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ABSTRACT
Browser designers create security mechanisms to help web
developers protect web applications, but web developers are
usually slow to use these features in web-based applications
(web apps). In this paper we introduce Zan1, a browser-
based system for applying new browser security mechanisms
to legacy web apps automatically. Our key insight is that
web apps often contain enough information, via web de-
veloper source-code patterns or key properties of web-app
objects, to allow the browser to infer opportunities for ap-
plying new security mechanisms to existing web apps. We
apply this new concept to protect authentication cookies,
prevent web apps from being framed unwittingly, and per-
form JavaScript object deserialization safely. We evaluate
Zan on up to the 1000 most popular websites for each of the
three cases. We find that Zan can provide complimentary
protection for the majority of potentially applicable web-
sites automatically without requiring additional code from
the web developers and with negligible incompatibility im-
pact.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security, Design

Keywords
Web security, client-side defense, cookies, frame busting,
JSON

1. INTRODUCTION
The Web has become a popular platform for building web-

based applications (web apps) and providing convenient and

1Zan means awesome in Chinese.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

diverse services for users. One contributing factor in this
rise in popularity is the features that browser developers
add to browsers. Unfortunately, these new features have
also created new avenues for attack. For example, web app
developers can use frames (or IFRAMEs) to compose web apps
out of gadgets from different websites, but attackers can use
frames to embed legitimate web apps inside of attack pages
to trick users via “clickjacking” [17].

Browser developers have implemented security features to
help web developers improve the security of web apps. Three
examples of recent browser security features are HttpOnly

cookies [2] that enable web developers to specify cook-
ies that should be inaccessible from JavaScript, X-Frame-

Options [21] to enable web developers to prevent their pages
from being framed, and JSON.parse() [1] to enable web de-
velopers to deserialize JavaScript Object Notation (JSON)
text safely without executing JavaScript code.

However, web developers have been slow to use these new
browser security features [30, 26]. We surveyed the Alexa
top 100 websites [6], and found that these security mecha-
nisms are not used widely:

• There are at least 34 websites that do not set the
HttpOnly attribute on their credential cookies.

• Only 11 websites use X-Frame-Options to prevent
their main or login pages from being framed.

• Only 4 out of 16 websites that use JSON within five
seconds after the page loads use JSON.parse() to de-
serialize JSON text.

In this paper we present Zan – a browser-based system
that fortifies web apps by applying new security mechanisms
to existing web apps automatically. Our key insight is that
the browser often has enough information to determine when
new security features could be applied to existing web ap-
plications. This information can come from detecting com-
mon patterns in the code that web developers write or from
identifying fundamental features of key web-app objects, like
cookies. Our goal is to add simple mechanisms to narrow the
attack surface or mitigate the damage of a web-based attack
without requiring input from users or additional effort from
web developers. We also aim to minimize incompatibilities
induced by our system.

In general Zan works by interposing on key states and
events within the browser to detect candidates for applying
stronger security mechanisms automatically. For example,
Zan inspects all cookies set by the web server to detect cer-
tain key words (e.g., “token” or “session”) or randomness
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(e.g., hashed values) commonly observed in authentication
cookies used by web apps. When Zan detects a combination
of these conditions, it sets the HttpOnly attribute for these
cookies to make them inaccessible from JavaScript, prevent-
ing authentication cookie theft via cross-site scripting (XSS)
attacks.

Our contributions are:

• We design and implement Zan, a browser-based sys-
tem for applying new security features to existing web
apps.

• We show that web apps often contain enough informa-
tion to allow Zan to infer opportunities for applying
new security mechanisms to legacy web apps.

• We develop simple and effective algorithms for apply-
ing these principles to three browser security mech-
anisms: HttpOnly cookies (Section 4), X-Frame-

Options (Section 5), and JSON.parse() (Section 6).

• We evaluate these algorithms in a real browser on pop-
ular websites to demonstrate Zan’s ability to prevent
attacks without affecting compatibility or adding over-
head to the system.

2. BACKGROUND
When the Web was first invented, it was a collection of

static web pages. Now, the Web has evolved into a platform
for deploying applications. With almost equivalent func-
tionality as their desktop counterparts, web apps provide
people applications such as email, banking, gaming, social
networking and video streaming. Users invariably put pri-
vate information into web apps, such as addresses, health
records, social security numbers and credit card numbers,
intensifying the need for more secure web apps.

In the contemporary Web, most security decisions are
predicated on the origin of the web apps – this security
model is called the same-origin policy (SOP). An origin of a
web app is define as the <protocol, domain name, port>

tuple of the uniform resource locator (URL) it originates
from. Loosely speaking, The SOP acts as a non-interference
policy for the Web and the SOP provides isolation for web
pages and states originating from different origins. If the
browser runs one web app from victim.com and another
from attack.com, the browser isolates these two web apps
from each other. For a more complete discussion of this
policy, please see a recent paper by Singh, et al. [30].

Unfortunately, the SOP is not always effective at guarding
the Web. Several attack scenarios operate without violat-
ing this policy, such as XSS and the frame-based attacks
we discuss in Section 5. XSS is effectively a form of code
injection attack, where an attacker injects malicious scripts
into the victim web app and operates using the victim’s ori-
gin and credentials. Potential damage an XSS could cause
includes stealing the victim’s credentials, gaining elevated
access privileges to sensitive page content, and carrying out
actions on behalf of the victim. In fact, XSS is the most
prevalent vulnerability on modern computer systems, ac-
counting for more vulnerabilities than all other vulnerabili-
ties combined [32].

3. DESIGN
In this section, we discuss the threat model that Zan con-

siders, and the high-level design of Zan.
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Figure 1: Deployment of Zan. Zan works by inter-
posing on key states and events of web apps within
the browser to detect candidates for adding or im-
proving protection automatically.

3.1 Threat model
Our primary goal is to narrow the attack surface of web

apps or to mitigate the damage of a successful attack. In
our threat model, we assume that an attacker controls a
malicious website and can serve sophisticated crafted web
apps to the user, or that the attacker can escape sanitiza-
tion processes to inject malicious scripts into legitimate web
apps. We focus on non-memory based attacks and assume
that the browser Zan uses is faithful. Attacks that take
control over a browser are still possible, such as a scenario
involving buffer overflow. In these cases, it would require
a better design and architecture of the browser system [14,
10, 41, 34] to improve the overall system security. It is also
possible that the attacker could completely compromise a
trusted website, rendering Zan – a client-side system – in-
effective. This is a separate aspect of web security that we
do not address in this paper.

3.2 Design principles
As shown in Figure 1, Zan works as a module in browsers

by interposing on key states and events to infer opportunities
to apply security mechanisms. In general, this approach is
feasible because web apps often present enough information
at the client side so that Zan is able to use it to identify
important objects or existing unreliable protection logic. For
example, cookies that contain authentication tokens would
likely be obfuscated and have special names. In other cases,
the same JavaScript-based defense workarounds are often
included, though might having variants, in multiple websites
(e.g., frame busting code we will discuss in Section 5).

In designing and implementing Zan’s different mecha-
nisms, we adhere to the following three principles:

1. Use only information at the client side. We already
see slow adoption of new secure mechanisms in web
app development. We hope a pure client-side solution
could relieve the burden of web app developers.

2. Make the mechanisms simple. Browsers are already
complex artifacts. New mechanisms should be simple
and efficient in order to avoid introducing new vulner-
abilities.

3. Maintain compatibility of the web apps. It is necessary
not to break the Web. A protection mechanism that
results in the loss of functionality is practically useless.

616



3.3 Methodology
Zan relies on source-code patterns and key objects’ char-

acteristics to infer opportunities for applying new secure
mechanisms to legacy web apps. For the mechanisms that
Zan includes, we first study a set of websites to capture
characteristics of interest of their unknown underlying pat-
terns.

In this paper, we use a consistent set of websites as the ini-
tial training data. We first pick the top 100 websites accord-
ing to Alexa [6]. Because shopping and banking websites
contain valuable data, we also include the top six websites
in each category according to Alexa. Of course, if one of
these is also in the top 100 websites, we skip it. We also use
the top four web-mail sites. In the remainder of this paper,
top websites are always used to refer to the 116 websites de-
scribed in this subsection unless explicitly stated otherwise.

By analyzing the top websites, we are able to produce
classifiers to identify candidates for applying new security
mechanisms. To evaluate Zan’s efficiency and compatibil-
ity impact, we then extend our experiments to up to 1000
popular websites. At the same time, we could potentially
tweak these classifiers for better protection and compatibil-
ity based on the new websites we test.

For the websites we study, some offer several services using
a single domain and employ different security mechanisms
among those services. To avoid ambiguity, we choose to
analyze the main service, or the front page service when we
refer to a website. For example, Google offers searching,
calendar, documents, and many more within google.com,
but we always refer to Google search when we talk about
google.com.

4. CASE STUDY: COOKIE PROTECTION
The first security enhancement that Zan enables is adding

HttpOnly attributes to credential cookies automatically. We
begin the discussion with cookie related issues as it is chrono-
logically the first available feature among the three we cover
in the paper. And HttpOnly is the earliest and most wildly
used one among the three security mechanisms.

4.1 Cookies
A cookie, or an HTTP cookie, is a piece of text stored on

a user’s computer by his or her browser, typically consisting
of one or more name-value pairs that the server and client
pass back and forth. Cookies were invented by Lou Mon-
tulli at Netscape in 1994 to facilitate electronic commerce
applications [20]. Initially developed as a method for imple-
menting reliable virtual shopping carts, cookies were later
pervasively used as the de facto way of authenticating users
to web sites and storing the login information so that a web
user does not have to keep entering their username and pass-
word each time he or she visits the same web site. Cookies
can also be used to store identifiers so that web servers can
track what the users have done during the visit.

In today’s Web, part of cookie manipulation, like other
computation, is pushed to the client side. For example, in
Facebook’s user sampling and tracking module, the session
identifier is generated using JavaScript in the browser. A
web app could also use document.cookie to set a cookie
and then try to read it back to test if the browser has cookie
support. As web apps continue to provide more versatile
features, they also need a way to access local storage. Before

HTML5 local storage [38] was introduced, web developers
chose to use cookies for storing data in the client.

4.2 Attacks on cookies
Since cookies often contain time sensitive information,

such as credentials, and are relatively easy to access using
client-side scripts, cookie theft is a common result in Web-
based attacks, such as XSS. For example, in a successful XSS
attack, the attacker from attack.com could easily steal the
victim’s cookie using the following script:

var url
= ’http://attack.com/stole.cgi?text=’
+ escape(document.cookie);

var img = new Image();
img.src = url;

In the malicious script, the attacker uses docu-

ment.cookie to retrieve the content of the list of cookies
that the user has for the page, and embeds it into the query
payload of a fake URL pointed to the attacker’s web site.
The attacker then creates a JavaScript image object on the
fly and sets its source path to the fake URL. As a result,
this list of cookies is sent to the attack.com server.

Cookies also pose a privacy threat [28] and enable the
CSRF attack [42]. Mitigation methods are feasible but be-
yond the scope of this paper [9].

4.3 Alleviating cookie theft
An intuitive way to stop cookie theft in Web-based at-

tacks is to address XSS. However, despite many efforts to
prevent XSS, such as client-side approaches [25, 12], server-
side approaches [35], or hybrid client-server approaches [23,
16], XSS remains the top vulnerability [4].

There are also other ways of alleviating cookie theft. One
could use HTTP authentication instead of a cookie-based
approach. As the authentication information is not available
to JavaScript in the cookies, nothing could be revealed to
an attacker with an XSS attack. Also, one could tie session
cookies to the IP address that the user originates from and
only permit that IP to use the cookies, rendering the stolen
cookie useless in most situations. But it is possible that an
attacker could spoof the IP address, or is behind the same
Network Address Translation (NAT) firewall or web proxy,
thus breaking down the protection.

A declarative method, HttpOnly, has also been proposed.
First introduced in 2002 in Internet Explorer 2.0 [2], the
HttpOnly cookie attribute has been implemented in all ma-
jor browsers. If the optional HttpOnly flag is included in
the HTTP response header for a cookie, the cookie cannot
be accessed by client-side scripts. As a result, the browser
would not reveal authentication cookies to the attacker in
an XSS attack if they are properly tagged with HttpOnly

flags.
Surprisingly, the HttpOnly attribute has not been thor-

oughly deployed in today’s Web, even though it was invented
almost 9 years ago. For the top websites, our survey shows
that of the 93 websites that we are able to obtain accounts
for and login to, 39 still have not incorporated HttpOnly.

4.4 Applying HttpOnly automatically
Fortunately, credential cookies often exhibit certain char-

acteristics. We studied the 54 websites that use HttpOnly

cookies. In some cases, cookies with HttpOnly are not nec-
essarily used for authentication, but at least should not be
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Phrase Count

*sid$ 122
*auth* 23

*session* 21
∧nid$ 18

*token* 14
*sess$ 11
other 174
Total 383

Table 1: Common phrases (case insensitive) used as
the names of HttpOnly cookies in top websites, where
* means any combination of characters, while ∧ and
$ means the beginning and end of string respectively.

Property
HttpOnly Non-HttpOnly

Aver. Stdev. Aver. Stdev.

Entropy 4.00 1.60 2.83 1.82
Length 102 128 48 83

Table 2: Average and standard deviation of en-
tropy and lengths of HttpOnly cookie values and non-
HttpOnly ones in the top websites that use HttpOnly.

accessed by client-side scripts. Still, analysis on the whole
set would give a close enough estimation of characteristics
for the login cookies. The preliminary experiments show
that they generally exhibit three key properties:

• They tend to have English phrases related to authen-
tication in their names such as token, session, and so
on.

• Their values exhibit greater randomness than non-
HttpOnly cookies.

• They use relatively long strings for their values com-
pared to the cookies without HttpOnly.

Table 1 shows the distribution of meaningful English
phrases in the names of HttpOnly cookies. It shows that
at least 54% of them use phrases related to authentication,
indicating that we could use cookie name as one hint to
decide if a cookie should be tagged as HttpOnly.

A well-known way to measure the randomness of a string
is to calculate its entropy. There are many entropy models,
and in Zan we use the Shannon Entropy Equation defined
as:

H(X) = −
∑
x∈X

p(x) logb p(x)

where p(x) is the probability mass function of a character x
appeared in the string X [29].

We show the average and standard deviation of our en-
tropy calculations in Table 2. HttpOnly cookies have an av-
erage of 1.17 more bits of entropy than cookies without the
HttpOnly attribute. Table 2 also shows that HttpOnly cook-
ies on average have 54 more characters than non-HttpOnly
ones. These are not coincidences. It is common that creden-
tial cookies are encrypted using hashing algorithms such as
MD5 or SHA1. At the same time, web sites need to use long

enough strings for session tokens in order to avoid collision
among different users.

Using data provided in Table 2, we can use a standard
Gaussian distribution classifier to decide if a cookie resem-
bles a credential one. The classifier we use in Zan is

τ =
µh − µnh

σh + σnh
σnh + µnh

where µh and σh are the mean and standard deviation for
HttpOnly cookies respectively, while µnh and σnh are the
mean and standard deviation for non-HttpOnly ones. τ
defines the delineation between HttpOnly cookies and non-
HttpOnly cookies, so we then can assume that a cookie with
entropy greater than 3.45 bits or containing 70 or more char-
acters is likely one that should be tagged with HttpOnly.

Based on the above information, we developed an algo-
rithm that automatically detects credential cookies. The
algorithm is defined as:

1 if (origin == JS || hasHttpOnlyAttr())
2 return;
3 for c in (the list of cookies)
4 if (c.name is common phrase)
5 if (entropy(c.value) > 3.45)
6 || len(c.value) > 70)
7 c.httponly = true;
8 else
9 if (entropy(c.value) > 3.45
10 && len(c.value) > 70)
11 c.httponly = true;

When a list of cookies is passed in with an HTTP request,
we apply the algorithm to their name-value pairs. First, we
only examine network cookies (lines 1 and 2). For cookies
that are set by JavaScript, we skip the algorithm because
they are by definition not HttpOnly cookies. Meanwhile,
when HttpOnly is already present, we honor the web devel-
oper’s decision and ignore the rest of the algorithm (lines 1
and 2).

Next for each cookie in the list, we check if it uses one
of the common phrases presented in Table 1 as its name.
For the one that uses a common phrase, we assume it is
most likely a credential cookie and use a relatively loose
classifier on the entropy and length of its value. We would
tag cookie with HttpOnly as long as either its entropy or
length falls into the range of a credential cookie. For the
one that does not use common phrase, we use a relatively
tight standard. Only when both its entropy and length meet
the bar of credential cookie, we would apply HttpOnly on it.

The overall algorithm is conservative to some extent as
we will show in the experiments later in this section. We
choose to be conservative because setting HttpOnly on too
many cookies would sometimes affect the compatibility and
usability of web apps. If a cookie that is supposed to be used
by JavaScript has been set with HttpOnly, the web app could
function incorrectly. Meanwhile, missing a single credential
cookie is not a serious problem as long as the attacker is not
able to retrieve the complete set of authentication cookies.

4.5 Experiments

4.5.1 Implementation
Zan is implemented on top of the open source version of

the OP web browser, which is called OP2 [15]. The version of
OP2 we choose uses the Qt framework 4.6 [3], and WebKit
r54749 [5]. We opt to use OP2 as it provides a clear and
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Predicted
Positive Negative

Actual
Positive 103 29
Negative 4* 164

Figure 2: Confusion matrix [19] for Zan’s cookie pro-
tection algorithm.

robust architecture for implementing the security features
we describe in this paper. Nonetheless, Zan does not rely
on any special feature that is only available in OP2. And we
believe that it is fairly straightforward engineering effort to
implement Zan in other browsers such as Internet Explorer,
Firefox, Chrome, and so on.

For the cookie protection algorithm, we modify the cookie
subsystem in OP2 to enable our algorithm. OP2 uses a clear
message passing mechanism for cookie access and Zan inter-
poses the messages passed into the cookie subsystem. Each
time the cookie subsystem receives a list of cookies from an
HTTP response, Zan applies the algorithm described previ-
ously to the cookies, and tags HttpOnly attribute appropri-
ately. There is no need to modify the cookie read procedure,
because the cookie subsystem then prevents HttpOnly cook-
ies from being accessed by client-side script.

4.5.2 Coverage
Our algorithm is designed to prevent credential cookies

from being stolen by XSS. While this protection could not
eliminate all the aftermath of an XSS attack, it certainly
minimizes the damage one can cause. Conceptually, we need
to prove that our algorithm can identify at least one authen-
tication cookie so that the attacker cannot use the stolen
cookies to log in to the corresponding website.

To evaluate how effectively our algorithm detects creden-
tial cookies, in our current effort, we apply it to top 300
popular websites according to Alexa. Unlike the other two
cases of this paper, it is infeasible to evaluate cookie protec-
tion automatically. Most websites employ mechanisms to
prevent non-human users from obtaining accounts and/or
logging in, such as using CAPTCHAs. Unless we could use
a large group of users to test for us, it is hard to extend the
experiments to a significantly larger scale. Even established
research that aims to study the Web in large scale shies away
from this problem. For example, Singh et al. did not log
into the websites they surveyed [30].

Out of the 300 websites, 136 have authentication cookies
but do not incorporate HttpOnly as shown in Figure 2. To
simulate an attack we log in to each of the websites. Then,
we delete all of the cookies that Zan marks as HttpOnly.
After erasing the HttpOnly cookies we attempt to continue
our login session. If we cannot continue using the website
as the logged-in user (e.g., being kicked back to login page),
we consider this a successful defense because it implies that
at least one of the cookies Zan identified was needed for au-
thentication at the website. Thus, if an attacker had stolen
the cookies via JavaScript then the set of cookies they would
have access to would not allow authenticated requests.

Out of the 136 websites, Zan was able to apply HttpOnly

to 110 automatically. There are 29 websites for which our
algorithm could not detect credential cookies, mostly due
to either low entropy or short value and irregular cookie
names. For example, Craigslist.com had credential cook-

ies using seemingly common Login name, but this name was
infrequent in our data set, so we did not detect this cookie.

Of the 107 websites that Zan did set HttpOnly cook-
ies for, the algorithm identified authentication cookies cor-
rectly for 103 of them (i.e., Zan ended the session after we
deleted the HttpOnly cookies). It is very interesting that the
four websites were able to continue the session despite the
deletion of seemingly credential cookies. For example, we
discarded a cookie that had name “PHPSESSIONID” from
imageshark.us, but the user session persisted despite its
removal.

4.5.3 Compatibility impact
In general, it is very rare, if any, for a well designed website

to use client-side scripting to access authentication cookies.
So the question is whether a non-credential cookie that is de-
signed to be used in JavaScript has been incorrectly tagged
with HttpOnly by Zan.

However, without full knowledge of the usage of each
cookie, it is infeasible to carry out a complete quantita-
tive analysis. Instead, to have a close estimation, we opt
to manually test the popular fuctions of these 136 websites
in depth. To our best effort, we could not observe any no-
ticeable breakdown of web pages. We understand that a
client-side solution like Zan needs to maintain compatibility
very well and a thorough test is much required. However, we
argue that the whole algorithm can be tweaked to be more
aggressive or conservative to accommodate the majority of
websites in practice.

5. CASE STUDY: FRAME-BASED ATTACK
In this section we discuss the state of the art in frame-

based attacks and defense techniques. We also describe our
algorithm for providing a more complete defense against
frame-based attacks.

Back in the era of Netscape Navigator in early 1990s, the
HTML FRAME element was introduced to allow web develop-
ers to delegate a portion of their document’s visual display
to another entity. These frames can then be navigated to in-
dependent documents, which can delegate their share of the
screen further to sub-frames. The FRAME tag was inflexible
and was replaced by the more versatile IFRAME tag, which
was introduced by Internet Explorer in 1997.
IFRAMEs enable modern browsers to display one web doc-

ument inside another at an arbitrary position, creating a
complex frame hierarchy. However, browsers present only
the URL of the main, or top-level, frame to the users in the
address bar. Consequently, it is infeasible for an average
user to distinguish sub-frames from other parts of a page.
This inconsistency, coupled with flexible display overlaying
mechanisms available in browsers, creates the opportunities
for frame-based attacks.

5.1 Frame-based attacks
Frame-based attacks were first reported in 2008 when

Robert Hansen and Jeremiah Grossman introduced the term
“clickjacking” [17]. In a clickjacking attack, the attacker
chooses a clickable region on the target website that the user
is currently authenticated on (e.g., a “like” button in a Face-
book page). To perform the attack, a malicious website will
load a page from the victim website inside an IFRAME, using
Cascading Style Sheets (CSS) to make it transparent. At
the same time, this transparent clickable element is placed
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on top of some visible, fake, but interesting clickable gadget
(e.g., click to win a free iPad). As a result, the user would ef-
fectively “like” an attackers chosen page in Facebook instead
of unrealistically winning a free iPad when he or she clicks it.
Evidence shows that major websites such as Facebook and
Twitter have already suffered from clickjacking attacks [11,
36]. There are also other variants of this same basic attack
that use similar mechanisms to induce users to click on a
page unwittingly.

As the Web evolves, the capability of frame-based attacks
also improves. In recent research, Paul Stone demonstrated
the next generation clickjacking by showing four new tech-
niques [31]. In the new attack scenarios, the attacker could
potentially use the drag-and-drop API in HTML5 and some
social engineering to inject text into form fields of the vic-
tim’s browser, which could be used to send fake emails from a
user’s account. An attacker could also extract content from
the enclosed frame, which could be used to steal sensitive
information such as passwords, or tokens that are used to
authenticate a session and guard against cross-site request
forgery (CSRF) [42] attacks. Stone also showed that it is
possible to use this new technique to achieve login detection
that is used to facilitate CSRF or other clickjacking attacks.

5.2 Preventing framing
Fortunately, while a number of different techniques have

been discovered to carry out frame-based attacks, they can
mostly be defended against.

Frame busting was the first technique that was suggested
to counter clickjacking attacks [17]. Frame busting often
refers to a snippet of JavaScript code included in a web app
that intends to prevent this web app from being included in
a sub-frame. A simple example of frame busting is shown
here:

if (top.location != self.location)
top.location = self.location;

Typically, frame busting includes a conditional statement
to detect if the web app is embedded in a frame. If so, the
next statement acts as the countermeasure to break out and
load the web app in place of the web site that is framing it.
Unfortunately, this JavaScript-based approach is not always
effective, and there is a list of ways to defeat it as described
by Rydstedt et al. [26]. For example, a malicious site
may try to use the onbeforeunload Document Object Model
(DOM) event to prevent a framed site from navigating to a
different URL, or merely disable scripting in the framed web
page.

Another option for preventing web apps from being
framed is the X-Frame-Options introduced by Internet Ex-
plorer 8 [21], which now widely implemented in all mod-
ern browsers. X-Frame-Options, as a declarative method,
provides a clear and robust approach to avoid unsolicited
framing. X-Frame-Options can be used either in an HTTP
response header of a web page or as an HTML “http-equiv”
META tag in the web page itself. X-Frame-Options has two
options: (1) DENY – the browser prevents the page from
rendering if it will be contained within a frame; and (2)
SAMEORIGIN – the browser blocks rendering only if the
origin of the top-level browsing context is different than the
origin of the content containing the X-Frame-Options direc-
tive. We also observe a third option – ALLOW – used by
some IFRAMEed advertisements. We posit that it is used to

Defense Front page Login page

Frame busting 19 34
X-Frame-Options 7 14

Table 3: Frame busting and X-Frame-Options usage
among top websites.

Type Number

top != self 17
parent.frames.length != 0 2
parent.frames.length > 0 2

top.location != self.location 4
window.self != window.top 3
top.location != location 3
window.top != window 2

top.location != window.location 1

Table 4: Patterns used in conditional statements for
detecting framing in frame busting code. This table
shows the distribution of the frame detection code
found in the 34 websites shown in Table 3. self

!= top is put in the same category of top != self.
And != is considered the same as !==. Whitespace
is ignored.

advise the browser to allow the embedding in any case. Al-
though more robust than frame busting, X-Frame-Options
also has a potential pitfall. When X-Frame-Options is in-
cluded in the HTTP header, a web proxy could strip it,
leaving the page unprotected.

However, like the HttpOnly attribute, anti-framing mecha-
nisms are not sufficiently incorporated in top websites. Some
websites use frame busting code and a few have started to
use the new X-Frame-Options feature (Table 3).

5.3 Robust anti-framing
As discussed above, both frame busting and X-Frame-

Options have shortcomings and they are also poorly incor-
porated in top websites. To better counter frame-based at-
tacks, we implement the following algorithm for each IFRAME

in Zan.

1 if(hasXFrameOptions())
2 return;
3 state = init;
4 for s in (all JS statements):
5 if(state == init && isFrameDetect(s))
6 state = nav;
7 if(state == nav && isTopFrameNav(s))
8 injectXFrameOption();

When X-Frame-Options is present in a web app, we honor
whatever the web developer sets and ignore the rest of the
algorithm (lines 1 and 2).

Next, the algorithm detects conditional statements that
are predicated on detecting framed pages (line 5). Fortu-
nately, frame detection code tends to exhibit some fairly
simple patterns. For the 34 websites we found with frame
busting code, the frame detection patterns we found are
shown in Table 4. To find frame detection code, the is-

FrameDetect() function inspects JavaScript statements to
check for one of the patterns listed in Table 4.

However, using frame detection code alone would induce
false positives because these basic patterns are also used
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Type

top.location = loc

top.location.href = loc

top.location.replace(loc)

parent.location.href = loc

Table 5: Frame busting navigation countermeasures
used when framing is detected. This table shows the
four navigation countermeasures we observed from
websites that deploy frame busting code.

for functionality other than frame busting in web apps.
To reduce false positives, we only inject X-Frame-Options

if we also detect a countermeasure navigation statement
(line 7). To find countermeasure navigation statements, our
isTopFrameNav() function searches JavaScript statements
for one of the patterns shown in Table 5. In these naviga-
tion countermeasures, loc could be any URL that the web
author wants to use for replacing the top-level frame. The
patterns we detect are less diverse than what we observe for
frame detection. A recent study suggests that other coun-
termeasures as well [26], but our evaluation indicates these
four work well for top websites.

When Zan detects frame detection code and countermea-
sure navigation statements, we apply X-Frame-Options with
the SAMEORIGIN option to framed web apps (line 8), pre-
venting them from being displayed as frames inside web
pages that are from different origins.

This heuristic algorithm will not detect all frame busting
code and it could detect frame busting code when there is
none, but it is simple, efficient, and accurate for the web-
sites that we examine (see experimental results later in this
section for more details). The algorithm also has some flex-
ibility built in. Browser developers could adjust the number
of frame detection or frame navigation statements the al-
gorithm searches for in order to trade-off more aggressive
security against compatibility.

One alternative and more aggressive defense could be ap-
plying X-Frame-Options to any web pages that have user-
name and password fields, thus protecting login sites from
frame-based attacks. However, we did not evaluate this more
aggressive defense in this paper.

5.4 Experiments

5.4.1 Implementation
For the frame-based attack defense, we modify the HTML

parser used in WebKit. All HTML and JavaScript source
code (even the external code) is processed first through the
HTML parser. Zan uses simple string pattern matching rou-
tines to detect the existence of frame busting code using the
algorithm proposed earlier in this section, and then applies
the same anti-framing method that the X-Frame-Options

implementation uses in WebKit. Detecting login pages is
quite a mature topic. Most modern browsers detect the
password form field to enable automatic login. bWe instead
use this method to apply X-Frame-Options to them.

5.4.2 Coverage
To test our frame defense we try to frame a website that

Zan injects X-Frame-Options into and we confirm that Zan
prevents framing. We verify that the five attack scenarios

Predicted
Positive Negative

Actual
Positive 87 2
Negative 0 (or 7*) 911 (or 904*)

Figure 3: Confusion matrix for Zan’s frame busting
code detection algorithm.

that are applicable to WebKit [26] can be mitigated in Zan
because Zan does not rely on the correct execution of frame
busting code.

Meanwhile, we also need to test whether our algorithm
is able to cover all of the potential opportunities to apply
stronger defenses. For our frame defense we visited the 89
websites out of top 1000 websites that have frame busting
code, and Zan correctly applied X-Frame-Options to 87 of
them as shown in Figure 3. In fact, during the experiments,
we found additional patterns of frame busting code and used
them to improve our algorithm. As a result, if any of these
websites is unwittingly framed, Zan is able to stop its ren-
dering. There are still two websites that Zan cannot handle.
One website (renren.com) uses an unorthodox way to detect
framing, which is infeasible to be incorporated in Zan’s algo-
rithm. The other copies its self.location to a variable and
use the variable to compare to top.location. Zan was not
able to detect this case. Interestingly most of the websites
in our test that do use X-Frame-Options also include frame
busting code. Thus, had an HTTP proxy stripped the X-

Frame-Options from the HTTP response header, Zan would
still protect the site.

One thing we want to point out is that Zan’s robust anti-
framing mechanism is used to improve existing protection
rather than adding new protection to random websites. It is
infeasible for Zan to decide whether a website can be used in
IFRAMEs legitimately without hints like frame busting code,
although we do provide an aggressive option for protecting
all login pages.

5.4.3 Compatibility impact
One potential issue that Zan could cause is to stop ren-

dering frames that do not actually have frame busing code.
To test our frame defense we ran two experiments. First,
we visited all of the top 1000 websites and measured Zan’s
effects on any of the benign IFRAMEs included in these sites.
Then, we manually framed the 911 websites that did not
have frame busting code and visited these framed sites to see
if Zan applied X-Frame-Options incorrectly and prevented
their rendering.

Zan did not affect the display of any benign IFRAMEs in
the top 1000 websites and 904 of the 911 manually framed
websites that do not include frame busting code. Zan in-
correctly stopped the rendering of 7 web pages. The 7 web-
sites actually include frame busting code, but use condi-
tional statements to disable its execution in certain scenar-
ios. For example, Wikipedia use an if statement to disable
the frame busting logic in its main page (but not in the login
page). Since we use string pattern matching instead of rely-
ing on complex control flow analysis in Zan, we are unable to
eliminate this false positive. Nevertheless, in typical usage
scenarios, these websites are not embedded in cross-orgin
IFRAMEs. So Zan will not affect their normal functions.

During the experiments, we also found that statements
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used in frame busting code were used for other purposes.
However, the framing detection-like statements and naviga-
tion countermeasure statements are not close to each other
in JavaScript code in these cases. As a result, we mod-
ify Zan’s algorithm to add a requirement for the distance
between the two statements (i.e., the countermeasure state-
ment should not be too far away following the framing detec-
tion statement) when trying to identify frame busting code,
and successfully reduced false positive numbers.

6. CASE STUDY: SECURE JSON PARSING
Before the era of “Web 2.0”, a full page re-load was re-

quired to update information on a webpage. The problem
with this approach is that it is neither efficient or elegant.
In terms of efficiency, the server was required to send a full
version of the page to the client even for minimal content
modifications, and in terms of elegance it forced visual resets
of the screen requiring the client to wait while the refresh oc-
curred. As such, websites needed a way to update informa-
tion on the page less obtrusively, thus, Ajax was developed
to enable asynchronous communication between the client
and server. Ajax originally used the XMLHttpRequest object
to transfer XML formatted data. Recently JSON has become
an XML replacement in Ajax because it is simple and can be
easily encoded into several popular programming languages.

6.1 JSON and exploiting JSON
JSON is a subset of the object literal notion of JavaScript.

Originally specified by Douglas Crockford in RFC 4627,
JSON is now supported in all major browsers as part of
JavaScript. JSON can be used in client-side scripts to facil-
itate easy data exchange with servers. Below is an example
of a simple JSON string:

{ "employee" : [
{"name": "Alice", "sex": "female"},
{"name": "Bob", "sex": "male"} ] }

In this example, the JSON string represents an object
that contains a single member “employee”, which contains
an array containing two objects, each containing “name”,
and “sex” members.

JSON is often used together with XMLHttpRequests to
enable the browser to exchange data asynchronously with
the server. If an XMLHttpRrequest returns the above JSON
string stored in a variable called jsonText, it can be con-
verted into a JavaScript object using the JavaScript eval()
function, which invokes the JavaScript compiler as shown in
the following code snippet:

jsonObject = eval(’(’ + jsonText + ’)’)

Since JSON is a proper subset of JavaScript, the compiler
will correctly parse the text and produce an object structure.
For example, one can use jsonObject.employee[0].name

to access the first employee’s name. To avoid ambiguity in
JavaScript’s syntax, it is also recommended that the JSON
text be wrapped in parentheses as shown in the statement
above.

However, since eval() invokes the complete JavaScript
compiler, it could execute any JavaScript program besides
JSON, leading to potential security vulnerabilities. Typi-
cally in a web app, JSON is used over XMLHttpRequest,
which is commonly restricted to only communicate with the

origin that the web app comes from. Thus, the source is
trusted. However, if the server does not provide correct
JSON encoding, or it embeds user supplied content in JSON
text without rigorous sanitization, it could deliver problem-
atic JSON text to the client that could contain malicious
scripts (e.g., CVE-2007-3227). The eval() function would
then execute the script, resulting in an XSS attack. Assume
in the above example, the name of an employee is provided
by the user. If the user could enter a malicious script such as
", "arb": alert(document.cookie), "": " instead of
a real name,the resulting JSON text would become:

...
{

"name": "",
"arb": alert(document.cookie),
"": "",
"sex": "female"

},
...

When evaluated, the web page displays an alert showing
the cookies for the active session. This threat has already
been reported for real world websites such as in Google’s
personalized homepage and can be used for more serious
script injection attacks [27].

6.2 Native JSON
To minimize script injection via JSON parsing, it is sug-

gested that web developers use regular expressions to vali-
date the data prior to invoking eval(). However, browser
developers added a new function, JSON.parse(), as a safer
and more robust alternative to eval() that parses JSON
text without executing scripts.
JSON.parse(), which only recognizes JSON text, re-

jects all possible embedded malicious scripts. Additionally,
JSON.parse() only parses JSON text that adheres to the
JSON standard and will reject any malformed JSON text.
Fortunately, browsers implement functions for converting
JavaScript data structures into JSON text. These serializa-
tion and deserialization routines are well supported in most
recent browsers as Native JSON. However, web developers
have been slow to adopt this new security feature as well.

6.3 Automating native JSON adoption
To prevent script injection via JSON, Zan inspects all

strings passed into the JavaScript eval() function:

1 s = fixupEvalString(evalString);
2 if(s.startWith("({") && s.endWith("})"))
3 return zanParse(s);
4 if(s.startWith("([") && s.endWith("])"))
5 return zanParse(s);
6 ...

If the algorithm detects a string that looks like a JSON
object, it will pass that string to the JSON.parse() function
automatically. Our logic for detecting JSON objects checks
the beginning and end of the eval string to find the “({” and
“})” (line 2) or the “([” and “])” (line 4) strings respectively.
These checks will find and thwart cases where developers use
JSON objects but an attacker passes unsanitized JavaScript
into the JSON object.

For the websites we examined, we found a few cases where
web developers use JSON, but the JSON text was not for-
matted according to the strict JSON grammar. To ensure

622



Predicted
Positive Negative

Actual
Positive 76 3
Negative 0 922

Figure 4: Confusion matrix for Zan’s secure JSON
parsing algorithm.

that these almost-valid JSON strings can pass our inspec-
tion we used a modified JSON.parse() parser for parsing
JSON text with a slightly updated grammar to handle these
cases (lines 3 and 5). Specifically, we allow single quotes in
addition to double quotes and we accept name strings that
omit enclosing quotes. Additionally, we have a function that
fixes up eval strings to make our detection logic easier by re-
move some whitespace to ensure that the JSON brackets
and braces make it to the beginning and the end of the eval
string (line 1). With these modifications, the Zan algorithm
successfully parses all JSON objects we observed in our tests.

Although this algorithm is simple, efficient, and effective,
there are a few cases where it could fail. A web developer
could use a JSON object that deviates from the JSON stan-
dard, but is still detected by our algorithm as JSON, re-
sulting in a failed parse. We found a few cases of this type
of deviation, which resulted in our updated grammar, but
other similar instances are possible. Another problematic
scenario is when an attacker replaces JSON text altogether
with malicious JavaScript, which we would pass to eval(),
missing the attack.

6.4 Experiments

6.4.1 Implementation
For automatic JSON.parse() adoption, implementation is

very straightforward. We modify the eval() implementa-
tion in the JavaScript engine of WebKit. By detecting and
fixing JSON strings, we are able to pass them to the ded-
icated JSON.parse() function instead of using the general-
purpose eval() function.

6.4.2 Coverage
To test our JSON parsing defense we manually craft three

attacks that simulate the script injection vulnerabilities we
describe earlier in this section. In all of our tests Zan de-
tected the JSON text and ran it through the JSON.parse()

parser, which “correctly” failed to parse the text and return
a null object as expected. Certainly, if an attacker is able to
replace a JSON string completely with malicious JavaScript
code, he or she can elude Zan’s protection. However, in this
case, the attacker would have almost complete control of the
web server. It is unrealistic to defend at the client side any
more.

We also visited the top 1000 popular websites and found
that 79 deserialize JSON text using eval(). Zan was
able to run JSON objects on 76 of these sites through the
JSON.parse() parser correctly as shown in Figure 4. Zan
missed three websites because they did not wrap JSON
strings in parentheses. We also observed that some websites
mixed JSON text within legitimate JavaScript code that is
passed to eval(). In these few cases, Zan is not able to add
protection. Generally, had an attacker injected a malicious

playload into the JSON text, Zan would be able to prevent
its execution for any of the 76 websites.

6.4.3 Compatibility impact
There are two possible cases in which Zan causes incom-

patibility: 1) incorrectly recognizing a benign JavaScript
code snippet in eval() as JSON string; 2) producing a dif-
ferent object after fixing and parsing the JSON string. For
our experiments, Zan’s automatic use of the JSON.parse()

function did not affect any of the 1000 websites we visited.
In other words, all eval strings were processed identically in
Zan when compared to processing them with eval(). How-
ever, we recognize that we did have to add to the grammar
of our JSON.parse() parser in order to maintain this com-
patibility. It is possible that websites outside of our data set
could induce false positives, but our evidence suggests that
our techniques would be robust.

7. DISCUSSION
While Zan shows promising results, it is not a perfect solu-

tion yet and should be complementary to server-side effort.
In this section, we discuss the lessons we learned through
designing and implementing Zan, and also articulate some
issues related to the approach of Zan.

7.1 Use of heuristics
In this paper, we advocate a pure client-side defense as we

observe that web app developers are slow to adopt new se-
curity mechanisms. While Zan does not require extra work
on the server side, it uses heuristics to recover implicit in-
formation at the client side.

Heuristics-based approaches in most cases cannot be 100
percent accurate. Two typical concerns are: 1) whether an
approach adds or improves protection for all possible candi-
dates; 2) whether it results in incompatible web apps.

While our experiments suggest that Zan performs ade-
quately well for top 1000 popular websites, it is possible that
less popular websites with poor design could be problematic.
For example, one could use clear-text authentication cook-
ies or irregular JSON strings. Nevertheless, with larger scale
real world experiments, the classifiers that Zan uses could
be changed to accommodate more websites. As long as Zan
maintains compatibility, it could be adopted by mainstream
browsers to provide “free” extra protection. In fact, there
are real world examples of heuristics-based client-side pro-
tection. For example, Internet Explorer 8 uses heuristics to
implement its XSS filters [25].

7.2 Deployment
When introducing a new mechanism to the Web, espe-

cially solely at the client side, we have to think about how
to deploy it and whether it will cause new problems.

We argue that Zan can be incorporated into modern web
browsers gradually. Browsers with and without Zan capabil-
ity will not present a fundamentally different interpretation
of the same web app. Zan does not rely on any events or
states that can be multiplexed for different purposes. For
example, credential cookies should only be used for authen-
tication between browsers and servers. It is very rare, if
any, for a well designed website to use client-side scripting
to access authentication cookies. It is also possible that an
attacker could inject frame busting-like code into a web app
using XSS to confuse Zan. However, Zan would not stop
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rendering of the web app unless it is embedded in a cross-
origin frame, which is uncommon.

At the same time, Zan always obeys the web developers’
decisions. For example, if a website already uses HttpOnly

tags, Zan will not modify the cookies for the website. If a
website specifies X-Frame-Options, even if it is the ALLOW
type, Zan will skip its frame busting detection code for this
website. Moreover, we can always allow web developers to
disable Zan using an extra HTTP header like disabling XSS
filters [25] if needed.

It is reported that existing client-side defenses such as XSS
filters in Internet Explorer have introduced new vulnerabil-
ities into the browsers [24]. As browsers are already com-
plex artifacts, adding complex defense mechanisms would be
problematic. However, we argue that all the mechanisms we
demonstrate are simple (less than 100 lines of code each),
and do not change the structure or internal execution of a
web page. Our secure JSON deserialization does change the
JSON strings a little bit, but what Zan tries to do is en-
force better format according to standards. Nevertheless, it
is infeasible to prove that there are no new vulnerabilities
added. The only way we can do is to keep Zan simple.

7.3 Performance overhead
We also need to make sure that Zan does not incur notice-

able performance overhead for web browsing. Microbench-
marks suggest that the cost of these three algorithms is less
than 10 milliseconds even in worst cases. Additionally, com-
putation of these algorithms can be overlapped with network
latencies. In general, during the experiments, we did not ob-
serve any measurable amount of overhead.

8. ADDITIONAL RELATED WORK
In addition to the projects we discussed previously in this

paper, there are a number of other related works. These
related projects fit into one of three main categories: XSS
defenses, clickjacking defenses, and cookie protection.

8.1 XSS defenses
XSS defenses are closely related to our HttpOnly cookie

defense because one common use of XSS is to steal authen-
tication cookies via injected JavaScript, which is something
our defense is designed to prevent.

XSS Auditor [12] and IE8 [25] use heuristics to detect
script-like entities embedded in URLs to prevent reflected
XSS attacks. While Alhambra [33] uses heuristics to deter-
mine if a script should be executed or not in order to prevent
XSS. A number of recent projects enable the programmer
to use annotations to specify portions of the HTML docu-
ment where the browser prevents scripts from running [18,
40, 13, 35, 39]. Similarly, two recent projects propose au-
tomated client/server hybrid systems [23, 16] that automat-
ically mark portions of the HTML where scripts are not
allowed to run. Finally, the Firefox NoScript extension [22]
white-lists trusted script source locations. Zan differs from
these approaches because it focuses on identifying and iso-
lating authentication cookies rather than determining what
JavaScript code should be allowed to run.

8.2 Clickjacking defenses
Clickjacking defenses are related to our X-Frame-Options

defense because it is enabled by attackers including framed
pages and occluding the framed content to fool users.

ClearClick, which is part of NoScript [22], tries to prevent
clickjacking by notifying the user anytime they interact with
a framed element that has been occluded. This mechanism
essentially infers the user’s intent by reasoning about visual
elements and any occlusion that the page might induce on
embedded elements. ClickIDS [7] uses ClearClick as part of
an automated testing tool that synthesizes clicks on pages
and runs them with and without ClearClick enabled. By
comparing the results of the two pages they can infer a pos-
sible clickjacking attack by detecting differences between the
two. Our complementary X-Frame-Options defense differs
from these techniques by instead inferring programmer in-
tentions (i.e., frame busting code) and preventing the page
from being framed rather inferring user intentions.

8.3 Cookie protection
One recent project that aims to protect cookies is the

Doppelganger project [28]. It provides more flexible cookie
policies by recording and replaying web sessions to detect if
modifying a cookie would affect a web site. This informa-
tion enables Doppelganger to make decisions about deleting
cookies that would otherwise be stored by the browser.

Barnett also tried to use cookie name to identify authen-
tication cookies and apply HttpOnly tags [8]. However, his
approach requires server-side efforts and works only with
Apache. Moreover, he did not take randomness and length
of a cookie into account.

Recent work by Vogt et al. [37], proposes using dynamic
taint tracking to prevent cookies from being sent to a remote
site via JavaScript. In our work we strive to identify and
isolate login cookies, whereas they assume that cookies are
tainted and track the effects of these cookies as JavaScript
code accesses them. One could imagine combining these two
complementary techniques so that the taint tracking system
only taints cookies that Zan identifies as HttpOnly cookies.

9. CONCLUSIONS
In this paper we presented a browser-based approach for

automatically adding new security features to existing web
apps. Zan accomplishes this by inspecting events and states
in the browser to exploit opportunities for retrofitting legacy
web apps with new security features. We presented three
algorithms: HttpOnly cookie designation, which automat-
ically restricts access to authentication cookies, X-Frame-

Options specification, which denies the inclusion of web apps
in IFRAMEs, and JSON.parse(), which detects eval() calls
on JSON text and parses them in safe routines. Each of
these algorithms capitalizes on unique details about appli-
cations to provide automated security mechanisms.

One key aspect of our approach is that our algorithms are
simple. As browsers are complex artifacts, it is necessary to
maintain this feature for the development of practical sys-
tems. Despite their simplicity, our algorithms are effective
at improving the security of several of the websites we eval-
uated. Furthermore, two of our algorithms, HttpOnly and
IFRAME defense, are tunable and can be adjusted by browser
developers to trade-off security against compatibility.

As web apps become increasingly popular, improving their
security becomes paramount. Browser developers have been
proactive in providing new security mechanisms, but web
developers have either been too slow to adopt these new
features or managed complex code bases that make it dif-
ficult to adapt legacy systems. Zan is a system that can
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provide complimentary protection of legacy web apps where
web developers fail to use the security mechanisms available
to them in a timely fashion.
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