE-(16, R) : n = 128, ℓ = 8, na = 16, F r
16 :

{0, 1}16 → {0, 1}112

• SPACE-(24, R) *1 : n = 128, ℓ = 16, na = 24, F r
24 :

{0, 1}24 → {0, 1}104

• SPACE-(32, R) : n = 128, ℓ = 4, na = 32, F r
32 :

{0, 1}32 → {0, 1}96

5.2 Feistel
We aim to show security in the white box as defined in

Section 4.1. Hence our approach is to construct the table
F ′
na

(x) from a well-studied standard block cipher such as
AES by constraining the plaintext and truncating the ci-
phertext. Then, the hardness of extracting the key from the
table and finding a compact description of the table in the
white-box model relies on the difficulty of key recovery for
the underlying block cipher in the black-box model.
Since restricting the input and output of any secure un-

derlying block cipher is unlikely to deliver a permutation,
a Feistel-type construction is a natural candidate. We note
that the SPN structure adopted by the ASASA construc-
tion does require secret permutations as building blocks and,
therefore, cannot be based on the truncation of a standard
block cipher with a 128-bit block length such as AES-128
directly.
We also considered type-1, -2, -3 generalized Feistel con-

struction and source-heavy construction as the underlying
construction and opted for the target-heavy Feistel construc-
tion for performance reasons.

5.3 Security in the White Box

5.3.1 Key Extraction
In the white-box model, the attacker is able to fully access

inputs and outputs of tables in any round. To extract the

1Only in this variant, each round updates the state as
Xr+1 = (xr

1||xr
2)||
(
F r
24(x

r
0||xr

1||xr
2) ⊕ (xr

3||xr
4|| . . . ||xr

ℓ−1)
)
||xr

0

to keep the 128-bit block size.

Figure 6: A compression attack on SPACE with
R ∈ {25, 64, 96, 128} in terms of (M,Z)-space hardness,
with T = (2na × nb) bits

key from the table F ′
na

(x) = msbnb(EK(C0||x)) means to
recover the key of EK in the black-box model, with plain-
texts from a restricted space and truncated ciphertexts. The
underlying block cipher EK of our SPACE instantiation is
AES-128, for which no efficient key recovery attack has been
published so far despite considerable cryptanalytic efforts
over 15 years [9, 17, 20]. Thus, key extraction is computa-
tionally hard in the white-box model as long as the under-
lying block cipher is secure against key recovery attacks in
the black-box model.

More formally, the advantage of the key extraction in the
white-box model for SPACE, AdvKE-WB, is upper-bounded
by the advantage of the key recovery for the underlying block
cipher in the black-box model, AdvKR-BB:

AdvKE-WB ≤ AdvKR-BB.

5.3.2 Code Lifting: Space Hardness
As the attacker is unable to compute EK(C0||x) without

the knowledge of K if the underlying block cipher EK is
secure, it is computationally hard to find any compact rep-
resentation of EK(C0||x). The table of EK(C0||x) consists
of 2na entries of nb bits each, and the total table (code)
size T is estimated as (2na × nb) bits. In other words, this
provides weak whitebox security at the level of (2na × nb)
bits [4].

Let us consider the case where a part of the table is leaked,
i.e. i ≤ 2na entries of table are extracted by the attacker,
where the leaked-table size M is (i×nb) bits. The probabil-
ity that a random input of the table is among the extracted
subset of entries is estimated as i/2na (= (i×nb)/(2

na×nb)).
Thus, given a random plaintext/ciphertext, the correspond-
ing output after R rounds can be computed with i entries
of the table with a probability of about (i/(2na))R. Fig. 6
shows this relation between M and Z in terms of (M,Z)-
space hardness for SPACE with R ∈ {25, 64, 96, 128}. This
evaluation is a basic white-box compression attack and its re-
sults should be seen as an upper bound on the actual space
hardness.
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5.4 Security in the Black Box

5.4.1 Key Recovery
In the black-box model, the attacker is unable to directly

access the inputs and outputs of the internal tables F ′
na

(x) =
msbnb(EK(C0||x)). Hence, a key recovery for SPACE in the
black-box setting is at least as complex as a key recovery
for the underlying block cipher. Thus, in the black box,
dedicated distinguishing attacks with possible subsequent
table recovery are of more concern than key recovery attacks.

5.4.2 Generic Attacks
Generic attacks on target-heavy generalized Feistel con-

structions were proposed in [36, 41]. None of these proper-
ties spans more than 47, 23 and 11 rounds of SPACE-8, -16
and -32, respectively.

5.4.3 Differential Cryptanalysis
Here we analyze the differential properties of an na-bit to

nb-bit function F ′
na

(x) : {0, 1}na → {0, 1}nb(=n−na).

Definition 3. The cardinality of a differential N(a, b)
for a function f is the number of pairs with input differ-
ence a that have output difference b:

N(a, b) = #{(v, u)|u⊕ v = a and f(v)⊕ f(u) = b}
The distribution of N(a, b) over functions has been shown
to be binomial for sufficiently large na and nb [16, 8].

Lemma 1. [16] For a non-trivial differential (a, b) with
fixed a and b, the distribution of N(a, b) over na-bit to nb-
bit functions is binomial:

Pr(N(a, b) = i) = (2−nb)i(1− 2−nb)2
na−1−i

(
2na−1

i

)
.

Assuming that the differentials over a fixed randomly drawn
permutation have a similar distribution of expected N(a, b)
and using the proof techniques of Theorem 2 in [8], we ob-
tain the following for a random function:

Theorem 1. Assuming that the distribution of N(a, b)
for a function F ′

na
(x) is binomial (Lemma 1), the probability

qB that N(a, b) is at most B over all non-trivial values of a
and b can be lower-bounded by

qB >
(
1− (2na−1 · 2−nb)B+1

(B + 1)!

)2n+1

.

Proof. The number of combinations of a and b is estimated
as 2n (=na+nb), hence:

qB = (1− Pr(N(a, b) > B))2
n

,

where we have:

Pr(N(a, b) > B) =

2na−1∑
j=B+1

(2−nb)i(1− 2−nb)2
na−1−i

(
2na−1

i

)

<

2na−1∑
j=B+1

(2−nb)i
(
2na−1

i

)

<

2na−1∑
j=B+1

(2−nb)i
(2na−1)i

(B + 1)!

< 2 · (2
na−1 · 2−nb)B+1

(B + 1)!
.

Table 1: Lower bound on qB: The probability that
N(a, b) is at most B over all non-trivial values of a
and b for B = 1, 2 in F ′

8, F
′
16, F

′
24 and F ′

32

q1 q2 q3

F ′
8 1− 2−96 1− 2−209 1− 2−323

F ′
16 1− 2−64 1− 2−161 1− 2−259

F ′
24 1− 2−32 1− 2−113 1− 2−195

F ′
32 1− 2−0.66 1− 2−65 1− 2−131

Table 1 shows qB for F ′
8, F

′
16, F

′
24 and F ′

32. The differ-
ential probability of F ′(x) is estimated as B/2n/ℓ. Since q2
and q3 are very close to 1 in F ′

8 and F ′
16, and F ′

24 and F ′
32,

respectively, we assume the maximum differential probabil-
ity of SPACE-8, -16, -24 and -32 to be 2−7 (= 2/28), 2−15

(= 2/216), 2−22.4 (= 3/224) and 2−30.4 (= 3/232), respec-
tively.

Our search for the minimum number of differentially ac-
tive F-functions shows that SPACE-8, -16, -24 and -32 have
at least 17, 9, 6 and 5 active F-functions after 150, 44, 32
and 14 rounds.

5.4.4 Linear Cryptanalysis
Now we analyze the linear properties of the function F ′

na
(x):

{0, 1}na → {0, 1}nb(=n−na).
Given an input mask α and an output mask β, α ∈

{0, 1}na and β ∈ {0, 1}nb , the correlation of a linear ap-
proximation (α, β) for a function f : {0, 1}na → {0, 1}nb is
defined as

Cor = 2−na [#{x ∈ {0, 1}na |α · x⊕ β · f(x) = 0} −
#{x ∈ {0, 1}na |α · x⊕ β · f(x) = 1}.

The linear probability LP of (α, β) is defined as Cor2. LP
of F ′

na
(x) is assumed to be normally distributed [16], using

Corollary 1. [16] The linear probability LP of a non-
trivial linear approximation over na-bit to nb-bit functions
with n ≥ 5 has mean µ(LP ) = 2−na and variance σ2(LP ) =
2× 2−2na .

Therefore, the linear probability LP of F ′
na

(x) with a fixed
key is lower than 2−na + 10σ with probability 1 − 2−148.
The value of 2−n + 10σ for the F-functions of SPACE-8,
-16, -24 and -32 is estimated as 2−4.5, 2−12.5, 2−20.5, and
2−28.6, correspondingly. In our evaluation, we assume the
maximum linear probabilities of the F-functions to be 2−4,
2−12, 2−20 and 2−28, respectively.

Our search for the minimum number of linearly active F-
functions in SPACE-8, -16, -24 and -32 shows that there are
at least 32, 11, 7 and 5 active F-functions after 33, 12, 10
and 6 rounds.

5.4.5 Impossible Differential Cryptanalysis
In SPACE-8, -16, -24 and -32, any input bit non-linearly

affects all state bits after at least 17, 9, 15 and 5 rounds, re-
spectively. Following the miss-in-the-middle approach, after
34 (= 17× 2), 18 (= 9× 2), 30 (= 15× 2), and 10 (= 5× 2)
rounds, we have not found any useful impossible differentials
for the respective variants.
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Table 2: Summary of security evaluation for SPACE
in the black box: Round numbers needed to resist
attacks.

G F D L ID I

SPACE-(8, R) 47 17 150 33 34 19
SPACE-(16, R) 23 9 44 12 18 12
SPACE-(24, R) - 15 32 10 30 17
SPACE-(32, R) 11 5 14 6 10 10
4-SPACE-(R) - 17 48 16 34 19
G : Generic attack [36, 41], F : Full Diffusion
D : Differential attack, L : Linear attack
ID : Impossible differential attack, I : Integral attack

5.4.6 Other Attacks
From the results by Suzaki et al. [39], it follows that there

are no useful integral distinguishers after 19, 12, 17 and
10 rounds of SPACE-8, -16, -24 and -32. We have also
considered further attacks including slide, higher order dif-
ferential, truncated differential, and algebraic attacks. The
details of this evaluation are omitted due to the page limi-
tation. Table 2 shows a summary of our security evaluation
for SPACE-8, -16, -24 and -32.

5.5 Recommended Numbers of Rounds
We conservatively recommend to choose the number R of

rounds to be equal to twice the number of rounds resist-
ing the basic white-box compression attack of Section 5.3.2
at the level of (T/4, 128)-space hardness or twice the num-
ber of rounds covered by the best black-box distinguisher of
Section 5.4, whichever is higher.
The recommended variants are SPACE-(8, 300), (16, 128),

(24, 128) and (32, 128). In the white box, the security claim
is the key extraction security at the level of 128 bits and
(T/4, 128)-space hardness. In the black box, we claim the
classical security of a 128-bit block cipher with a 128-bit key.
Note that lower numbers of rounds can be used for most

variants if a more aggressive space hardness level is accept-
able to the user.

5.6 Implementation Issues

5.6.1 Implementation in the White Box
In a white-box implementation, F ′

na
(x) is implemented by

table look-ups. This is by far the most expensive operation
and the performance of encryption/decryption can be esti-
mated by the number of table look-ups (TL) along with the
table sizes. Such a table consists of 2na entries of nb bits
each, and the table size is T = (2na × nb) bits.
Table 3 shows the performance and the table size for each

recommended variant, where L1-TL, L3-TL, RAM-TL and
HDD-TL denote table accesses to L1/L2 cache, L3 cache,
RAM and HDD, respectively. The sizes of tables in SPACE-
(8, 300), -(16, 128), -(24, 128) and -(32, 128) are suited for
L1/L2 cache (e.g. 32 KB to 256 KB), L3 cache (e.g. 8 MB),
RAM (e.g. a few GB) and HDD (e.g. more than 10 GB),
respectively. Assuming that one random access to the table
stored in L1/L2 cache, L3 cache, RAM and HDD takes 5, 30,
100 and 1000 cycles, the white-box performance of SPACE-
(8, 300), -(16, 128), -(24, 128) and -(32, 128) is roughly esti-
mated as 93, 240, 800 and 8000 cycles per byte, respectively.

Table 3: Performance of SPACE with recommended
round numbers

Performance T

SPACE-(8, 300) 300 L1-TL 3.84 KB
SPACE-(16, 128) 128 L3-TL 918 KB
SPACE-(24, 128) 128 RAM-TL 218 MB
SPACE-(32, 128) 128 HDD-TL 51.5 GB

AES (Chow et al.) [14] 3008 L3-TL 752 KB
AES (Xiao-Lai) [44] 80 RAM-TL 20.5 MB
AES (Black-box) [15] 160 L1-TL 4 KB

For example, SPACE-(16, 128) and the broken white-box
AES by Chow et al. [14] has almost the same code size (suit-
able for L3 cache), but SPACE-(16, 128) is 23 times faster.

A comparison with ASASA constructions will be provided
in Section 5.6.3.

5.6.2 Implementation in the Black Box
In the black-box environment, a compact implementation

is possible for the key owner by decomposing the table for
F ′
na

(x). Performance is then estimated by the number of
internal block cipher calls. For SPACE-(8, 300), -(16, 128),
-(24, 128) and -(32, 128), it is 300, 128, 128 and 128 calls,
respectively.

A wide range of implementations is thinkable under the
freedom of choice of the underlying block cipher for SPACE.
With a lightweight block cipher such as PRIDE [1] and
SIMON/SPECK [2] inside, implementations with very low
RAM and code size requirements are possible [18].

If AES-128 is chosen, the implementation can be speeded
up using the AES-NI instructions. For example, on Intel
Haswell, if SPACE is used in a parallel mode such as CTR,
one F-function call would require at most 16 clock cycles.
This yields performance estimates of at most 300, 128, 128
and 128 cycles per byte for SPACE-(8, 300), -(16, 128), -
(24, 128) and -(32, 128), respectively.

While the white-box implementation of SPACE-8 is faster
than its black-box implementation, black-box implementa-
tions of SPACE-(16, 128), -(24, 128) and -(32, 128) with AES-
NI are much faster than those of white-box implementations.

5.6.3 Tradeoff between Performance and Security
The performance of our constructions depends on the num-

ber of rounds R, which in turn is mostly determined by
the desired level of (M,Z)-space hardness. There is an ef-
ficient tradeoff between R and (M,Z)-space hardness. Ta-
ble 4 shows the comparison between SPACE and (broken)
ASASA at similar levels of space hardness, where the max-
imum space hardness stands for the complexity of the basic
compression attack of Section 5.3.2.

At the same level of space hardness, the white-box imple-
mentation of SPACE offers exactly the same performance
as the ASASA constructions. By no means do those num-
bers (T/4, 128) and (T/35, 128) claim white-box security for
the SPACE and ASASA variants in question.

The performance and compressibility of the white-box im-
plementation of (AS)i do not change even if more layers
are added to improve the security. Hence, the figures for
ASASA-1, 2 and 3 in Table 4 remain valid for any (AS)i.
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Table 4: Comparison of SPACE and ASASA at sim-
ilar space-hardness levels

Performance T Maximum
space hardness

SPACE-(16, 64) 64 L3-TL 918 KB (T/4, 128)
SPACE-(24, 64) 64 RAM-TL 218 MB (T/4, 128)
SPACE-(32, 25) 25 HDD-TL 51.5 GB (T/35, 128)
ASASA-1 [4] 64 L3-TL 8 MB (T/4, 128)
ASASA-2 [4] 64 RAM-TL 384 MB (T/4, 128)
ASASA-3 [4] 25 HDD-TL 20 GB (T/35, 128)

ASASA-1 : S-layer consists of 8 × 16-bit
ASASA-2 : S-layer consists of 24-bit + 6 × 16-bit + 8-bit
ASASA-3 : S-layer consists of 4 × 28-bit + 16-bit

On the other hand, in the black-box implementation of
(AS)i, the number of cycles increases linearly with the num-
ber of rounds. ASASA-1, -2 and -3 do not benefit from
AES-NI unlike SPACE with AES-128. However, since the
S-boxes are 8- or 10-bit, optimizations for L1 cache are pos-
sible for all variants in the black-box environment.

5.7 Strong Space Hardness
Here we discuss an extension of the notion of space hard-

ness that we call strong space hardness:

Definition 4 (Strong (M,Z)-space hardness). An
implementation of a block cipher EK is (M,Z)-space hard if
it is infeasible to obtain a valid plaintext/ciphertext pair with
probability higher than 2−Z given the code (table) of size less
than M .

The difference to the notion of space hardness is that the
attacker tries to find any valid input/output pair now, not
merely a valid output for a given randomly drawn input.
Strong space hardness is relevant to message authentication
codes in the context of forgeries.
Let us try to come up with some compression attacks

against strong space hardness for SPACE. If each entry of
ℓ consecutive tables of F r, . . . F r+ℓ is chosen, states Xr =
{xr

0, . . . , x
r
ℓ−1} and Xr+ℓ+1 = {xr+ℓ+1

0 , . . . , xr+ℓ+1
ℓ−1 } are de-

termined. The number of start states consisting of ℓ con-
secutive tables is estimated as (2i)ℓ, where 2i is the num-
ber of known table entries. Thus, the probability of find-
ing a valid pair with i ≤ 2na table entries is estimated as
(i/(2na))R−ℓ×(2i)ℓ, and the time complexity is estimated as
(2i)ℓ. If i < 27.35, 214 and 230 for SPACE-(8, 300), SPACE-
(16, 128) and -(32, 128), the probability becomes less than
2−128, where the code size is 2.45 KB, 230 KB and 12.9 GB,
respectively. For SPACE-(24, 128), six consecutive tables
are enough to determine states Xr and Xr+7. If i < 222.95,
the probability becomes less than 2−128, where the code size
is 105 MB.
This evaluation is a straightforward approach to find a

valid plaintext/ciphertext. More sophisticated attacks seem
possible. Thus, we explicitly do not make any security
claims with respect to strong space hardness for SPACE-
(8, 300), SPACE-(16, 128), -(24, 128) and -(32, 128), but the
above values can be considered as upper bounds on the level
of their strong (M, 128)-space hardness.

5.8 Other Constructions
There are other possible constructions suitable to attain

space hardness. For instance, the following design is think-
able, which combines AES in counter mode and the idea of
secret sharing among Nk instances of AES.

Let Si be

Si =

Nk⊕
j=0

AESKj (i||IV ),

where AESKj() denotes an encryption using AES-128 with
the 128-bit key Kj , i is a 64-bit variable and IV is a 64-
bit nonce. Given a 128-bit plaintext Pi, the encryption is
performed as Ci = Pi ⊕ Si, in the stream cipher fashion.
This simple construction achieves (16×Nk bytes, 128)-space
hardness due to fact that it is infeasible to compute Si with-
out the knowledge of all but few key bits. However, it re-
quiresNk AES calls for encrypting a 128-bit plaintext, which
makes its use impractical: For example, in order to achieve
(218 MB, 128)-space hardness, Nk = 13, 625, 000 AES calls
are required.

6. N-SPACE: VARIABLE SPACE
This section presents our second block cipher. It is called

N-SPACE and allows implementations with multiple vari-
able code sizes while keeping the cipher itself unchanged.

6.1 The Design
N-SPACE is an ℓ-line target-heavy generalized Feistel

network with N different sizes of F-functions. It encrypts
an n-bit plaintext under N k-bit secret keys to an n-bit
ciphertext as shown in Fig. 7.

Let the n-bit state of round r be Xr = {xr
0, x

r
1, . . . , x

r
ℓ−1},

xr
i ∈ {0, 1}n/ℓ. Each round updates the state as follows. If

(r mod N) = j:

Xr+1 = X ′r||
(
F r
(j+1)n/ℓ(X

′r)⊕ (xr
j+1|| . . . ||xr

ℓ−1)
)
||xr

0.

where X ′r = (xr
0|| . . . ||xr

j ).
The instantiation of the cipher with n = 128, ℓ = 16, N =

4, and R rounds is called 4-SPACE-(R) whose round trans-
forms are specified as follows.
If (r mod N) = 0:

Xr+1 =
(
F r
8 (x

r
0)⊕ (xr

1|| . . . ||xr
ℓ−1)

)
||xr

0.

If (r mod N) = 1:

Xr+1 = xr
1||
(
F r
16(x

r
0||xr

1)⊕ (xr
2|| . . . ||xr

ℓ−1)
)
||xr

0.

If (r mod N) = 2:

Xr+1 = xr
1||xr

2||
(
F r
24(x

r
0||xr

1||xr
2)⊕ (xr

3|| . . . ||xr
ℓ−1)

)
||xr

0.

If (r mod N) = 3:

Xr+1 = xr
1||xr

2||xr
3||
(
F r
32(x

r
0|| . . . ||xr

3)⊕ (xr
4|| . . . ||xr

ℓ−1)
)
||xr

0.

The four F-functions F r
8 (x), F

r
16(x), F

r
24(x), and F r

32(x)
depend on four 128-bit keys, K1, K2 and K3 and K4, respec-
tively. The F-functions of 4-SPACE are based on AES-128
exactly in the same way as the F r

na
of SPACE in Section

5.1.
The particularity of 4-SPACE-(R) is that it uses four dif-

ferently sized F-functions F r
8 (x), F

r
16(x), F

r
24(x) and F r

32(x).
In the white-box implementation, depending on user re-
quirements for the code size, we can choose which of the
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Figure 7: Ciphers with variable space: N-SPACE

functions F r
8 (x), F r

16(x), F r
24(x) and F r

32(x) to implement
by table look-ups. We define four implementation variants:

• 4-SPACE-(R)-32 : All four functions are implemen-
tation by table look-ups.

• 4-SPACE-(R)-24 : F ′
8(x), F

′
16(x) and F ′

24(x) are im-
plemented by table look-ups.

• 4-SPACE-(R)-16 : F ′
8(x) and F ′

16(x) are implemented
by table look-ups.

• 4-SPACE-(R)-8 : Only F ′
8(x) is implemented by table

look-ups.

The other respective F-functions are implemented by block
cipher calls with the corresponding keys. 4-SPACE-(R) re-
quires four 128-bit keys: K1, K2, K3 and K4. One can
derive those from a 128-bit master key K using a generic
key derivation function [24, 29].

6.2 Security in the White Box

6.2.1 Key Extraction
As for SPACE, it is hard to extract the key from the table

for an F-function as long as the underlying block cipher EK

is secure against key recovery. In 4-SPACE-(R)-24, -16 and
-8, the attacker can directly observe K4, (K3, K4) and (K2,
K3, K4) from the white-box implementation. However, (K3,
K2, K1), (K2, K1) and K1 are hard to extract, respectively.

6.2.2 Code Lifting
Since the attacker is unable to compute the F-function

without knowing of its key Ki, it is infeasible to find a com-
pact representation of any of the variants, as at least one
F-function is implemented by table look-ups.
Let us mount a white-box compression attack and con-

sider the case where i entries of the largest table are isolated
by the attacker. In each implementation variant, it is the

largest table that will dominate the overall table size. All
other tables are assumed to be available to the attacker in
full. The probability that a random input of the table is
among the known entries is i/(2m), where m is 8, 16, 24
and 32 for 4-SPACE-(R)-8, -16, -24 and -32, respectively.
Given any random plaintext or ciphertext, the correspond-
ing output after R rounds can be computed by using i table
entries with probability of (i/(2m))(R/4). This corresponds

to (i× (n−m) bits, (i/(2m))(R/4))-space hardness.

6.3 Security in the Black Box

6.3.1 Differential Cryptanalysis
According to Theorem 1, we assume that the maximum

differential probabilities of F8, F16, F24 and F32 to be 2−7

(= 2/28), 2−15 (= 2/216), 2−22.4 (= 3/224) and 2−30.4 (=
3/232), respectively. Our search for the minimum number of
differentially active F-functions with the above values of the
differential probabilities shows that the probability of any
differential characteristic is expected to become less than
2−128 after 48 rounds.

6.3.2 Linear Cryptanalysis
Similarly to the evaluation for SPACE, we assume that

linear probabilities of F8, F16, F24 and F32 are upper-bounded
by 2−4, 2−12 , 2−20 and 2−28, respectively. Our search for
the minimum number of linearly active F-functions with the
above values of the linear probabilities yields that the prob-
ability of the best linear characteristic becomes less than
2−128 after 16 rounds.

6.3.3 Impossible Differential Cryptanalysis
Any input bit nonlinearly affects all state bits after 17

rounds. With the miss-in-the-middle approach, we have
not found any useful impossible differentials after about 34
rounds.

6.3.4 Other Attacks
According to the results by Suzaki et al. in [39], after 19

rounds, there is no useful integral distinguisher either. We
also considered other attacks, and we expect that none of
them works significantly better than the previously men-
tioned attacks.

6.4 Recommended Number of Rounds
As for SPACE, we recommend to choose the number of

rounds such that the basic white-box compression attack of
Section 6.2.2 covers at most half of the rounds at the level of
(T/4, 128)-space hardness and the best black-box property
in Section 6.3 covers at most half of the rounds. For the
instantiation of 4-SPACE at hand, following this guideline
gives 512 rounds. A less conservative claim for the space
hardness may be acceptable for many users resulting in a
significantly lower number of rounds.

For the recommended number R = 512 of rounds, the
claimed white-box security for 4-SPACE is (T/4, 128)-space
hardness, see also Table 5. The claimed black-box security is
that of a 128-bit block cipher with a 128-bit key. We do not
claim any security against combined black- and white-box
attackers.
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Table 5: Performance and table sizes for the four 4-
SPACE implementation variants and recommended
round number: All of them offer exactly the same
functionality

Performance T

4-SPACE-(512)-8 128 L1-TL+384 BC 3.84 KB
4-SPACE-(512)-16 128(L1-TL+L3-TL)+ 918 KB

256 BC

4-SPACE-(512)-24 128(L1-TL+L3-TL)+ 218 MB
128 RAM-TL+128 BC

4-SPACE-(512)-32 128(L1-TL+L3-TL)+ 51.5 GB
128(RAM-TL+HDD-TL)

6.5 Implementation Issues
Table 5 demonstrates the performance and table sizes for

each of the four implementation variants for 4-SPACE. The
sizes of 4-SPACE-(R)-8, -16, -24 and -32 are suited for
L1/L2 cache, L3 cache, RAM and HDD, respectively. All
implementation variants offer exactly the same functional-
ity.
Under the rough assumption that a table access to L1/L2

cache, L3 cache, RAM and HDD costs 5, 30, 100, and 1000
cycles, respectively, and that an AES-128 encryption with
AES-NI takes 16 cycles (in a parallel mode of operation),
the performance of 4-SPACE-(512)-8, -16, -24 and -32 is
approximately evaluated as 424, 536, 1208 and 9080 cycles
per byte.
In the black box, implementations without tables are pos-

sible by decomposing the tables. The performance is then
estimated by the number of block function calls. A combi-
nation of F-functions implemented with table look-ups and
AES-NI is beneficial.

7. CONCLUSIONS
We have opened up a new direction for white-box cryp-

tography, by introducing the idea that white-box security
can rely on key recovery problems for well-analyzed block
ciphers in the standard black-box setting and by propos-
ing the new security notion of (M,Z)-space hardness. This
enables us to demonstrate security against key extraction,
table decomposition and code lifting attacks in the white-
box environment, which have been the crucial limitation of
the published techniques.
As an example, we design the family of block ciphers

SPACE. It includes four variants with different but fixed
code sizes, and a variant N-SPACE with variable code sizes
while keeping the cipher itself unchanged.
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