
Formal Analysis of Enhanced Authorization in the TPM 2.0

Jianxiong Shao, Yu Qin, Dengguo Feng and Weijin Wang
Trusted Computing and Information Assurance Laboratory,

Institute of Software, Chinese Academy of Sciences, Beijing, China
{shaojianxiong, qin_yu, feng, wangweijin}@tca.iscas.ac.cn

ABSTRACT
The Trusted Platform Module (TPM) is a system compo-
nent that provides a hardware-based approach to establish
trust in a platform by providing protected storage, robust
platform integrity measurement, secure platform attestation
and other secure functionalities. The access to TPM com-
mands and TPM-resident key objects are protected via an
authorization mechanism. Enhanced Authorization (EA) is
a new mechanism introduced by the TPM 2.0 to provide a
rich authorization model for specifying flexible access control
policies for TPM-resident objects.

In our paper, we conduct a formal verification of the EA
mechanism. Firstly, we propose a model of the TPM 2.0 EA
mechanism in a variant of the applied pi calculus. Secondly,
we identify and formalize the security properties of the EA
mechanism (Prop.1 and 2) in its design. We also give out
a misuse problem that is easily to be neglected (Lemma 7).
Thirdly, using the SAPIC tool and the tamarin prover, we
have verified both the two security properties. Meanwhile,
we have found 3 misuse cases and one of them leads to an
attack on the application in [12].

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods

General Terms
Security

Keywords
TPM; Formal Verification; Enhanced Authorization; Trusted
Computing

1. INTRODUCTION
The Trusted Platform Module (TPM) is an important sys-

tem component separated from the system on which it re-
ports (the host system). The only interaction is through the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ASIA CCS’15, April 14–17, 2015, Singapore, Singapore.
Copyright c© 2015 ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714610.

interface, i.e. application programming interface (API), pre-
defined in the TPM specification. Through API commands,
the TPM offers facilities to enable trustworthy computation
and communication over open networks. The TPM specifi-
cation [1] is an industry standard proposed by a computer
industry consortium called the Trusted Computing Group
(TCG). TPM 1.2 specification has become the ISO stan-
dard [2]. Hundreds of millions of TPMs are deployed in
a wide range of devices ranging from servers and personal
computers to mobile devices.

However, several papers have indicated the vulnerabilities
in the TPM 1.2 API designs [3, 4, 5, 6, 7], particularly in
relation to the secrecy and authentication properties. The
attacks on the TPM include the replay attack on TPM au-
thorization protocols [3], the impersonation attack on shared
authdata [4], the offline dictionary attack on weak authdata
[5], and the illegitimate acquirement of certificates on se-
lected TPM keys [7]. These attacks highlight the impor-
tance of formal analysis and verification of the TPM API
commands.

To enhance the security and functionalities of the TPM,
TCG continues to revise the TPM specifications. In 2013,
TCG has published the TPM 2.0 specifications [8]. New ver-
sion fixes the known flaws in the TPM 1.2 and makes sev-
eral changes and enhancements from the previous versions
especially on the authorization mechanisms. The TPM 2.0
API defines 3 authorization types: password, HMAC, and
policy. The last one is denoted by the enhanced authoriza-
tion (EA), which allows object owners and administrators
to require specific policy assertions to be satisfied before ac-
cess to a protected object is allowed. The policy relies on
the object’s authPolicy setting. The EA mechanism extends
the original platform configuration register (PCR) binding
operation in TPM 1.2 with more authorization assertions.
Moreover, the EA mechanism has a top priority since the
other two kinds can be disabled by the specific settings of
attributes.

We provide, to the best of our knowledge, the first for-
mal analysis and verification of the TPM 2.0 EA model in
our paper. Firstly, we propose a formal model for the API
analysis of the simplified TPM 2.0 EA mechanism in the
stateful applied pi calculus [9, 10]. Our model could cover
almost all aspects of the EA functionalities except for the
CounterTimer assertion. Secondly, we define and formalize
the security properties (Prop.1 and 2) of the EA mechanism
in its design. We have met two challenges in this part. The
first is that there is more than one expression for a given
policy. We solve it by transforming the policy into a dis-

273

junctive normal form and providing a generic way to com-
pute the authPolicy setting for it. The second challenge is
that the universal quantifier over the policy setting makes it
difficult to verify Prop.1. We solve it by dividing the whole
proof into a chain of pieces (Lemma 1 and 2) which can
be verified and composed by induction. We also identify a
misuse problem (Lemma 7). At last, using the SAPIC tool
[9] and the tamarin prover [11], we have verified both the
two security properties of the EA model. In our analysis,
three misuse cases are discovered. The first one is for the
NV assertion. It leads to an attack on the application in
[12], where an NV counter is used to restrict the number of
PIN attempts. We find that a malicious user can double this
number by using one more session. The other two focus on
a theoretical analysis of the race conditions when the TPM
APIs are implemented in a concurrency-based model.
Related Work. A few researches have been done for the
formal analysis and verification of the TPM 2.0 specifica-
tions on direct anonymous attestation [13, 14], protected
storage [15], and the traditional HMAC-based authorization
[16]. However, there are no results about the formal verifica-
tion of TPM 2.0 EA mechanism as far as we know. In [12],
the first accessible description of the TPM 2.0 EA model is
provided and being used to build an Electronic Identification
(eID) architecture. They limit the scope of security analysis
only to the eID requirements without considering the se-
curity properties of EA mechanism, although they acknowl-
edge its formal verification is a worthy pursuit. However, we
find that the NV assertion is misused in their application,
which might lead to an attack. Some researches have been
done for the formal verification of the PCR binding opera-
tions in the TPM 1.2 API commands. In [17], a logic for
reasoning about the properties of secure systems based on
the PCRs is proposed. However, their model assumes that
the TPM functions well and does not provide an API anal-
ysis as in our model. Another technique presented in [18]
extends the logic used in the tool ProVerif [19] with a binary
predicate to introduce a non-monotonic global state. Their
model focuses on the usage of the PCR to build a chain of
trust. This method is generalized to a tool StatVerif [10] but
it could only handle a finite number of memory cells. Thus
it cannot be used to analyze the TPM API with unbounded
number of objects, which has been done by our model.

The paper is organized as follows. In Section 2 we give
a brief introduction to the stateful applied pi calculus and
the TPM 2.0 EA mechanism. In Section 3 we model the EA
mechanism in TPM API commands and its security proper-
ties. In Section 4 we present the results of the formal veri-
fication of EA and 3 misuse cases. We conclude in Section
5.

2. PRELIMINARIES

2.1 Stateful applied pi calculus
Stateful applied pi calculus is a variant of the applied pi

calculus first proposed in [10]. In addition to the usual op-
erators for concurrency, replication, name restriction, com-
munication, and condition, it offers the constructs for ma-
nipulation of an explicit global state. In this subsection, we
will give a brief introduction to the syntax and semantics of
the stateful applied pi calculus, and the trace formulas for
the formalization of security properties. The details can be
found in [9, 10].

The syntax of terms assumes two disjoint, infinite sets N
and V of names and variables. A signature Σ consists of a
finite set of function symbols, each with an arity. A function
symbol with arity 0 is a constant. Terms, ranged over by
M,N , are built up from names and variables by function
applications, which is described in Table 1. We denote by
σ = {t1/x1

, · · · , tn/xn
} the substitution which maps xi to

ti. Terms are equipped with an equational theory =E to
capture the cryptographic primitives used by protocols. We
give an example of the digital signature scheme below.
Example 1. Digital signature scheme can be modeled by
a signature Σ = {Sig/2, PK/1, CkSig/2} equipped with an
equational theory defined by CkSig(Sig(m, k), PK(k)) =E

m. It allows to check whether the message m is correctly
signed by the key k.

The syntax of processes is described in Table 1. 0 de-
notes the terminal process. P |Q is the parallel composition
of processes P andQ and !P the replication of P , allowing an
unbounded number of sessions in protocol executions. The
construct νn;P binds the name n in P and models the gen-
eration of a fresh, random value. Processes out ([M,]N);P
and in ([M,]N);P represent the output, respectively input,
of message N on channel M . Note that if the channel M
is unique and public, it can be omitted from the expres-
sions. The process if M = N then P [else Q] will execute
P if M =E N and Q otherwise. The branch else Q can be
trailed when Q is 0. The event construct F is merely used
for annotating processes and will be used in the definition of
trace formulas. The construct insert M,N binds the value
N to a handle M . Successive inserts allow to change this
binding. The delete M operation simply flushes the map-
ping for the handle M . The lookup M as x in P [else Q]
allows to retrieve the value associated to M , binding it to
the variable x in P . If the mapping is undefined for M , the
process behaves as Q. The process lock M ;P locks the re-
source handle M for the subsequent process P . When the
resource M is locked, another parallel process that intends
to access M has to wait until a primitive unlock M ;P ′. This
is essential for formalizing API where the parallel commands
cannot read and update a common memory.

We give an informal description of the semantics of pro-
cesses and the trace. The formal definition could be found
in [9] (Section 3.2). The semantics is defined by a set of
the labelled transition relations between process configura-
tion to model the single-step execution (transition) of pro-
cesses. The transitions are labelled by facts. F , the set of
facts, includes two subsets, one for the event construct F ,
the other for the attacker’s deduction of new message M , de-
noted by K(M). The trace of a process P , denoted by trP =
[F1, · · · , Fn] where Fi ∈ F , is defined by a finite sequence
of facts, which have been executed. It is the possible exe-
cutions that the process P admits. Given a ground process
P , the set of traces of P is Tr(P) = {[F1, · · · , Fn]|∃trP =
[F1, · · · , Fn]}. For a sequence tr, idx(tr) is the set of posi-
tions in tr, and the i-th label is denoted by tri for i ∈ idx(tr).

In the following, we give out the definitions of trace for-
mula and its validity, which are the same to the definitions
8, 9, 10 in [9]. These definitions could help us formalize the
security properties of the TPM 2.0 EA mechanism. Trace
formula is described in a two-sorted first-order logic. The
sort temp is used for timepoints. A valuation θ is a function
from variables to ground terms and timepoints that respects
sorts.

274

Table 1: Syntax of processes
〈M,N〉 ::= terms

a, b, c,m, n, h, ... names
x, y, z, ... variable
f(M1, ...,Mn), f ∈ Σ of arity n function

〈P,Q〉 ::= processes
0 termination
P |Q concurrency
!P replication
νn;P restriction
out([M,]N);P output
in([M,]N);P input
if M = N then P [else Q] conditional
event F ;P event
insert M,N ;P state
delete M,N ;P delete
lookup M as x in P [else Q] read
lock M ;P lock state
unlock M ;P unlock state

Definition 1(Trace formulas). A trace atom is either false
⊥, a term equality M1 ≈ M2, a timepoint ordering i < j, a
timepoint equality i = j, or an action F@i for a fact F ∈ F
and a timepoint i. A trace formula is a first-order formula
over trace atoms.
Definition 2(Satisfaction relation). The satisfaction rela-
tion (tr, θ) |= φ between trace tr, valuation θ and trace
formula φ is defined as follows:

(tr, θ) |= ⊥ never
(tr, θ) |= F@i iff θ(i) ∈ idx(tr) and Fθ =E trθ(i)

(tr, θ) |= i < j iff θ(i) < θ(j)
(tr, θ) |= i = j iff θ(i) = θ(j)
(tr, θ) |= M1 ≈M2 iff M1θ =E M2θ
(tr, θ) |= ¬φ iff not (tr, θ) |= φ
(tr, θ) |= φ1 ∧ φ2 iff (tr, θ) |= φ1 and (tr, θ) |= φ2

(tr, θ) |= ∃x.φ iff there is u such that
(tr, θ[x
→ u]) |= φ

Definition 3(Validity). Given a ground process P , a trace
formula φ is said to be valid for the set of the process P ’s
traces Tr(P), written Tr(P) |=∀ φ, if for any trace trP ∈
Tr(P) and any valuation θ we have that (trP , θ) |= φ.
Example 2. The following trace formula expresses the cor-
respondence property. It holds if each occurrence of event
Ev2 is preceded by an event Ev1.

φ := ∀x1, · · · , xm, t2. Ev2(x1, · · · , xm)@t2 ⇒
∃t1. Ev1(M1, · · · ,Mn)@t1 ∧ t1 < t2.

2.2 The enhanced authorization in the TPM
In the TPM 2.0 specification, the TPM stores key objects

in its shielded memory, and access to these internal objects
require authorizations. By using the enhanced authorization
mechanism, the creator of the object can require specific
tests or actions to be performed before it is operated by some
specific TPM commands. In this case, the authorization is
a proof that the TPM has completed the required actions.
It should be provided by the user of these commands.

The specific requirements, defined as policy, are encapsu-
lated in a value called authPolicy within the data structure
of the object. Once the creator of the object sets the au-
thPolicy value, it cannot be modified. In order to use the
object, the user should first start a policy session located
in the TPM’s shielded memory and then invoke a sequence
of policy assertion commands to complete the tests required
by the policy. These commands will check some conditions
and modify the session’s policyDigest and other context val-
ues. After executing all the assertion commands required
by the policy, the TPM keeps a policy session. This ses-
sion accumulates all policy information needed to make the
authorization decision. Finally, the user references the ob-
ject accompanied with the session in the command, which
is to be authorized. If the session’s policyDigest matches
the object’s authPolicy (and some other optional conditions
are valid), then the command is authorized to operate the
object.

In this subsection, we will give a brief overview of the
EA mechanism in the TPM 2.0, including the classification
of the policy assertion commands and the way they update
the policy session’s context. We also give an example of how
the EA mechanism works. Details of EA could be found in
the specification [8] (Section 19.7, Part I).

2.2.1 Policy assertions
In a policy for authorization, an assertion is a statement

of something that must be true before the policy is satisfied.
For example, an assertion may be that the selected platform
configuration register (PCR) in the TPM should have the
desired value to allow an object to be authorized for use in
a command. The policy assertion commands are defined in
[8] (Section 19.7.6, Part I). In part 3, the policy commands
are with the names of the form TPM2_PolicyXXX() where
"XXX" is a Label of the type of policy assertions. In this
subsection, we will give a classification of the policy assertion
commands. The assertion commands are listed in Table 2.
The table also includes the actions that the TPM will take
in each command, the description of each assertion, and the
classification.

Two or more assertions can be combined by logical connec-
tives AND and OR. First, we describe an AND way. There
is no explicit AND command. An AND policy may be ex-
pressed in an equation as a sequence of assertions that must
all be satisfied. To verify it, the user should sequentially
invoke all the assertion commands in the equation with the
same policy session. These commands will validate the as-
sertions and update the session’s policyDigest (optionally
with other context values). The final digest value indicates
the evaluated policy. In each assertion command, the poli-
cyDigest value is computed as

polDnew := HASH(polDold||polLabelnew ||Paramnew) (1)

where polLabelnew identifies the new policy assertion and
Paramnew is the parameters associated to the assertion. For
example in TPM2_PolicyPCR, polLabelnew equals ’PCR’ and
Paramnew is the desired PCR value. The way of computa-
tion is like a chain to record the sequential evaluation of the
assertions in an AND policy.

The TPM 2.0 has classified the AND policy assertion
commands into 3 different types: immediate, deferred and
combined. For an immediate command, the TPM validates
the assertion of the input values and then updates the ses-

275

Table 2: Policy assertion commands
Label Actions Description of assertion classification

NV
validate selected NV (Non-Volatile) NV Index has the desired relationship with

Immediate
update polD (policyDigest) the input value

PCR
validate selected pcr

Selected pcr has the desired value Combined
update polD, pcrUpdateCounter

CounterTimer
validate internal clock Internal clock has the desired relationship with

Immediate
update polD the input value

CpHash update polD, cpHash Auth for commands with a specified cpHash Deferred
NameHash update polD, nameHash Auth for commands with a specified nameHash Deferred
CommandCode update polD, commandCode Auth for a specified command Deferred
DuplicationSelect update polD, cpHash, commandCode Auth for TPM2_Duplicate with a specified cpHash Deferred
AuthValue update polD, isAuthValueNeeded an HMAC keyed on the authValue required Deferred
Password update polD, isPasswordNeeded a password required Deferred
Locality update polD, locality Auth for commands executed at specified locality Deferred
PhysicalPresence update polD, isPPRequired physical presence required Deferred

NvWritten
update polD, checkNvWritten,

NV Index has the desired attribute for written Deferred
NvWrittenState

Signed
validate signature of param Auth bound with session (used once),

Combined
update polD, timeout specified polRef, expiration for auth

Secret
validate HMAC of param Auth bound with session (used once),

Combined
update polD, timeout specified polRef, expiration for auth

Ticket
validate tickets for specific authorization

specified cpHash, expiration for auth Combined
update polD, timeout

Authorize validate and update polD polD has been signed by a specified key Authorize
OR validate and update polD polD is in the list of digest OR

sion’s policyDigest if and only if the assertion is valid. For
a deferred command, the TPM conducts no validation but
only updates the policyDigest based on the input values and
records some parameters in the session’s context. These pa-
rameters will be checked when the session is used for autho-
rization. For a combined assertion, the TPM both validates
some conditions of the input and records some parameters
in the session’s context.

Among the AND policy assertion commands, there is a
special assertion, TPM2_PolicyAuthorize, which allows a
dynamical permission of new policies. It is an immediate
assertion, but we consider it independently. When this as-
sertion is included in a policy, it allows a designated entity
(with a signing key) to authorize a policyDigest to be in-
cluded in the policy by signing it. During the evaluation of
this assertion, a signature of the session’s current policyDi-
gest value should be provided and verified by the TPM. If
the signature is verified, the session’s current policyDigest
value is updated by the public part of the signing key as

polDnew := HASH(0 · · · 0||’Authorize’|| (pk, polR)) (2)

For OR connection, it allows a certain list of branches
for the OR policy. Each branch corresponds to one digest
value. During the evaluation of the assertion command
TPM2_PolicyOR, the TPM compares the session’s current
policyDigest value with a list of digest values provided by
the caller. If the current one is in the list, the TPM will set
the current policyDigest to zero, concatenate all the digests
in the list, and update the new policyDigest as

polDnew := HASH(0 · · · 0||’OR’||digestLists) (3)

2.2.2 An example for the EA mechanism
We will give a simple example for how the EA mechanism

works in the TPM API commands. The administrator needs
to create a signing key on the platform with a TPM. He may

require that Alice can sign with this key, but only Bob can
certify it, and further,

• Alice (with a signing key skA) can only sign with this
key five times (as measured by the NV counter);

• Bob (with a signing key skB) can only certify the key
when the platform is in a certain state (as measured
by the PCR).

First, the administrator should set an authPolicy value for
the policy. It is set by the following computation.

aP := HASH(0 · · · 0||’OR’||Z1||Z2)
Z1 := HASH(ZN ||’Signed’||PK(skA)||’Alice’)
Z2 := HASH(ZP ||’Signed’||PK(skB)||’Bob’)
ZN := HASH(ZC1||’NV’||NV C1||LT ||5)
ZP := HASH(ZC2||’PCR’||PCR1||v)
ZC1 := HASH(0 · · · 0||’CmdCode’||CC Sign)
ZC2 := HASH(0 · · · 0||’CmdCode’||CC Certify)

By calling the commands TPM2_Create(aP) → kB and
TPM2_Load(kB) → hK, the administrator creates a signing
key in the TPM. He also sets the NV counter NV C1 to 0
and requires that each use of signing with this key will cause
the counter value plus 11.

Suppose Alice wants to sign with this key. Before she uses
it, Alice should do the following steps to get the authoriza-
tion session. If any step fails, Alice cannot use the key.

1. By calling TPM2_StartAuthSession() → (hS, nt), Alice
starts a new policy session with the policyDigest initialized
to 0 · · · 0.

2. She calls the assertion command TPM2_CommandCode(hS,
CC Sign) to update the session’s commandCode to CC Sign.
The policyDigest is extended to ZC1.
1This can be done by a more complex setting of Z1, which
is described in [12](Section 4.2.2). For simplicity, we just
suppose it can be achieved here.

276

3. She triggers the command TPM2_PolicyNV(hS, NV C1,
LT , 5) to validate that the counter NV C1’s value is less
than 5. If valid, the TPM updates the policyDigest to ZN ,
which accumulates the name of the NV Index, the compar-
ison operation LT , and the operand ’5’.

4. By using Alice’s signing key, she can obtain a signature
σA = Sig(〈nt, ’Alice’〉, skA) where nt is the session’s nonce,
the text ’Alice’ is called the policy reference (polR), which is
an opaque value determined by the authorizing entity (Al-
ice). Then she calls the command TPM2_PolicySigned(hS,
σA, ’Alice’, PK(skA)) to validate the signature. If valid,
the TPM updates the policyDigest to Z1, which encapsu-
lates her public key and the signed label.

5. She calls the command TPM2_PolicyOR(hS, 〈Z1, Z2〉)
to check that the session’s current policyDigest is on the list
〈Z1, Z2〉. If valid, the TPM updates the session’s policyDi-
gest to a value equals aP .

6. Alice triggers the command TPM2_Sign(hK, hS, msg).
The TPM will check the authorization according to the input
handles. Since the session’s policyDigest matches the key’s
authPolicy value and the session’s commandCode value equals
the authorized command’s code CC Sign, the TPM executes
the command to signmsg. The TPM also incrementsNV C1
by 1.

It is similar for Bob to get the authorization for the com-
mand TPM2_Certify(), except he should use the command
code CC Certify in TPM2_CommandCode() and the assertion
command TPM2_PolicyPCR() instead of TPM2_PolicyNV().

3. MODEL OF EA IN TPM 2.0 API

3.1 An overview of the model
In this section, we will propose a model of security API

analysis in a stateful process calculus introduced in Section
2.1. This model, as a framework, is applied to the API
analysis of EA mechanism in TPM 2.0. The main process is
as follows.

Pmain := PInit; !(P1|P2| · · ·)
PInit := νk̃I ; P̄Init

Pi := in(〈′Label′i, x̃i〉); νk̃i; [lock h̃i;]P̄i;

out(〈M̃i〉)[; unlock h̃i]

This is a general model. The instantiation is in Section
3.2. Pmain is the main process of the API, in which PInit and
Pi respectively model the program of initialization and the
specific commands. Initialization of the TPM is executed
before all the other commands. The process νk̃I models the
generation of global values. P̄Init is the concrete initializa-
tion process of the TPM internal states. All the commands
Pi could be executed concurrently and repeatedly. Each
command has one input and one output. The process νk̃i

models the generation of fresh local values. The lock h̃i pro-
cess locks all the resource handles h̃i operated by the follow-
ing concrete execution processes in P̄i and decides exclusive
access to them until a process unlock h̃i. The (un)lock pro-
cesses in square brackets might be omitted according to the
two execution modes of the TPM API. There are no com-
munication and (un)lock processes in the concrete execution
process P̄i. All the unbound variables in P̄i should be bound
in the input variables x̃i. In fact, P̄i deals with the handle
maps, which are usually modeled as global states.

We will give an informal description for the threat model.
We assume the administrator creates the object and sets
its authPolicy value. The malicious user, as the adversary,
needs to gain authorization for the uses of the object and
tries to violate the policy assertions encapsulated in its auth-
Policy value. The adversary model is formalized in a classic
Dolev-Yao style. The malicious user, as the adversary, could
only receive and send messages on the public channel as well
as deduce terms. He could call all the API commands with
any parameters in his knowledge. However, the adversary
cannot touch the internal states except through the API
provided by the TPM.

By injecting the processes lock h̃i and unlock h̃i into the
command processes Pi, we establish two modes for the exe-
cution model of TPM API commands.

Mode 1, with (un)lock processes, specifies that all the
commands are called sequentially and cannot be executed
in parallel. Each command gains exclusive access to its re-
sources. This execution mode is suitable for the TPM API
implemented by a dedicated chip.

Mode 2, without (un)lock processes, models a concur-
rency based TPM API. Although TPM is originally designed
to be implemented as a dedicated chip and does not allow
concurrent execution of commands, the TPM 2.0 specifica-
tion [8] (Section 9.3, Part I) mentions another reasonable
implementation. This version of a TPM is implemented
as the code run on the host processor in a hardware-based
Trusted Execution Environments (TEEs). They provide se-
cure, integrity-protected processing environments, consist-
ing of processing, memory and storage capabilities, that
are isolated from the regular processing environment. This
mode may allow concurrent execution of commands. There
are several different schemes for achieving this mode includ-
ing System Management Mode, Trust ZoneTM, and proces-
sor virtualization. In mode 2, the security API should be
analyzed more carefully due to race conditions.

3.2 Modeling the TPM commands
In this section, we instantiate the above model to formal-

ize the TPM API commands described in Section 2.2. We
do not limit the number of sessions started by the adversary.
However, there are 109 commands in part 3 of the TPM 2.0
specifications [8] in total. EA mechanism can be applied to
Most of them. One of the most difficult problems we have
faced is the high complexity of the analysis. Thus we need
to do 3 simplifications in our model.

First, we need to simplify the object management com-
mands. We find that the policy set by the internal object’s
authPolicy is not type-specific. Thus we use a generic type
instead of any specific one. We also give out a fictional
framework of commands for the management of this type,
including 2 commands: TPM2_NewObj and TPM2_UseObj for
the creation and use of such an object. In the first com-
mand, a new authPolicy value is set for the created object.
In fact, it completes the sequential executions of the real
TPM 2.0 API commands TPM2_Create and TPM2_Load. In
the second command, a session should be provided for the
authorization and an authorization check is done. It sim-
ulates the real TPM function CheckPolicyAuthSession()

which is performed before any commands that need a policy
based authorization. We also introduce the assumption that
each session could be used for authorization only once. This

277

assumption appears to be quite reasonable since the session
is initialized after each use in the practical case.

Second, we cut off several branches for the authorization
checking logic. In the practical case, all of the session’s con-
text values should be checked before the authorized com-
mand is executed. In our model, we just check the authPol-
icy value in the command TPM2_UseObj. Instead we set the
events CmdXXX(ap, ctv) to denote the check of the con-
text value ctv but with no block if failed. Actually, we do
not care whether such a check is successful or failed in our
model. We do care the fact that in the authorized command,
the session’s context values ctv should be consistent with the
policy encapsulated in the authPolicy value ap. If it is veri-
fied, ctv could be used in a check in the practical case. More
details about this security property is described in Section
3.3. In this way, we cut off 2 checking logic branches for
each context value2.

Third, we do not model an internal clock of the TPM. The
internal clock mechanism could be modeled as a monotonic
increasing counter which is incremented every time a com-
mand is called. However, adding such a counter to our model
will increase the complexity of analyzing. Thus we omit the
time-related policy in our model, which includes the Coun-
terTimer assertion and the input parameter timeout in the
combined assertions. It does no harm to the soundness of
our model since the caller could disable time-related policy
in the practical case. For the other internal states, we take
only one NV Index and one PCR. All the results in our pa-
per could be generalized to a model with a finite number of
NV Indexes and PCRs without any extra efforts.

The signature used in our model is Σ := {H/1, zero/0,
nvh/0, pcrh/0, PK/1, Sig/2, CkSig/2} with the equation
CkSig(Sig(m, k), PK(k)) = m. Besides the digital signature
functions PK/1, Sig/2, CkSig/2 described in Example 1,
the function H/1 specifies the digest function used in PCR
extending and policy digest updating. zero/0 is the initial
value for some session’s context values. We use nvh/0 for
the handle of the NV Index and pcrh/0 for the handle of the
PCR.

Now we are able to model the main process of the EA
mechanism in the TPM API according to our model in Sec-
tion 3.1. For simplicity, we divide the commands into 3
groups of parallel processes: management of objects and ses-
sions (PO with 3 commands), management of the internal
states (PS with 2 commands), and policy assertion com-
mands (PA with 14 commands). Thus, the main process
is PTPM = PI ; !(PO |PS|PA). Note that our model includes
2 modes which respectively specify the TPM API imple-
mented in hardware and software. For simplicity, we only
give out Mode 1 with (un)lock processes. Mode 2 can be
obtained by omitting them.

The process of initialization PI is described in Table 3.
PI initializes the value of NV and PCR with zero/0. The
context of the PCR includes a monotonic counter pcrUpdate-
Counter (denoted by label ’pcrUpdC’) which is incremented
by ’one’ every time the PCR value is changed. We model
this counter as a multiset only consisting of the symbols
’zero’ and ’one’. The union operator is denoted with a plus
sign (+).
PO includes 3 commands: PO:= PNewObj | PUseObj | PStartAS.

The details are described in Table 4. PNewObj for the com-

2One is for default setting and one for failed validation

Table 3: The process of initialization
PI := insert 〈’NV’, nvh〉, zero;

insert 〈’PCRV’, pcrh〉, zero;
insert 〈’pcrUpdC’, pcrh〉, ’zero’;

mand TPM2_NewObj takes as input the authPolicy value ap,
binds it to a fresh handle, and outputs the handle. PUseObj

for the command TPM2_UseObj conducts an authorization
check for the object hObj through the policy session with
the input handle hS. Note that we omit several events
CmdXXX(ap, ctv) here since they are similar to CmdCPH.
PStartAS for the command TPM2_StartAuthSession is in-
voked to generate a new policy session and initialize the
session’s context values.
PS includes 2 commands: PS := PNV Write| PPCRExtend.

For the NV Index, the internal state is modified by PNV Write

and for PCR by PPCRExtend. Note that when the ’PCRV’
value is extended, the old counter ’pcrUpdC’ plus ’one’ makes
the new counter value. The details are given in Table 4.
PA contains 14 policy assertion commands, which includes

the assertions in Table 2 except for the CounterTimer asser-
tion, Secret assertion, and Ticket assertion. As in Table 2,
the policy assertion commands can be divided into 5 classifi-
cations: immediate, deferred, combined, assertion OR, and
assertion Authorize. For the limited space, we only present
6 commands. We present the typical one for each classifica-
tion except for the combined assertions, for which we present
two assertions. The full model including the rest assertions
are listed in the full version of this paper. Note that all the
assertion commands take as input a policy session’s handle
h and update the session’s policyDigest (labeled by ’polD’)
according to the equations (1) to (3) in Section 2.2.1. We
denote it by a hash digest of a 3-tuple. The first element is
for the old policyDigest, the second is for the label of the
assertion command, and the third is a vector of some input
parameters used in the assertion.

• The immediate assertion group includes two assertions:
NV and CounterTimer. As we have clarified before, we
omit the CounterTimer assertion. The command PNV ,
for NV assertion, takes as input a comparison value v
and validates that it matches the current NV’s context
value nv. If matched, TPM will update the ’polD’ of
the input session according to the equation (1). Note
that the immediate assertion might be misused in a
deferred manner, which is described in Section 4.

• The deferred assertion group includes 9 commands as
in Table 2. These commands just need two opera-
tions: updating the policyDigest value and modifying
some specific context values of the session. In conve-
nience we present PcpHash for the assertion CpHash as
an example. This command takes as input a value cph
that should be used to modify the session’s context
’cpHash’. This modification will be checked in the au-
thorized command PUseObj by the event CmdCPH(ap,
cph), which is described in Section 3.3. PcpHash also
updates the input session’s context ’polD’ according to
the equation (1).

• The combined assertions are composed of 4 assertions:
Signed, Secret, Ticket, and PCR. The Signed and Se-

278

Table 4: The processes of API commands
PNewObj := PUseObj :=
in(〈’NewObj’, ap〉); in(〈’UseObj’, hObj, hS〉);
ν h; lock hObj; lock hS; lock pcrh; lock nvh;
lock h; lookup 〈’AuthP’, hObj〉 as ap in
insert 〈’AuthP’, h〉, ap; lookup 〈’cpHash’, hS〉 as cph in
out(h); lookup 〈’nameHash’, hS〉 as nmh in
unlock h lookup 〈’commandCode’, hS〉 as cc in
PStartAS := lookup 〈’commandLocality’, hS〉 as Loc in
in(〈’StartAS’〉); ν h; ν nt; lookup 〈’isPPRequired’, hS〉 as PP in
lock h; lookup 〈’isAuthValueNeeded’, hS〉 as AV in
event SessionBind(nt, h) lookup 〈’isPasswordNeeded’, hS〉 as PW in
insert 〈’PolD’, h〉, zero; lookup 〈’checkNVWritten’, hS〉 as NW in
insert 〈’cpHash’, h〉, zero; lookup 〈’nvWrittenState’, hS〉 as WS in
insert 〈’nameHash’, h〉, zero; lookup 〈’NV’, nvh〉 as nv in
insert 〈’commandCode’, h〉, zero; lookup 〈’PCRV’, pcrh〉 as pcrv in
insert 〈’commandLocality’, h〉, zero; lookup 〈’pcrUpdC’, pcrh〉 as pc in
insert 〈’isPPRequired’, h〉, ’CLEAR’; lookup 〈’pcrUC’, hS〉 as pcS in
insert 〈’isAuthValueNeeded’, h〉, ’CLEAR’; lookup 〈’PolD’, hS〉 as pd in
insert 〈’isPasswordNeeded’, h〉, ’CLEAR’; unlock nvh; unlock pcrh; unlock hS; unlock hObj;
insert 〈’pcrUC’, h〉, ’zero’; if pd = ap then
insert 〈’NonceTPM’, h〉, nt; event UseObj(ap, hS);
insert 〈’checkNVWritten’, h〉, ’CLEAR’; event CmdCPH(ap, cph);
insert 〈’nvWrittenState’, h〉, zero; event CmdNV(ap, nv);
out(〈h, nt〉); event CmdPCRV(ap, pcrv, pc, pcS);
unlock h out(’Success’)
PPCRExtend := PNV Write :=
in(〈’PCRExtend’, v〉); in(〈’NVWrite’, v〉);
lock pcrh; lock nvh;
lookup 〈’PCRV’, pcrh〉 as pcrv in insert 〈’NV’, nvh〉, v;
lookup 〈’pcrUpdC’, pcrh〉 as pc in unlock nvh
event PCRExtend(pc); PNV :=
insert 〈’pcrUpdC’, pcrh〉, pc + ’one’; in(〈’PolicyNV’, h, v〉);
insert 〈’PCRV’, pcrh〉, H(〈pcrv, v〉); lock nvh; lock h;
unlock pcrh lookup 〈’NV’, nvh〉 as nv in
PPCR := lookup 〈’PolD’, h〉 as pd in
in(〈’PolicyPCR’, h, v〉); if v = nv then
lock h; lock pcrh; event Pol(’NV’, h, pd, v);
lookup 〈’PCRV’, pcrh〉 as pcrv in insert 〈’PolD’, h〉, H(〈pd, ’NV’, v〉);
lookup 〈’PolD’, h〉 as pd in unlock h; unlock nvh
if v = pcrv then PSigned :=

event Pol(’PCR’, h, pd, v); in(〈’PolicySigned’, h, sig, pk, polR〉);
insert 〈’PolD’, h〉, H(〈pd, ’PCR’, v〉); lock h;
lookup 〈’pcrUpdC’, pcrh〉 as pc in lookup 〈’PolD’, h〉 as pd in
insert 〈’pcrUC’, h〉, pc; lookup 〈’NonceTPM’, h〉 as nt in
unlock pcrh; unlock h if CkSig(sig, pk) = 〈nt, polR〉 then

else unlock pcrh; unlock h event Pol(’Signed’, h, pd, 〈pk, polR〉);
PcpHash := insert 〈’PolD’, h〉, H(〈pd, ’Signed’, 〈pk, polR〉〉);
in(〈’PolicyCpHash’, h, cph〉); unlock h
lock h; else unlock h
lookup 〈’PolD’, h〉 as pd in
event Pol(’CpHash’, h, pd, cph); POR :=
insert 〈’PolD’, h〉, H(〈pd, ’CpHash’, cph〉); in(〈’PolicyOR’, h, 〈ld, rd〉〉);
insert 〈’cpHash’, h〉, cph lock h;
unlock h; lookup 〈’PolD’, h〉 as pd in
PAuthorize if pd = ld then
in(〈’PolicyAuthorize’, h, sig, pk, polR〉); event Pol(’OR’, h, pd, 〈ld, rd〉);
lock h; insert 〈’PolD’, h〉, H(〈zero, ’OR’, 〈ld, rd〉〉);
lookup 〈’PolD’, h〉 as pd in unlock h
if CkSig(sig, pk) = 〈pd, polR〉 then else if pd = rd then

event Pol(’Authorize’, h, zero, 〈pk, polR〉); event Pol(’OR’, h, pd, 〈ld, rd〉);
insert 〈’PolD’, h〉, H(〈zero, ’Authorize’,〈pk, polR〉〉); insert 〈’PolD’, h〉, H(〈zero, ’OR’, 〈ld, rd〉〉);
unlock h unlock h

else unlock h else unlock h

279

cret assertions convey an authorization by signing a
set of parameters that indicate the nature of the au-
thorization. In the former assertion command, the sig-
nature is signed by an asymmetric signing key and in
the latter one, the signature is signed by an HMAC
key. The signed parameters include nonceTPM (nt)
for binding the authorization to the specified session,
and policy reference (polR) for an opaque value relat-
ing to the authorizing entity (An example could be
found in Section 2.2.2). These two commands both
can output an HMAC (called a ticket) which can be
used in the Ticket assertion, which functions in the
same way. Since the 3 assertion commands have sim-
ilar operations, we only present one typical command
PSigned for the Signed assertion. PSigned takes as input
a signature sig and its verification key pk (instead of
a handle for pk, in the practical case). The TPM val-
idates the signature and updates the session’s context
’polD’ according to the equation (1).

• We present the command PPCR for combined assertion
PCR. This command takes as input a digest value v
and validates that it matches the current PCR’s con-
text ’PCRV’ value pcrv. If matched, TPM will update
the ’polD’ of the input session according to the equa-
tion (1). Note that in PPCR, the session’s context
’pcrUC’ is updated by the PCR’s context ’pcrUpdC’
for a future match in the authorized command PUseObj .
This mechanism is set to defend against time-of-check
time-of-use (TOCTOU) attack.

• The assertion command TPM2_PolicyAuthorize is mod-
eled as PAuthorize. By using the input public key pk,
the TPM validates that the input value sig is a sig-
nature of the session’s current policyDigest pd and
the policy reference polR. If valid, the TPM updates
the session’s context ’polD’ according to the equation
(2). In the real TPM, the signature is verified by
another command. Successful validation produces a
TPM-specific ticket (HMAC). We merge the validation
into the assertion command since the ticket is signed
by a TPM hierarchy proof value and is unforgeable
(Section 11.4.5.3 and 14.4, Part I, specification [8]).

• The OR assertion command TPM2_PolicyOR takes as
input a digest list of at most 8 digests. In our model we
cut this number to 2 in POR, since it can be expanded
by using cascading OR assertions. The command POR

takes as input a pair of digest values 〈ld, rd〉 and checks
whether the session’s policyDigest pd matches ld or rd,
or neither. If matched, the TPM updates the session’s
context ’polD’ according to the equation (3).

In our model, the main process of the EA mechanism in
TPM API is as follows. We present the full model tran-
scripts of the two modes in [20].

PTPM := PI ; !(PO|PS |PA)
PO := PNewObj |PUseObj |PStartAS

PS := PNV Write|PPCRExtend

PA := PPCR|PNV |PSigned|PAuthorize|POR|PcpHash|
PnameHash|PcommandCode|Plocality|PPhysicalPresence|
PAuthV alue|PPassword|PDuplicationSelect|PNvWritten.

3.3 Modeling the security properties
The security properties of EA mechanism are not explic-

itly explained in the TPM 2.0 specifications, although some
hints are provided. The specification [8] (Section 19.7, Part
I) states that "Enhanced authorization is a TPM capability
that allows entity-creators or administrators to require spe-
cific tests or actions to be performed before an action can
be completed. The specific policy is encapsulated in a value
called an authPolicy that is associated with an entity". We
give out an informal description of the security properties of
EA mechanism.

1. (For required specific actions) If the TPM has ex-
ecuted the authorized command, it MUST have ex-
ecuted a sequence of policy assertion commands cor-
responding to the policy encapsulated in the object’s
authPolicy ;

2. (For required specific tests) If the TPM has executed
the authorized command, its execution environment
MUST have been tested to be consistent with the pol-
icy encapsulated in the object’s authPolicy.

3.3.1 Formalization of Property 1
The adversary model has been described in Section 3.1.

In the formalization of the first property, we have met two
challenges. The first is that there is more than one expres-
sion of the authPolicy setting for a given policy. We solve
it by transforming a given policy into a disjunctive normal
form and providing a generic way to compute the authPolicy
setting for it.

As stated in Section 2.2.1, the policy can be expressed
by the OR and AND combinations of policy assertions. We
denote by Assert(polLabel,Param) all the assertions listed
in Table 2 except for the OR assertion (which we call AND
assertions). polLabel is for the Label of the assertion and
Param for the parameters in equation (1). Although for the
AND assertions the order of execution matters, we could list
all the possible permutations and combine them by using
the OR connective. Thus a policy can be expressed in a
disjunctive normal form (DNF):

policy =
n∨

i=1

mi∧
j=1

Assert(Li,j, pmi,j). (4)

Given the policy, we provide a generic way to set the cor-
responding authPolicy value ap.

For n = 1, (1 ≤ j ≤ m1)

ap := H(〈ap1,1, L1,1, pm1,1〉)
ap1,j := H(〈ap1,j+1, L1,j , pm1,j〉)

ap1,m1+1 := zero

As we have stated in Section 2.2.1, ap encodes the unique
branch for AND assertions by linking ap1,j to ap1,j+1. Note
that in each branch, the test order is from j = m1 to 1.

For n ≥ 2, (0 ≤ k ≤ n− 2, 1 ≤ i ≤ n, 1 ≤ j ≤ mi)

ap := rd0

rdk := H(〈zero, ’OR’, 〈ldk+1, rdk+1〉〉)
rdn−1 := ldn

ldi := H(〈api,1, Li,1, pmi,1〉)
api,j := H(〈api,j+1, Li,j , pmi,j〉)

api,mi+1 := zero

280

Each ldi encodes the i-th branch by linking api,j to api,j+1.
Each rdk encodes the remained disjunctive formula from i =
k + 1 to n. The OR assertion connects ldi with rdi.

With the expression of the specific authPolicy values for
any given policies in (4), we can formalize Property 1. Each
assertion in the policy should be preceded by one execution
of the policy assertion command, which is denoted by the
event Pol.
Property 1(SpecAct). For the authPolicy value ap corre-
sponding to any given policies in a disjunctive normal form
(4), it should have Tr(PTPM) |=∀ φ, where ti,0 = t0 for
1 ≤ i ≤ n and

φ := ∀hS , t0.UseObj(ap, hS)@t0 ⇒
n∨

i=1

mi∧
j=1

(∃ti,j .Pol(Li,j , hS, api,j+1, pmi,j)@ti,j ∧ ti,j < ti,j−1) .

Example 3. In Section 2.2.2, we give a simple example of
the EA mechanism. Its policy in disjunctive normal form is
as follows. Due to the simplification in our model, we omit
some parameters in the ’NV’ and ’PCR’ assertions(

Assert(’Signed’, 〈PK(skA), ’Alice’〉)∧
Assert(’NV’, 5) ∧Assert(’CmdCode’,CC Sign)

)
∨(

Assert(’Signed’, 〈PK(skB), ’Bob’〉)∧
Assert(’PCR’, v) ∧Assert(’CmdCode’,CC Certify)

)

The trace formula to be verified is as follows.

φ := ∀hS, t0.UseObj(aP, hS)@t0 ⇒⎛
⎜⎜⎝

∃t11, t12, t13.t13 < t12 ∧ t12 < t11 ∧ t11 < t0∧
Pol(’Signed’, hS , ZN , 〈PK(skA), ’Alice’〉)@t11∧
Pol(’NV’, hS, ZC1, 5)@t12∧
Pol(’CmdCode’, hS , zero,CC Sign)@t13

⎞
⎟⎟⎠∨

⎛
⎜⎜⎝

∃t21, t22, t23.t23 < t22 ∧ t22 < t21 ∧ t21 < t0∧
Pol(’Signed’, hS , ZP , 〈PK(skB), ’Bob’〉)@t21∧
Pol(’PCR’, hS, ZC2, v)@t22∧
Pol(’CmdCode’, hS , zero,CC Certify)@t23

⎞
⎟⎟⎠

The second challenge we have met is that the universal
quantifier over the authPolicy value makes it difficult to ver-
ify Property 1. In fact, the number of branches n and the
length of digest chain mi is unbounded. We solve this prob-
lem by using the linking of digest chain in the event and
divides the whole proof into a chain of pieces. If we can
prove the fact that every piece of the chain is true and can
be reused, then we could give out a whole proof for Property
1. We achieve this goal by providing 2 lemmas.
Lemma 1(CorUsePol). Tr(PTPM) |=∀ φ1, where

φ1 := ∀hS , pd,L, pm, t0.
UseObj(H(〈pd,L, pm〉), hS)@t0 ⇒
(∃t1.L �= ’OR’ ∧ Pol(L, hS , pd, pm)@t1 ∧ t1 < t0)∨(∃ld, rd, t2.L = ’OR’ ∧ pd = zero ∧ pm = 〈ld, rd〉∧

Pol(L, hS , ld, pm)@t2 ∧ t2 < t0

)
∨(∃ld, rd, t3.L = ’OR’ ∧ pd = zero ∧ pm = 〈ld, rd〉∧

Pol(L, hS , rd, pm)@t3 ∧ t3 < t0

)
.

Lemma 1 states that any execution of the event UseObj
with ap = H(〈pd,L, pm〉) and hS should be preceded by the
execution of the event Pol with the same payload L, hS, pd,
and pm. There are 3 branches. For the case that L �=’OR’,
it is an AND assertion with the old policyDigest in the event
Pol equals pd. For the other two cases that L =’OR’, the
policyDigest pd in the event UseObj should be zero but the
old policyDigest in the event Pol should be either ld or rd
in the digest list pm.

Lemma 2(CorPol1Pol2). Tr(PTPM) |=∀ φ2, where

φ2 := ∀L1, pm1, L2, pm2, pd, hS , t0.
Pol(L1, hS ,H(〈pd, L2, pm2〉), pm1)@t0 ⇒
(∃t1.L �= ’OR’ ∧ Pol(L2, hS , pd, pm2)@t1 ∧ t1 < t0)∨(∃ld, rd, t2.L2 = ’OR’ ∧ pd = zero ∧ pm2 = 〈ld, rd〉∧

Pol(’OR’, hS , ld, pm2)@t2 ∧ t2 < t0

)
∨(∃ld, rd, t3.L2 = ’OR’ ∧ pd = zero ∧ pm2 = 〈ld, rd〉∧

Pol(’OR’, hS , rd, pm2)@t3 ∧ t3 < t0

)
.

Lemma 2 states that any execution of the event Pol with
the policyDigest polD = H(〈pd,L2, pm2〉) should be pre-
ceded by the execution of another event Pol with the pay-
loads encapsulated in polD and the same policy session han-
dle hS . As in the lemma CorUsePol, we should differentiate
3 branches of L2.

(Proof sketch of Property 1.) If Lemma 1 and Lemma
2 are both verified, we can prove Property 1. In the follow-
ing, we give a sketch. The formal proof could be found in
the full version of this paper. Given an authPolicy value ap,
by lemma 1, the event UseObj(ap, hS) should be preceded
by the execution of an event Pol according to the end part
of the digest chain ap. There might be three cases. For case
1, the end part is an AND assertion. Then the number of
branches n is one. By using the inductive method, it is triv-
ial to give out the proof by lemma 2 (for only one branch).
If the end part is an OR assertion, then we will go into the
left part case, which is similar to case 1, and the right part
case, which can be proved by lemma 2 through the induction
method. The conclusion of φ in Property 1 can be achieved
by omitting all the events Pol labeled with the OR assertion
in the proof we have obtained.

3.3.2 Formalization of Property 2
The second property requires specific tests before the exe-

cution of the authorized command. The assertions are clas-
sified into 5 groups as in Table 2, which are managed sep-
arately. By TPM design, the tests for the immediate NV
assertion and the OR assertion are performed in their re-
spective policy assertion commands (in an immediate man-
ner). We have stated that in Property 1, the use of object
should be preceded by the execution of the corresponding
policy assertion commands, which have performed the im-
mediate assertion tests. Thus we do not need to consider
these two assertions. For the deferred assertions, we use
the CpHash assertion as a standard. The verification of the
other deferred assertions such as NameHash and Command-
Code are similar to that of the CpHash assertion. It is trivial
to extend the analysis results. Thus we only focus on the
CpHash assertion. In the following, we give out Lemma 3 to
Lemma 6 respectively for the Authorize assertion, the com-
bined Signed assertion, the deferred CpHash assertion, and
the PCR assertion.
Lemma 3(PolAuth). Tr(PTPM) |=∀ φ3, where

φ3 := ∀hS , sk, polR, t0.
Pol(’Authorize’, hS , zero, 〈PK(sk), polR〉)@t0 ⇒
(∃pd, t1.K(Sig(〈pd, polR〉, sk))@t1 ∧ t1 < t0)

Lemma 4(PolSigned). Tr(PTPM) |=∀ φ4, where

φ4 := ∀hS , sk, pd, polR, t0.
Pol(’Signed’, hS , pd, 〈PK(sk), polR〉)@t0 ⇒(∃nt, t1, t2.K(Sig(〈nt, polR〉, sk))@t1 ∧ t1 < t0∧

SessionBind(nt, hS)@t2 ∧ t2 < t0

)

281

Lemma 3 and Lemma 4 respectively states that in order
to successfully execute the Authorize and Signed assertion
commands, the attacker should know the signature of some
specific payloads (pd and polR for ’Authorize’; nt and polR
for ’Signed’). Note that for the Signed assertion, the signed
nt should be bound with the policy session hS .
Lemma 5(PolCpHash). Tr(PTPM) |=∀ φ5, where

φ5 := ∀pd, ch1, ch2, t.
CmdCPH(H(〈pd, ’CpHash’, ch1〉), ch2)@t⇒ (ch1 = ch2)

Lemma 6(PolPCR). Tr(PTPM) |=∀ φ6, where

φ6 := ∀pd, pc, pcrv1, pcrv2, t.
CmdPCRV(H(〈pd, ’PCR’, pcrv1〉), pcrv2, pc, pc)@t
⇒ (pcrv1 = pcrv2)

Lemma 5 states that in the authorized command, the
session’s context value should be consistent with the pol-
icy set in the object’s authPolicy. This lemma is for the
CpHash assertion. As stated in Section 3.2, we use the
event CmdCPH(ap, ch) to denote the check of the context
value ch with no block if failed. Thus the verification of
Lemma 5 means that the session’s context ch2 equals ch1

set in ap and can be used in a check in the practical case.
Lemma 6 is similar. It means that when TPM executes
the authorized command, the PCR should have the desired
value specified in the object’s authPolicy. In this lemma, the
session’s context ’pcrUC’ equals the PCR’s current counter
’pcrUpdC’ to force a match of the PCR value. This is
equivalent to the case that the command PUseObj only exe-
cutes the event CmdPCRV after checking that ’pcrUC’ and
’pcrUpdC’ match. Note that the repetition of the same as-
sertion commands can replace the previous policy settings.
Thus in Lemma 5 and Lemma 6, we assume that the end
part of ap is respectively the CpHash and PCR assertion.

With lemma 3 to 6, we could give out Property 2 for the
TPM 2.0 EA mechanism.
Property 2(SpecTest). Tr(PTPM) |=∀ φ3 ∧ φ4 ∧ φ5 ∧ φ6.

Property 1 and 2 are two security properties stated by the
design of TPM 2.0 specifications. However, we find that the
administrator is likely to misuse the immediate NV assertion
in a deferred manner. Thus we propose Lemma 7 to analyze
this case.
Lemma 7(CmdNV). Tr(PTPM) |=∀ φ7, where

φ7 := ∀pd, nv1, nv2, t.
CmdNV(H(〈pd, ’NV’, nv1〉), nv2)@t⇒ (nv1 = nv2)

It is similar to lemma 6. nv1 is the desired NV value set in
authPolicy. nv2 is the NV Index value at the authorization
decision moment. If lemma 7 is falsified, which means nv1 �=
nv2, then there exists an attack on the misuse case.

4. ANALYSIS RESULTS OF EA
In this section, we conduct an experiment to analyze the

security properties of the EA mechanism in the TPM 2.0.
Using the tool SAPIC [9], our model of the EA mechanism
in Section 3.2 could be translated into the script of rewriting
systems, that can be automatically analyzed by the tamarin
prover [11]. The script contains 267 multiset rewriting rules
and axioms for Mode 1 and 213 rules for Mode 2. We choose
the tamarin prover as the analyzer since it supports an in-
teractive mode with a GUI which allows to manually guide
the tool in its proof. The analyzing results are summarized

in Table 5. The running times on PC with Intel Core(TM)2
Quad 2.66GHz and 4GB RAM are less than 2 minutes. All
the formal proof transcripts presented in this section can be
found in [20]. They can be automatically verified by the
tamarin-prover.

4.1 Results for Mode 1
For mode 1, the lemmas 1 to 6 have been verified. Among

them, the lemmas PolCpHash and PolPCR are verified man-
ually by using the interactive mode of the tamarin prover.
By proving Property 1 and 2, we have achieved a formal ver-
ification of the EA mechanism in TPM 2.0 design. However,
as we have mentioned in Section 3.3, the administrator of
the TPM may misuse the NV assertion in a deferred man-
ner. In this case, we have proved that the lemma CmdNV
is falsified. We have found a TOCTOU attack in this case.

We present a sketch for the interaction in the proof of
the lemmas PolPCR and PolCpHash. In the verification of
the lemma PolPCR, we introduce an auxiliary formula ψ
and verify the lemma Counter that Tr(PTPM) |=∀ ψ by
using the inductive method. It states that the PCR counter
’pcrUpdC’ is monotonically increasing, where
Lemma 8(Counter). Tr(PTPM) |=∀ ψ, where

ψ := ∀c1, c2, t1, t2.PCRExtend(c1)@t1 ∧ PCRExtend(c2)@t2
⇒ ((t1 < t2 ∧ ∃z.c1 + z = c2) ∨ (t2 < t1) ∨ (t1 = t2)).

With the lemma Counter, we can prove the lemma PolPCR
step by step. The tamarin prover transfers the formula
p ⇒ c to a constraint system p ∧ not(c), thus we get the
condition pcrv1 �= pcrv2 and try to find a contradiction.
ap = H(〈pd, ’PCR’, pcrv1〉) means that the event CmdPCRV
should be preceded by a PCR assertion command, in which
the TPM checks the ’PCRV’ of pcrh as pcrv1 and inserts the
session’s ’pcrUC’ (by lock) with the value pc. This context
of pcrh should be inserted by a command PPCRExtend or by
initialization PI . Since the current ’pcrUpdC’ of pcrh has
the same value pc but the current ’PCRV’ of pcrh has a dif-
ferent value pcrv2, this context of pcrh should be inserted
by another PPCRExtend command. We could find a con-
tradiction with the lemma Counter by selecting these two
PPCRExtend commands. For the lemma CmdCPH, it could
be easily verified by selecting the two commands PcpHash

which respectively insert the session’s ’polD’ and ’cpHash’
since ch1 �= ch2.

TOCTOU attack. For the immediate NV assertion, the
time of check is at the assertion command TPM2_PolicyNV

but the time of authorization decision is at the authorized
command TPM2_UseObj. It is possible for the adversary to
cause the NV value to change between these two commands,
which might lead to an attack if the administrator does not
expect its happening.

We present an attack of the policy setting in [12] (Section
4.2.2). Their scheme binds the PIN value to multiple keys
stored on personal device and uses the policy NV assertion to
restrict the number of PIN attempts to 3. The policy for the
key authorization is policy = Assert(’Secret’,PIN handle)∧

2∨
n=0

{Assert(’NV’, n+1)∧Assert(’NV’, n)}. It can be rewrit-

ten in DNF: policy =
2∨

n=0

{Assert(’Secret’,PIN handle) ∧
Assert(’NV’, n+1)∧Assert(’NV’, n)}. n is the current NV
counter value and the initial value is 0. Since the order of
verification of policy is reversed in each OR branch. To ver-

282

Table 5: Results of analyzing

Lemmas Property
Mode 1 Mode 2

Results Automated Run Results Automated Run
CorUsePol

Prop.1
verified yes (257 steps) verified yes (257 steps)

CorPol1Pol2 verified yes (615 steps) verified yes (549 steps)
PolAuth

Prop.2

verified yes (4 steps) verified yes (4 steps)
PolSigned verified yes (6 steps) verified yes (6 steps)
PolCpHash verified no (200 selections) falsified no (36 selections)
PolPCR verified no (352 selections) falsified no (59 selections)
CmdNV misuse falsified no (83 selections) falsified no (37 selections)

ify the policy setting, the user invokes the first NV assertion
command to check its value matches n, increments the NV
counter by one, and again invokes the second NV assertion
command with n+ 1. Then the user attempts to enter and
verify the PIN value by using the Secret assertion. In this
assertion, the PIN handle (associated with the PIN value as
its authorization value) is extended into the session’s policy
digest only if an hmac keyed on the PIN value is inputted
into the TPM by the user. At last, the user invokes the OR
assertion command, which only accepts the successful veri-
fication of PIN value within 3 attempts. It is supposed to
restrict the number of authorizations.

However, a malicious user can double this number by using
one more policy session. Suppose that the personal device
is stolen by a malicious user who does not know the PIN
value. He attempts to guess the low-entropy PIN value by
brute force. Suppose that the user starts 2 sessions S1 and
S2, he can use S1 to invoke the first NV assertion command
with n = 0 and sequentially use S2 still with n = 0. Then
he increments the NV counter by one, and sequentially uses
S1 and S2 to invoke the second NV assertion command with
n + 1 = 1. Now he can use S1 and S2 to invoke the Secret
assertion command to try 2 PIN candidates since the 2 ses-
sions both have the same policy digest. Now the malicious
user achieves 2 attempts but only increments the counter by
1. With n = 1 and n = 2, the user can double the number
of attempts by the same way.

To avoid the misuse, the administrator should be cautious
when using the immediate assertions. For the NV assertion,
we suggest the current specifications change it to a deferred
assertion just like the PCR assertion and add a NVUpdate-
Counter which acts a similar role as pcrUpdateCounter. For
[12] based on current specification, we suggest the adminis-
trator uses the TPM 2.0 dictionary attack (DA) protection
mechanism (Section 19.11, Part I, specification [8]) that pro-
vides protection against guessing or exhaustive searches of
authorization values stored within the TPM.

4.2 Results for Mode 2
For mode 2, lemmas 1 to 4 are all verified. Lemma CmdNV

is falsified due to the same attack in Mode 1. Lemmas Pol-
CpHash and PolPCR are falsified due to the race conditions.
The race conditions are only possible when the API com-
mands can be executed in parallel. The two race conditions
may lead to theoretical attacks in mode 2.

Race-condition-1. For the lemma PolCpHash, we find
that the order of modifying session’s context in the deferred
assertion commands causes race conditions. Note that in all
of these commands, the TPM modifies the session’s policy-

Digest before it modifies the other context values. If the
adversary can simultaneously invoke the deferred assertion
command TPM2_PolicyCpHash and the authorized command
TPM2_UseObj with the same session handle, then it is possi-
ble for the TPM to firstly update the session’s policyDigest
in the assertion command, and secondly conduct the auth-
Policy check in the authorized command before the assertion
command modifies the session’s context values. In this way,
the adversary has a chance to bypass the deferred assertion
checks since the context values are not modified.

Race-condition-2. For the lemma PolPCR, we find that
the time difference in the command TPM2_PolicyPCR be-
tween the check of PCR value and the modification of the
session’s context pcrUC causes the race condition. Note
that in this command, the TPM checks the PCR value be-
fore it copies the PCR’s counter pcrUpdC into the session’s
context pcrUC for a future match. If the adversary can
simultaneously invoke the commands TPM2_PCRExtend and
TPM_PolicyPCR, then it is possible for the TPM to firstly
check the PCR value, secondly change the PCR’s value and
counter in the extending command, and thirdly modify the
session’s context. In this way, the adversary has a chance to
bypass the defence of the TOCTOU attack.

Although the probability of making a successful attack
might be very small, we suggest to disable the execution
mode 2. The TPM specification gives manufactures some
leeway in its implementation. Our results of formal analysis
show that the TPM resources should be locked when used
to prevent the race conditions. It is easy to be achieved by
using an I/O buffer and only allowing the execution of the
next command when the last command returns a result.

5. CONCLUSION
In this paper, we have conducted a formal verification and

analysis of the enhanced authorization (EA) mechanism in
the TPM 2.0 API. We have proposed a model of security
API analysis in process calculus with global states. We have
identified and formalized the two security properties of EA
mechanism in its design. Using SAPIC tool and tamarin
prover, we have verified both the two security properties and
discovered 3 misuse cases in the present EA mechanism.

As future work, we foresee extending our model with more
TPM API commands such as those involved in attestation
and platform integrity measurement. We also plan to im-
prove and apply our formal verification results to the secu-
rity analysis of more EA-based applications in Trusted Net-
work Connection (TNC), digital rights management (DRM),
Bring Your Own Device (BYOD), etc. We expect to do
some improvements on our model when dealing with coun-

283

ters. Since at present it cannot be verified by the prover
automatically.

Acknowledgments
We would like to thank all the anonymous reviewers who
have reviewed our work and have provided us with valu-
able feedbacks. The research presented in this paper is sup-
ported by the National Basic Research Program of China
(No. 2013CB338003) and National Natural Science Foun-
dation of China (No. 91118006, No.61202414).

6. REFERENCES
[1] Trusted Computing Group. TPM Specification version

1.2. Parts 1–3, revision.
http://www.trustedcomputinggroup.org/resources/
tpm main specification.

[2] ISO/IEC PAS DIS 11889: Information technology
–Security techniques – Trusted Platform Module.

[3] D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga.
Replay attack in TCG specification and solution. In
Proceedings of ACSAC 2005, volume 10, pages
127–137, Tucson, AZ (USA), December 2005. ACSAC,
IEEE Computer Society.

[4] L. Chen and M. Ryan. Attack, solution and
verification for shared authorisation data in TCG
TPM. In P. Degano and J. Guttman, editors, Formal
Aspects in Security and Trust, volume 5983 of Lecture
Notes in Computer Science, pages 201–216. Springer
Berlin Heidelberg, 2010.

[5] L. Chen and M. Ryan. Offline dictionary attack on tcg
tpm weak authorisation data, and solution. In
D. Gawrock, H. Reimer, A.-R. Sadeghi, and C. Vishik,
editors, Future of Trust in Computing, pages 193–196.
Vieweg Teubner, 2009.

[6] S. Delaune, S. Kremer, M. Ryan, and G. Steel. A
formal analysis of authentication in the TPM. In
P. Degano, S. Etalle, and J. Guttman, editors, Formal
Aspects of Security and Trust, volume 6561 of Lecture
Notes in Computer Science, pages 111–125. Springer
Berlin Heidelberg, 2011.

[7] S. Gurgens, C. Rudolph, D. Scheuermann, M. Atts,
and R. Plaga. Security evaluation of scenarios based
on the TCG’s TPM specification. In J. Biskup and
J. Ĺlőpez, editors, Computer Security–ESORICS 2007,
volume 4734 of Lecture Notes in Computer Science,
pages 438–453. Springer Berlin Heidelberg, 2007.

[8] Trusted Computing Group. TPM Specification version
2.0. Parts 1–4, revision.
http://www.trustedcomputinggroup.org/resources/
tpm main specification.

[9] S. Kremer and R. Künnemann. Automated analysis of
security protocols with global state. IEEE Symposium
on Security and Privacy, 2014.
http://sapic.gforge.inria.fr/.

[10] M. Arapinis, E. Ritter, and M. Ryan. Statverif:
Verification of stateful processes. In Computer
Security Foundations Symposium (CSF), 2011 IEEE
24th, pages 33–47, June 2011.

[11] B. Schmidt, S. Meier, C. Cremers, and D. Basin.
Automated analysis of diffie-hellman protocols and
advanced security properties. In Computer Security

Foundations Symposium (CSF), 2012 IEEE 25th,
pages 78–94, June 2012.

[12] T. Nyman, J.E. Ekberg, N. Asokan. Citizen Electronic
Identities using TPM 2.0. Trustworthy Embedded
Devices 2014. http://arxiv.org/abs/1409.1023.

[13] L. Chen and J. Li. Flexible and scalable digital
signatures in tpm 2.0. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer and
Communications Security, CCS ’13, pages 37–48, New
York, NY, USA, 2013. ACM.

[14] L. Xi. DAA-related APIs in TPM 2.0 Revisited.
Cryptology ePrint Archive, 2014.
https://eprint.iacr.org/2014/052.

[15] J. Shao, D. Feng, and Y. Qin. Type-based analysis of
protected storage in the tpm. In S. Qing, J. Zhou, and
D. Liu, editors, Information and Communications
Security, volume 8233 of Lecture Notes in Computer
Science, pages 135–150. Springer International
Publishing, 2013.

[16] W. Wang, Y. Qin, and D. Feng. Automated proof for
authorization protocols of tpm 2.0 in computational
model. In X. Huang and J. Zhou, editors, Information
Security Practice and Experience, volume 8434 of
Lecture Notes in Computer Science, pages 144–158.
Springer International Publishing, 2014.

[17] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A
logic of secure systems and its application to trusted
computing. In Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy, SP ’09, pages
221–236, Washington, DC, USA, 2009. IEEE
Computer Society.

[18] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel.
Formal analysis of protocols based on tpm state
registers. In Proceedings of the 2011 IEEE 24th
Computer Security Foundations Symposium, CSF ’11,
pages 66–80, Washington, DC, USA, 2011. IEEE
Computer Society.

[19] B. Blanchet. An efficient cryptographic protocol
verifier based on prolog rules. In Proceedings of the
14th IEEE Workshop on Computer Security
Foundations, CSFW ’01, pages 82–, Washington, DC,
USA, 2001. IEEE Computer Society.

[20] TPM2-EA-formal-verification.
https://github.com/sjxzmc/TPM2-EA-formal-
verification/

284

