
Verifiable Searchable Symmetric Encryption from
Indistinguishability Obfuscation

Rong Cheng
School of Electronic and

Communication Engineering,
Shenzhen Polytechnic

Jingbo Yan
Dept. of CSE,

University at Buffalo, SUNY

Chaowen Guan
Dept. of CSE,

University at Buffalo, SUNY

Fangguo Zhang
∗

School of Information Science
and Technology,

Sun Yat-sen University
isszhfg@mail.sysu.edu.cn

Kui Ren
Dept. of CSE,

University at Buffalo, SUNY

ABSTRACT
Searchable symmetric encryption(SSE) allows a client to en-
crypt his data in such a manner that the data can be effi-
ciently searched. SSE has practical application in cloud stor-
age, where a client outsources his encrypted data to a cloud
server while maintaining the searchable ability over his da-
ta. Most of the current SSE schemes assume that the cloud
server is honest-but-curious. However, the cloud may active-
ly cheat on the search process to keep its cost low. In this
paper, we focus on the malicious cloud model and propose
a new verifiable searchable symmetric encryption scheme.
Our scheme is built on the secure indistinguishability obfus-
cation (iO) and can be considered as the first step to apply
iO in the SSE field. Moreover, our scheme can be easily ex-
tended to multiple functionalities, such as conjunctive and
boolean queries. Furthermore, it can be extended to realize
a publicly verifiable SSE. Thorough analysis shows that our
scheme is secure and achieves a better performance.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection

General Terms
Security, Privacy

Keywords
Searchable symmetric encryption, indistinguishability ob-
fuscation, cloud storage, malicious server

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’15, April 14–17, 2015, Singapore..
Copyright c⃝ 2015 ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714623.

1. INTRODUCTION
With the developments of cloud computing, more and

more individuals or IT enterprises are willing to outsource
their data to the cloud server. As people’s awareness of pri-
vacy concern is increasing, sensitive data has to be encrypted
before being outsourced to the cloud. Confidentiality of the
data is guaranteed by the security of symmetric or public
encryption schemes. Unfortunately, this process inevitably
raises the problem that the cloud cannot do any effective
computations on the encrypted data, specially, making it d-
ifficult to implement search on the stored data. Thus how to
enable an effective searchable functionality on the encrypt-
ed data becomes one of the most significant issues and has
attracted much research attention [1].

Fully homomorphic encryption [2] or oblivious RAMs [3]
are very powerful tools and can be adopted to realize an ide-
ally secure method to search on the encrypted data. Howev-
er, they are far too inefficient for practical use. Searchable
encryption was first proposed by Song et al. in [4]. Gen-
erally, they can be divided into two categories, searchable
symmetric encryption (SSE) and public key encryption with
keyword search (PEKS). However, PEKS is still not efficient
due to the complex operation of public key encryption, es-
pecially for a large-scale database. Therefore, we will focus
on how to construct a secure and efficient SSE.

Since the initial SSE approach by Song et al. [4], there
have been a lot of researches emerging to enhance the SSE.
In functionality, a lot of works[5, 6, 7, 8, 9] are proposed
to fulfill conjunctive search, dynamic search, ranked search,
fuzzy search and boolean queries, et al. Moreover, in the
security models of most existing SSE constructions, servers
are assumed to be honest-but-curious. They will honestly
execute the search protocol and only attempt to infer the
sensitive information about the clients. However, in real
world, this is not always the case. If a server does not hon-
estly execute the search operation, we call it a malicious
server. In [10], Chai et al. considered a semi-honest-but-
curious cloud servers, which execute only a fraction of search
operations honestly and return a fraction of correct search
outcome. In [11], Kurosawa et al. first studied the secu-
rity model where the server is malicious. They proposed a
verifiable searchable symmetric encryption scheme, in which

621

they use the message authenticate code (MAC) to protec-
t the reliability of the searching results. Their scheme is
proved secure in the universally composable security frame-
work, i.e. UC-secure. However their verifiable SSE requires
a search time linear in the number of data files.
To our delight, we find a very powerful cryptographic

primitive named indistinguishability obfuscation (iO), which
can be used to build verifiable SSE scheme. Barak et al.
[12] proposed the concept Indistinguishability Obfuscation
which requires that obfuscations of any two equal-size pro-
grams that compute the same function are computationally
indistinguishable.
The iO becomes so important because recently there is

a breakthrough result of Garg et al. [13] that puts forward
the first candidate construction for an efficient iO for gen-
eral boolean circuits. Many surprising applications in cryp-
tographic field were proposed such as multi-party key ex-
change [14], deniable encryption [15], short signature with
fast signing [16], full domain Hash [17], etc. This fascinating
achievement provides the possibility for us to adopt iO in
our approach.
Our Work. In this paper we pioneer the idea of adopting
indistinguishability obfuscation (iO) to design a new SSE
scheme. Our iO-based SSE scheme can have various search-
ing functionalities embedded into the obfuscation circuit so
that it can meet flexible searching requirements. Moreover,
it can be extended to realize public verifiability on the re-
sults returned by the malicious server.
The remainder of this paper is organized as follows. In

section 2, we briefly introduce the tools used in our construc-
tion. Then we give the system model and security definition
in section 3. In section 4, we describe the detailed construc-
tion of our SSE scheme and its extensions to multiple search
functionalities and public verifiability. Then we give out the
analysis for our construction in section 5. Lastly we give the
conclusion in section 6.

2. PRELIMINARIES
In this part we will simply explain the cryptographic tools

used in our construction: indistinguishability obfuscation
and constrained pseudorandom functions.
Indistinguishability Obfuscation. The definition of in-
distinguishability obfuscation (iO) was first proposed by
Barak et al. [12]. Informally, the requirement for the indis-
tinguishability obfuscation is that for two programs with the
same functionality, after the obfuscation, they will be com-
putationally indistinguishable with each other. In Crypto
2013, the breakthrough result of Garg et al.[13] proposed
the first efficient indistinguishability obfuscation for general
polynomial circuits. All the polynomial circuits can be se-
curely obfuscated. The detailed definition of indistinguisha-
bility obfuscation can be referred to [13].
Constrained Pseudorandom Functions. Constrained
PRF is a pseudorandom function (PRF) which is only de-
fined on a subset of the usual input space. There are many
constructions for simple types of constrained PRFs[18, 19,
20]. In our construction, we use a punctured PRF which is a
constrained PRF that can be constrained on the complement
of any polynomial size set G ⊆ X . Following Boneh and Wa-
ters [18], we define punctured pseudorandom functions as a
PRF with the following added functionality: PRF.Puncture(G)
for subset G ⊆ X outputs an efficient program for the func-
tion:

PRF Ḡ(x) =

{
PRF (x), if x /∈ G;
⊥, if x ∈ G.

3. SECURITY MODEL
The definition of our iO-based SSE is as follows.

Definition 1. (iO-based Searchable Symmetric Encryption).
A iO-based SSE scheme is a tuple of six polynomial-time al-
gorithms Π = (Gen,Enc, Token, Search, V erify,Dec)

• K ← Gen(1k): take the security parameter k as input
and the client outputs the secret keys K.

• (iOF , C)← Enc(K,W,F): take the secret key K, da-
ta file collection F and keywords setW as inputs, client
outputs the searching circuit iOF and ciphertext of F ;

• tw ← Token(K,w): take as inputs the secret key K
and a keyword w, client generates the corresponding
search token tw.

• (Cw,Sw,Mac)← Search(C, iOF , tw): take the search-
ing circuit iOF , the search token tw and a sequence of
encrypted files C as inputs, cloud server outputs the
searched identifiers Sw, searched files Cw and a verifi-
cation message Mac.

• Bool ← V erify(Sw, Cw,Mac,K): take the searched
identifiers Sw, searched files Cw, MAC value Mac and
secret key K as inputs, client outputs Bool, if accept,
Bool = 1; otherwise, Bool = 0.

• Qw ← Dec(K, Cw, Bool): take the secret key K, feed-
back encrypted file Cw, and Bool value as inputs, abort
if Bool = 0, else client decrypts to get the file Qw.

Correctness. We require that cloud server can output the
correct searching result with the token and the obfuscated
searching circuit.

Our privacy definition adopts the real/ideal simulation
paradigm which is popular in the recent SSE works [21, 6,
22]. We require that the adversary cannot distinguish the
real game RealΠA(k) and a simulation game IdeaΠ

A,S(k)(L is
the leakage function).

RealΠA(k): Challenger runs K ← Gen(1k) to get secret
keys K. Adversary A(1k) chooses data files F . Then chal-
lenger runs (iOF , C) ← Enc(K,W,F) and and sends iOF
and C to A. Then adversary makes polynomial number of
queries by picking different keywords wi, and the challenger
responds the respective search token twi ← Token(K,wi).
Finally, A returns a bit b that is output by the experiment.
IdeaΠ

A,S(k): Adversary A(1k) chooses data files F . Then
simulator S generates (iOF , C) ← S(L(F)) and sends iOF
and C to A. Then adversary makes polynomial number of
queries by picking different keywords wi. To respond, sim-
ulator generators respective search tokens twi ← S(L(F)).
Finally, A returns a bit b that is output by the experiment.
Verifiability. In our security model, a malicious server
may not honestly execute the search operation and return
the invalid searching results. The invalid searching results
include two cases: the malicious server forges the searching
results or deletes some of them. The verifiability requires
that the malicious server cannot generate an invalid response
which results that the Verify algorithm outputs 1.

622

4. SSE BASED ON IO
In this section, we start with the construction for the basic

single keyword search. Then we show how to easily extend
it to a conjunctive and boolean keyword. Furthermore, we
present how to use iO to realize the publicly verifiable prop-
erty for our SSE scheme.
Before presenting our construction, we analyze two triv-

ial SSE constructions using iO: (I) the obfuscated search
program takes as inputs one search token and an encryption
of the entire database; (II) the obfuscated search program
takes as inputs one keyword token and an encryption of one
file. For more explicit comparison, we use an concrete exam-
ple where a client encrypts 100 files, each of which has size
20MB (20 · 223 bits), and then uploads those corresponding
100 ciphertexts to the server, to which the client will make
keyword search request in the future. The number of valid
keywords is 1000. Let n be the number of files, λ be the size
of a file and m be the number of valid keywords.
In construction (I), the search program first decrypts the

entire database, and then checks which files have the match-
ing keyword and outputs a corresponding ciphertext of those
files. Thus, the circuit that needs to be obfuscated has size
O(poly(nλ)) = O(poly(100 · 20 · 223), where poly(x) repre-
sents a polynomial in terms of x, due to the fact that the cost
for the entire database’s decryption dominates over search-
ing’s. This will lead to a significantly larger obfuscation of
search program. In construction (II), the search program
decrypts the input file, and then checks whether this file
has the matching keyword and outputs ”yes/no”correspond-
ingly. The circuit being obfuscated has size O(poly(λ)) =
O(poly(20 · 223)). Note that it is still a huge-size circuit in
iO’s applications. Also observe that, to search for the files
associated with one keyword token provided by user, the
server needs to execute this obfuscated search program 100
times. Plus, this approach of searching over the files sepa-
rately could leak additional information, like search pattern.
While in our construction, we first generate an index table

and then apply iO. Thus, the circuit that will be obfuscated
would has size O(poly(mn)) = O(poly(1000 · 100)). Clearly,
m ≪ λ (it is very common, in real life applications, that
the number of valid keywords is much smaller than the file’s
size), which means that O(poly(mn)) ≪ O(poly(nλ)). Ad-
ditionally, O(poly(mn)) ≪ O(poly(λ)) in this case. Thus,
the size of this circuit is significantly smaller than those in
the above two trivial constructions, which results in a signif-
icantly smaller obfuscated search program. Also note that
for each keyword search request, the server just needs to
run this search program once, and this obfuscated search
program is computed only once and can be repeatedly used
in the future. As we can see, although iO is a powerful
primitive, it is not trivial to exploit it.

4.1 The Basic SSE Scheme
There are two parties involved in our construction: client

and cloud server, and the whole process can be divided into
two phases: setup and retrieval. Let k be the security pa-
rameter that will be used in Gen(·). Let E be a IND-CPA
secure symmetric encryption scheme. Let H(·, ·) be a colli-
sion resistant hash function and PRF (·, ·) be a punctured
pseudo-random function.

SETUP PHASE
In the setup phase, the client will upload the encrypted

data files along with the customized iO circuit to the cloud

server. This phase includes two algorithms, i.e. Gen,Enc.
The details of two algorithms is shown as follows.

• Gen : The client initiates the scheme by callingGen(1k)

and generates three random secret keys k1, k2, k3
R←−

{0, 1}k. k1 is used to encrypt his data files, k2 is used
to generate searching tokens and k3 is used to generate
verification messages.

• Enc : In this algorithm, the client has two main mis-
sions to accomplish. He needs to generate the iO cir-
cute that the server can excute, and encrypt his data
files. We denote his data files by DB = {(id(Fi), Fi)},
i = 1 · · ·n, here each file Fi has an location identifier
id(Fi). All the keywords contained in the files forms
the set W = (w1, w2, ..., wm).

1. First the client encrypts his database DB using his
secret key k1, that is

Ci = E .Enc(k1, Fi)∥hmac.

hmac = H(k1, id(Fi)∥E .Enc(k1, Fi))

Then the encrypted database is

EDB = {(id(Fi), Ci)}, i ∈ {1 · · ·n}.
2. The client generates the look-up table T for his

database. The look-up table is generated accord-
ing to the relationship between the keywords and
data files containing the keywords. T contains t
items Twi = (twi ,Swi), i = 1 · · ·m, where twi is
the secret token for certain keyword wi and Swi

denotes the identifiers’ set for files including wi.
Token twi is calculated by a hash function H with
the key k2, twi = H(wj , k2).

3. The client generates a searching circuit Psearch ac-
cording the look-up table generated in step 2. He
can customize Psearch in accordance with the re-
quired functionality. The procedure of the seach
circuit Psearch for single keyword is demonstrat-
ed in Algorithm 1. Then he securely obfuscate it
to get the indistinguishability obfuscation circuit
iO(Psearch).

4. Data owner sends the encrypted database EDB a-
long with the indistinguishability obfuscation cir-
cuit iO(Psearch) to the cloud server.

Algorithm 1 Search Circuit Psearch

• Constants: Secret key k3. Look-up table T .
• Inputs: searching token tw.

• Outputs:

1. For j = 1 · · · t, verify that twj

?
= tw. If yes, set

S = Sj ; if no keyword matches, abort.

2. Compute verifying hash value

Mac = PRF (S∥tw, k3).
3. Output the the searching results (S,Mac).

RETRIEVAL PHASE
In the retrieval phase, the client wants to search data files

containing certain keyword. He generates the searching to-
ken corresponding to the keyword and sends the token to
the cloud server. With the searching token, cloud server can

623

utilize the obfuscation circuit to search for the result and
generate the verification message. Then server sends back
the result to the client, the client can verify the correctness
of the searching results and decrypt the correct results to
get the files. This phase has 4 algorithms Token, Search,
Verify and Dec, which are described as follows.

• Token : Input a keyword w ∈ W, the client computes
the searching token by tw = H(w, k2) and sends it to
server;

• Search : Cloud server puts the token tw into the in-
distinguishability obfuscation circuit iO(Psearch) and
obtains the searching result (Sw,Mac). According to
identifier set Sw, it finds the corresponding items in
EDB. At last, cloud server responds to client’s search
query by (Cw,Sw,Mac).

• V erify : The client first verifies the hash value by

PRF (Sw∥tw, k3)
?
= Mac

Then if the result passes this verification, the client
still needs to make sure the identifier set Sw is correctly
mapped to the ciphertext Cw, he verifies it by:

H(k1,Si
w∥E .Enc(k1, Fi))

?
= Ciw.hmac

If both of the verifications are passed, the Bool value
will be set 1, otherwise it is 0.

• Dec : If the Bool value is 1, the client believes the
results are correct and decrypts all files in Cw by secret
key k1. That is:

Qw = E .Dec(k1, Cw).
If the Bool value is 0, the client will output fail.

Correctness. The functionality property of indistinguisha-
bility obfuscation gurantees that the search protocol will re-
turn the correct results. Besides, if the cloud server is not
honest, the security of the verification can detect the cheat-
ing behavior.

4.2 Extensions to Other Functionalities
Our SSE scheme can be easily extended to schemes which

support multiple functionalities, e.g. conjunctive queries and
boolean queries. If we treat the iO circuit as a blackbox, it
is easy to see that other parts of the basic framework is inde-
pendent with the search functionalities. The client will only
need to slightly modify the construction of the search circuit
Psearch and its corresponding iO circuit. In Psearch of orig-
inal SSE scheme which supports single keyword search, the
searched identifier set Sw can be directly gotten after a one-
round mapping over the look-up table. In order to support
for conjunctive and boolean queries, we need to add a step
to operate conjunctive or boolean function on the look-up
table T . The algorithms of conjunction keyword search and
boolean queries are shown in Algorithm 2 and 3.
Moreover, our proposed SSE scheme can be further ex-

tended to achieve the public verifiability, i.e. the ability to
securely delegate the verification to a third party. A pub-
lic verification circuit Ppv can be designed with the verifying
key embedded in. The client can generate the indistinguisha-
bility obfuscation of verification circuit iO(Ppv). Anyone
with the indistinguishability obfuscation iO(Ppv) can verify
the server’s searching results. The verification circuit Ppv is
shown in Algorithm 4.

5. ANALYSIS OF OUR SSE CONSTRUCTION
We evaluate the proposed scheme by analyzing its security

and performance in this section. First, we will show how

Algorithm 2 Search Circuit PCSearch

• Constants: Secret key k3. Look-up table T .
• Inputs: searching token twx , twy , twz .

• Outputs:

1. For j = 1 · · · t, verify that twj

?
= twx . If yes, set

Sx = Sj ; if no keyword matches, abort. Similarly,
obtain Sy and Sz.

2. Compute searched index set S = Sx ∧ Sy ∧ Sz.

3. Compute verifying hash value

Mac = PRF (S∥twx∥twy∥twz , k3).

4. Output the the searching results (S,Mac).

Algorithm 3 Search Circuit PBSearch

• Constants: Secret key k3. Look-up table T . Boolean
Function BF .

• Inputs: searching token St = {twi}, i ∈ [1, t].

• Outputs:

1. For j = 1 · · · t, verify that twj

?
= tw1 . If yes, set

S1 = Sj ; if no keyword matches, abort. Similarly,
obtain S2, S3, · · · , St.

2. Compute S = BF (S1, S2, · · · , St).

3. Compute verifying hash value

Mac = PRF (S∥tw1 · · · ∥twt , k3).

4. Output the the searching results (S,Mac).

Algorithm 4 Public Verification Circuit PPV

• Constants: Secret key (k1, k3).

• Inputs: Searching token tw, Searching result
(Sw,Mac), encrypted file set Cw.
• Outputs:

1. Verify that PRF (Sw∥tw, k3)
?
= Mac.

2. Verify that H(k1,Si
w∥E .Enc(k1, Fi))

?
= Ciw.hmac.

3. If both accept, output 1; else output 0.

the iO-based SSE meets our security guarantee defined in
section 2. Then we will give the performance analysis and
comparisons with existing verifiable SSE schemes.

5.1 Security Analysis
We define the leakage function L as follows: on input the

index table T and the set of files F , it outputs the number
of files n, number of keywords m and the size of each file; on
the input search token tw, it outputs the identifier set Sw of
the files containing keyword w. Then we have:

Theorem 1. If PRF is a secure punctured PRF, and iO
a secure indistinguishability obfuscator, then SSE construc-
tion in section 4.1 is L-secure.

Proof. We prove the security through a sequence of indis-
tinguishable games.

Game 0 This game is same to the game RealΠA(k).

624

• Challenger runs K ← Gen(1k) to get secret keys K =
(k1, k2, k3).

• Adversary A(1k) chooses data files F , then challenger
runs (iO(Psearch), C)← Enc(K,W,F) and sends
iO(Psearch) and EDB to A.

• Adversary A makes polynomial number of queries by
picking different keywords wi. Challenger responds
with twi = H(wi, k2)

• A returns a bit b that is output by the experiment.

Game 1 Let qQH be the upper bound on the number of
registered honest queries. Before the game begins, choose
qQH random values t∗i ∈ Y (H : X × K → Y). We will
use these t∗i values as the twi values to answer honest token
queries. Besides this, other steps are the same with Game 0.
As the famous leftover hash lemma [23] shows that universal
hash functions are good randomness extractors, the tokens
are indistinguishable from those in Game 0.

Game 2 Notice that with overwhelming probability, none
of the t∗i for token queries in Game 1 have a valid keyword
preimage under hash function H. Therefore, with over-
whelming probability, there is no input to Psearch that will
match any searched index set S. We construct a circuit C
that takes these tokens as input and accepts input S if and
only if the corresponding token of S is not contained in T ∗ =
(t∗1, t

∗
2, · · · , t∗qQH

), then construct the constrained function

PRFC following the definition in section 3. Also, we build a
new encrypted database EDB′ = {(id(Fi), Ci

′)}, i = 1 · · ·n
and a new look-up table T ′ from the leakage function L.
Last, replace PRF with PRFC , T with T ′ in the program
of Psearch, and then generate the program P ′

search described
in Algorithm 5. So we construct Game 2 as follows:

• Adversary A(1k) chooses data files F . Challenger gen-
erates new encrypted database EDB′ according to the
leakage function. Then it generates program P ′

search

as above and outputs indistinguishability obfuscator
iO(P ′

search). At last, challenger sends iO(P ′
search) and

EDB′ to A.

• Adversary A makes at most qQH queries by picking
different keywords wi. Challenger responds with T ∗ =
(t∗1, t

∗
2, · · · , t∗qQH

).

• A returns a bit b that is output by the experiment.

Algorithm 5 Search Circuit P ′
search

• Constants: PRFC , Look-up table T ′.

• Inputs: searching token tw.

• Outputs:

1. For j = 1 · · · t, verify that twj

?
= tw. If yes, set

S = Sj ; if no item in T ′ matches, abort.

2. Compute Mac = PRFC(S∥tw, k3).
3. Output the the searching results (S,Mac).

Observe that, with overwhelming probability, P ′
search and

Psearch have the same functionality. Thus from the se-
curity of indistinguishability obfuscator, iO(P ′

search) and
iO(Psearch) are computationally indistinguishable. There-
fore, Game 2 is indistinguishable from Game 1.

From the above sequence of games, we have that Game 0
is computationally indistinguishable from Game 2. While,
Game 0 is same to the game RealΠA(k) and Game 2 is the
same to game IdeaΠ

A,S(k) described in definition 1. Thus we
proved that the iO-based SSE scheme is L-secure.

Theorem 2. If MAC scheme is unforgeable, and iO a
secure indistinguishability obfuscator, then SSE construction
in section 4.1 satisfies verifiability.

Proof. If the malicious server forges an invalid response
which makes the V erify algorithm output 1, then we can
utilize the malicious server to forge a valid MAC value. From
the SSE construction in section 4.1, the cloud server inputs
the searching token to the obfuscator iO(Psearch) and ob-
tains the outputs (S,Mac). The verification value Mac can
be verified by using the client’s secret key k3. So if a mali-
cious cloud server does not honestly search by the obfuscator
and return the wrong results, then the MAC verification will
not succeed. Because as long as the cloud server does not
know the secret key k3, it cannot forge a valid pair {S,Mac}
to deceive the client. Similarly, the server cannot construc-
t a valid mapping for identifier and non-corresponding en-
crypted files without key k1. By this method, the client can
detect the cloud server’s malicious actions. For more details
about the security proof of the MAC authentication scheme,
readers are referred to [11].

5.2 Performance and Functionality
In this section, we will give a performance analysis of our

basic theoretical iO-based scheme and compare them with
existing works.

For the client, like other prior works, it needs a preprocess
in the Enc phase. It will encrypt all the data files first and
generate an obfuscated searching circuit. Although the pre-
computation time is not ideally small, we want to emphasize
that it is a one-time effort which can be amortized to plenty
of following queries. Compared to client’s pre-computation,
we would rather to focus on the computation and communi-
cation overheads in the Search phase, which can affect user
experience more due to the high frequency.

Table 1 shows a comparison between our iO-based SSE
and other related works. We use n to denote the number
of total files stored in the server, m, the number of all key-
words and r, the number of the retrieving files for a certain
keyword. As shown in the table, Kamara et al. [22] pro-
vides the fastest search time so far because it benefits from
a parallel search (p means the number of parallel processors)
method. However, it does not support verifiability. Kuro-
sawa et al. [11] has proposed the first verifiable SSE scheme
against malicious server. The computation and communi-
cation overhead of their search phase is proportional to n.
Their following work [24] adds a dynamic property but still
does not improve the efficiency.

6. CONCLUSIONS
In this paper, we proposed a secure searchable symmetric

encryption scheme based on indistinguishability obfuscation
as an initial attempt. Our scheme considers a threat model
with a malicious cloud server and provides verifiability a-
gainst the server. We first present a basic scheme supporting
single keyword query, and then extend it to multiple search
functionalities such as conjunctive and boolean queries. Fur-
ther more, our scheme can be extended to support public
verifiability. The security of our SSE scheme is guaranteed

625

Computation Communication Verifiability Against Malicious Against Malicious
(Search) (Search) Server Client

KO12[11] O(n) O(r) YES YES NO
KP13[22] O((rlogn)/p) O(1) NO NO NO
KO13[24] O(n) O(n) YES YES NO
CG12[10] O(m) O(r) YES NO NO
Our Scheme O(m) +O(r) O(r) YES YES YES

Table 1: Comparison of Verifiable SSE schemes. n denotes the number of total files, m denotes the number
of all keywords, r denotes the number of the retrieving files for a certain keyword.

by the indistinguishability obfuscation and the MAC au-
thentication concept. We also employ the constrained PRF
in our security analysis, which proves that our scheme is
secure with some acceptable information leakage. The com-
putation process of the cloud server in the search phase is
isomorphic with search in the plaintext domain and the com-
munication overhead is linear with the number of retrieval
files.

7. ACKNOWLEDGMENTS
This work is supported in part by the National Natural

Science Foundation of China (No. 61379154 and U1135001),
Specialized Research Fund for the Doctoral Program of High-
er Education under Grant 20120171110027, and US National
Science Foundation under grant CNS-1262277.

8. REFERENCES
[1] K. Ren, C. Wang, and Q. Wang. Security challenges

for the public cloud. IEEE Internet Computing,
16(1):69–73, 2012.

[2] C. Gentry. Fully homomorphic encryption using ideal
lattices. In STOC 2009 Proceedings, pages 169–178,
2009.

[3] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious rams. Journal of the ACM
(JACM), 43(3):431–473, 1996.

[4] D. Song, D. Wagner, and A. Perrig. Practical
techniques for searching on encrypted data. In
Symposium on Research in Security and Privacy
(SSP), pages 44–55, 2000.

[5] P. Golle, J. Staddon, and B. Waters. Secure
conjunctive keyword search over encrypted data. In
ACNS 2004 Proceedings, pages 31–45. Springer-Verlag,
2004.

[6] S. Kamara, C. Papamanthou, and T. Roeder.
Dynamic searchable symmetric encryption. In ACM
CCS 2012 Proceedings, pages 965–976, 2012.

[7] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. C.
Rosu, and M. Steiner. Highly-scalable searchable
symmetric encryption with support for boolean
queries. In CRYPTO 2013 Proceedings, pages 353–373.
Springer-Verlag, 2013.

[8] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and
W. Lou. Fuzzy keyword search over encrypted data in
cloud computing. In Proceedings of the 29th
INFOCOM, pages 441–445. IEEE, 2010.

[9] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou.
Privacy-preserving multi-keyword ranked search over
encrypted cloud data. In INFOCOM 2011 Proceedings.
IEEE, 2011.

[10] Q. Chai and G. Gong. Verifiable symmetric searchable
encryption for semi-honest-but-curious cloud servers.
In ICC 2012 Proceedings, pages 917–922, 2012.

[11] K. Kurosawa and Y. Ohtaki. Uc-secure searchable
symmetric encryption. In FC 2012 Proceedings, pages
285–298. Springer-Verlag, 2012.

[12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In CRYPTO
2001 Proceedings, pages 1–18. Springer-Verlag, 2001.

[13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai,
and B. Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits.
In FOCS 2013 Proceedings, pages 40–49, 2013.

[14] D. Boneh and M. Zhandry. Multiparty key exchange,
efficient traitor tracing, and more from
indistinguishability obfuscation. In CRYPTO 2014
Proceedings, pages 480–499. Springer-Verlag, 2014.

[15] A. Sahai and B. Waters. How to use
indistinguishability obfuscation: Deniable encryption,
and more. In STOC 2014 Proceedings, pages 475–484,
2014.

[16] K. Ramchen and B. Waters. Fully secure and fast
signing from obfuscation. In ACM CCS 2014.

[17] S. Hohenberger, A. Sahai, and B. Waters. Replacing a
random oracle: full domain hash from
indistinguishability obfuscation. In EUROCRYPT
2014 Proceedings, pages 201–220. Springer-Verlag,
2014.

[18] D. Boneh and B. Waters. Constrained pseudorandom
functions and their applications. In AsiaCrypt 2013
Proceedings, pages 1–23. Springer-Verlag, 2013.

[19] E. Boyle, S. Goldwasser, and I. Ivan. Functional
signatures and pseudorandom functions. In PKC 2014
Proceedings, pages 501–519. Springer-Verlag, 2014.

[20] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and
T. Zacharias. Delegatable pseudorandom functions
and applications. In ACM CCS 2013 Proceedings,
pages 669–684, 2013.

[21] R. Curtmola, J. A. Garay, S. Kamara, and
R. Ostrovsky. Searchable symmetric encryption:
improved definitions and efficient constructions. In
ACM CCS 2006 Proceedings, pages 79–88, 2006.

[22] S. Kamara and C. Papamanthou. Parallel and
dynamic searchable symmetric encryption. In FC 2013
Proceedings, pages 258–274. Springer-Verlag, 2013.

[23] J. Hastad, R. Impagliazzo, L.A. Levin, and M. Luby.
Construction of pseudorandom generator from any
one-way function. SIAM Journal on Computing, 28,
1999.

[24] K. Kurosawa and Y. Ohtaki. How to update
documents verifiably in searchable symmetric
encryption. In CNS Proceedings, pages 309–328, 2013.

626

