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ABSTRACT
In this paper we investigate Recursive Partitioning and Sum-
marization (RPS), a practical framework for data publishing
that satisfies differential privacy. While there have been sev-
eral negative results concerning non-interactive differentially
private data release, we show that such results do not neces-
sarily mean that such release is impossible. To that end, we
propose a data release framework that leverages current ad-
vances in differentially private query answering to synthesize
an anonymized dataset. We show that since each query only
affects a sub linear number of tuples, we are able to guaran-
tee differential privacy. To evaluate the efficacy and general
applicability of our approach, we experimentally evaluate
the utility of our framework in three domains and several
real and synthetic datasets. All our results indicate the ap-
plicability of our framework to general data release.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database
Administration-Security, integrity, and protection; K.4.1
[COMPUTERS AND SOCIETY]: Privacy

General Terms
Security, Algorithms

Keywords
Differential Privacy, Anonymization, Data Privacy

1. INTRODUCTION
In this paper we consider the problem of differentially pri-

vate data publishing. In particular, we consider the scenario
in which a trusted curator gathers sensitive information from
a large number of respondents, creates a relational dataset
where each tuple corresponds to one entity, such as an in-
dividual, a household, or an organization, and then pub-
lishes a privacy-preserving (i.e., sanitized or anonymized)
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version of the dataset. This has been referred to as the
“non-interactive” mode of private data analysis, as opposed
to the “interactive” mode, where the data curator provides
an interface through which users may pose queries about the
data, and get (possibly noisy) answers.

Publishing microdata is gradually becoming more and
more common. The Census bureau has a mandate to publish
census data. In addition, medical researchers argue for the
need to support clinical research in electronic health records
systems. Furthermore, many organizations have the need
to publish transactional data for research and other pur-
poses. Microdata publishing, however, has also resulted in
well-publicized privacy breach incidents. Examples include
the identification of the medical record of the governor of
Massachusetts from the GIC data [29]; the identification of
the search history of an AOL user from the AOL query log
data [3]; the identification of Netflix subscribers from the
Netflix Prize dataset [25]; and the de-anonyimzation of so-
cial networks [26].

We aim at developing practical techniques that can pub-
lish datasets in a way that satisfies the strong privacy guar-
antee of differential privacy [7, 9]. We observe that there are
two main approaches to private data analysis. For lack of
better names, we call them the experimental approach and
the theoretical approach. Our approach bridges the tech-
niques developed in both approaches.

The experimental approach has been the dominant ap-
proach in the database community. This approach focuses
mostly on the non-interactive mode, as this is the primary
way data is shared in practice. The emphasis is on de-
veloping algorithms and tools that can be applied to large
datasets. For privacy, many earlier approaches use syntactic
privacy notions such as k-anonymity [29], ℓ-diversity [22], t-
closeness [21], and so on. Recently, it has been increasingly
recognized that these syntactic privacy notions do not pro-
vide sufficient privacy protection, and differential privacy is
increasingly being adopted, though so far only to very spe-
cialized kinds of datasets, such as to publishing frequencies
of web search items [19, 15], or node degree sequences of
graphs [16], one-dimensional histograms [17, 31]. For util-
ity, the primary method is experimental evaluation. One ex-
perimentally measures to what degree the dataset has been
changed and/or to what degree the accuracy of certain data
mining tasks is affected.

The theoretical approach has been the dominant approach
in the theory/cryptography community. This approach fo-
cuses on the interactive mode. The privacy notion developed
here is differential privacy [7, 9]. The emphasis has been on



proving theorems that identify the boundaries of privacy
and utility, and developing methods that can answer par-
ticular kinds of queries while satisfying differential privacy.
For utility, one chooses some classes of queries and analyzes
how accurately these queries can be answered.

We combine the concepts and techniques from both the
experimental approach and the theoretical approach. For
privacy, we adopt the notion of differential privacy. For util-
ity, we use experimental methods, applying our algorithm on
different kinds of datasets and measuring the utility of the
resultant datasets. While our goal is to publish microdata
in the non-interactive setting, we employ techniques for dif-
ferentially private query answering developed for the inter-
active mode. Our approach generates a sequence of queries
on the dataset and uses the query results to reconstruct a
sanitized version of the dataset. This is possible despite the
negative results in [6, 13], which show that answering a lin-
ear (in the database size) number of queries relatively accu-
rately leads to disclosure of the dataset in some cases. One
key insight resolving the apparent contradiction is that while
a linear number of queries is required in our approach, a sin-
gle tuple in the dataset affects only a sub-linear, O(logN),
number of the queries, making satisfying differential privacy
while obtaining reasonably accurate answers possible.

More specifically, we investigate a framework that we call
Recursive Partitioning and Summarization (RPS), which ex-
ploits the above insight. In the RPS framework, we view tu-
ples as points in a multi-dimensional space. Given a dataset
and the multi-dimensional region that tuples in the dataset
are in, an RPS algorithm recursively partitions the region
into smaller regions, then summarizes each region indepen-
dently, and finally combines the summarized outputs. To
instantiate this framework into a concrete algorithm, one
specifies three sub-routines: how to partition a region, how
to determine when to stop further partitioning, and how to
summarize data items in a region once partitioning stops.
An RPS algorithm satisfies differential privacy when each
of the three sub-routines satisfy differential privacy, as each
node affects only the query regarding the partitions that the
node is in, it affects O(logN) queries, where N is the num-
ber of tuples in the dataset. If each sub-routine is performed
in time linear in the number of tuples in the region, then the
algorithm runs in time O(N logN).

While the idea of partitioning and summarization has
been used implicitly or explicitly before, a key challenge is
how to instantiate it. We make a key observation to make
the RPS framework feasible for multi-dimensional relational
data is that the exponential mechanism for differential pri-
vacy [24] provides an effective solution to the critical parti-
tioning step, yielding a close-to-balanced partition in a dif-
ferentially private way.

1.1 Our Contributions

• We investigate the Recursive Partitioning and Sum-
marization framework and identify using the exponen-
tial mechanism to achieve balanced partitioning as a
key enabling step for this framework. RPS instanti-
ated with balanced partitioning provides a practical
and general method to differentially privately pub-
lish multi-dimensional relational datasets. We point
out that many data sharing scenarios involve such
datasets, including census data, medical records, etc.

• We experimentally evaluate the effectiveness of our ap-
proach using both synthetic datasets and the Adult
dataset [1]. Our results on the synthetic datasets show
that the sanitized datasets preserve useful features of
the input datasets, and the performance depends on
choices of algorithmic parameters such as maximum
depth and stopping conditions. Our result on the
Adult dataset show that the sanitized datasets enable
accurate classification. In particular, our method out-
performs the Mondrian algorithm [20], which satisfies
the weaker k-anonymity.

• Finally, to demonstrate the versatility of the RPS ap-
proach, we also apply the RPS algorithm to sanitize
the node degree sequence of social networks. Such
sanitized sequence can then be used to generate a new
graph with properties similar to the original graph.
This problem is challenging because removing one
node may affect the degrees of many other nodes. We
show that the RPS approach can be instantiated in a
way that satisfies differential privacy relative to adding
or removing a node. It provides a practical way for pri-
vately releasing node-degree sequences for graph data,
outperforming the current state of the art.

The rest of this paper is organized as follows. We discuss
background on differential privacy in Section 2. We present
the RPS framework in Section 3, and the evaluation results
in Sections 4 and 5. We discuss related work in Section 6
and conclude with Section 7.

2. BACKGROUND ON DIFFERENTIAL
PRIVACY

We first briefly review the notion of differential privacy,
which was developed in a series of papers [6, 11, 4, 9, 7].
The intuition behind this privacy notion is as follows: if
a disclosure occurs when an individual participates in the
database, then the same disclosure also occurs with similar
probability (within a small multiplicative factor) even when
the individual does not participate.

Definition 1 (ǫ-Differential Privacy [7, 9]).
A randomized algorithm A gives ǫ-differential privacy if
for any pair of neighboring datasets D and D′, and any
S ∈ Range(A),

Pr[A(D) = S] ≤ eǫ Pr[A(D′) = S] (1)

Differential privacy has the following composition prop-
erty: if two algorithms satisfy differential privacy for ǫ1 and
ǫ2, then releasing the results of both algorithms satisfy dif-
ferential privacy for ǫ1 + ǫ2. The parameter ǫ measures the
degree of privacy. The larger ǫ is, the lower the privacy.
When ǫ is too large, the privacy guarantee becomes mean-
ingless. Hence one needs to have a limit for ǫ, which is know
as a privacy budget. Answering each query consumes a por-
tion of privacy budget. When the privacy budget is used up
after answering a number of queries, no new queries can be
answered.

The Feasibility of Non-interactive Differential Pri-

vacy There have been a series of negative results concern-
ing differential privacy in the non-interactive mode [6, 13, 9,
10], and these results have been interpreted “to mean that
one cannot answer a linear, in the database size, number



of queries with small noise while preserving privacy” and
motivates “an interactive approach to private data analysis
where the number of queries is limited to be small — sub-
linear in the size n of the dataset” [10]. This impossibility
result views the database as a vector, where the order of
items is important. Furthermore, it depends on answering
a linear number of queries in the database size.

These negative results not withstanding, it is shown in
several recent papers [5, 10, 12] that it is possible to pri-
vately publish a dataset that is capable of answering queries
in certain classes relatively accurately. One key insight to
account for the this apparent contradiction is the observa-
tion that it may still be possible to answer linear number of
queries without compromising privacy, provided that each
tuple affects answer only to a sub-linear number of them.

Satisfying Differential Privacy There are three methods
that can be used to satisfy differential privacy: the common
Laplacian Mechanism to add noise, the Smooth Sensitivity
method of adding noise. The third alternative is the Expo-
nential Mechanism, which we describe below.

McSherry and Talwar [24] proposed an alternative to the
approach of adding noises to the query result. This method
is based on the idea that any anonymization method maps,
possibly randomly, a set of n inputs each from a domain D
to some output in range R. The mechanism relies on an
input query function q : Dn × R → R that assigns a real
valued score to any pair (d, r) from Dn × R. This can be
viewed as a quality function that assigns higher scores to
more desirable outputs.

The goal of the mechanism is to take d ∈ Dn and return
r ∈ R such that q(d, r) is maximized while guaranteeing
differential privacy.

Definition 2. For any quality function q : (Dn ×R) →
R, and a privacy parameter ǫ, an exponential mechanism
Mǫ

q : Dn → R is a randomized mechanism which, given an
input d ∈ Dn returns a valid output r ∈ R with probability
proportional to

exp (ǫq(d, r))

We define ∆q to be the largest possible difference in the
quality function when applied to two neighboring datasets.
We can thus claim that the exponential privacy mechanism,
Mǫ

q , with quality function q, gives (2ǫ∆q)-differential pri-
vacy [24].

3. RECURSIVE PARTITIONING AND
SUMMARIZATION

Many privacy-preserving data publishing mechanisms can
be modeled as instantiating the following meta-algorithm:
Initially, one views tuples as points in a multi-dimensional
space. The meta-algorithm first partitions the space into
smaller regions, and then returns information about each re-
gion, which typically includes the number of tuples in each
partition. This can then be used to generate sanitized or
synthesized dataset. In our view, there is no fundamental
difference between sanitized or synthesized, as both are gen-
erated from the original dataset.

To make this process satisfy differential privacy, one needs
to make both steps (partitioning and summarization) satisfy
DP. The summarization step can be answered easily using
a differentially private count query. The basic approach is

to add Laplace noise to the count of each region. Multiple
improvements exist to increase the accuracy of the answer.
This includes wavelet transforms [31] and hierarchical con-
strained inference [17].

A natural way to make the partitioning process easier to
analyze with regard to differential privacy is to perform re-
cursive binary partitioning. That is, each region is first par-
titioned into two sub-regions, and then these sub-regions are
further partitioned. One needs only to ensure that each bi-
nary partition decision satisfies differential privacy. There
are two general methods of performing this step with accept-
able accuracy: fixed partitioning and balanced partitioning.

Fixed Partitioning vs. Balanced Partitioning Fixed
partitioning works by deterministically choosing a fixed
pivot on which to partition the region. This is indepen-
dent of the data, and therefore intuitively private and does
not consume an differential privacy budget. A prominent
example is the universal histogram method in [17]. This ap-
proach works by dividing the data domain into equal sized
bins. One would then ask for interval counts at different lev-
els of granularity. Conceptually, one can arrange all queried
intervals into a tree, where the unit-length intervals are the
leaves. Each node in the tree corresponds to an interval, and
each node has at least 2 children, corresponding to equally
sized subintervals.

Fixed partitioning has two problems. As a result of fixed
partitioning, one would get regions of equal size, but con-
ceivably varying densities. Hence, one problem is that high
density regions would not get sufficient division. Thus,
when partitioning to arbitrary data granularity is impos-
sible, fixed partitioning can provide no accuracy guarantee
for all queries.

The problem with deep partitioning, however, is that it
would result in many empty regions. Noise will be added to
such regions, potentially creating a lot of noisy data. This
problem has been observed by several methods in the lit-
erature including the Wavelet method [31] for contingency
table release. This method works by partitioning to data
granularity (i.e. where each region contains identical data
points). While this method indeed improves query accuracy
by using wavelet transforms on attributes, it suffers from
degraded query accuracy when the data is sparse. When
each region contains zero, or very few, data points, the rela-
tive noise due to summarization is very high; therefore, the
quality of the data decreases. While [31] provides a method
to remedy the effect of such noise, this method leverages the
assumption that adjacent regions have similar counts. This
assumption, however, fails to hold as data dimensionality
increases and when the nature of the data changes.

One the other hand, balanced, or even-region, partition-
ing, works by partitioning the region evenly, thus creating
equal density partitions. One way to accomplish this is to
choose a median datapoint as a pivot. This circumvents the
disadvantages of fixed region partitioning at the expense of
consuming some privacy budget. We, therefore, examine a
differentially private recursive balanced partitioning frame-
work and analyze different methods instantiating it.

3.1 Recursive Partitioning and Summariza-
tion Meta-Algorithm

The meta-algorithm for Recursive Partitioning and Sum-
marization (RPS) is given in Algorithm 1. Given a dataset
D and the multi-dimensional region R0 which includes the



tuples in D, the RPS meta-algorithm recursively partitions
the region R0 into smaller regions, and then finally summa-
rizes each region independently and combines the summa-
rized outputs.

Algorithm 1 Recursive Partitioning and Summarization

RPS sanitize(D,R)

return post process(RPS recursion(D,R))

RPS recursion(D,R)

(Stop, Info)← stopping condition(D,R)
if Stop then

return summarize(D,R)
end if

(R1, R2)← balanced partition(D,R)
return (Info,RPS recursion(D,R1),RPS recursion(D,R2))

stopping condition(D,R)

return (whether to stop partitioning the region R, aux-
iliary information about R)

summarize(D,R)

return a multiset of tuples that summarize the tuples in
D that are in region R

balanced partition(D,R)

return the results of partitioning R into two subregions

post process(Tree)

return dataset based on the tree resulted from RPS

Running the algorithm on a dataset D and an initial range
R0 results in a series of partitions, which form a partition
tree. The root of the tree is R0. Each internal node has
two child nodes which represent two non-overlapping sub-
regions that together form the region represented by the
parent node. Running this algorithm also results in a se-
ries of queries about D. More specifically, on each internal
node corresponding to a region R, two queries are executed:
stopping condition(D,R) and partition(D,R), and on each
leaf node corresponding to a region R, two queries are exe-
cuted: stopping condition(D,R) and summarize(D,R).

Because changing one tuple in a dataset affects only
queries along one path in the tree from a leaf node to the
root,an RPS algorithm satisfies ǫ-differential privacy if for
any partition tree generated by the algorithm, all queries
satisfy differential privacy, and the total privacy budgets
consumed along any path is bounded by ǫ. This follows
from the sequential and parallel composition properties of
differential privacy. [23]

An RPS can be very efficient. If all the three subroutines
run in time linear in the number of tuples in the region, then
the algorithm takes time O(N logN).

3.2 Instantiating the RPS framework
We now study how to instantiate this RPS framework

into concrete algorithms. One needs to provide the im-
plementation of three functions: stopping condition(D,R),
partition(D,R), and summarize(D,R). We want these func-
tions to satisfy differential privacy relative to D. One fur-

ther needs to provide a way to allocate a privacy budget to
answer these queries.

Partitioning. Partitioning is the most important step.
One approach is to first choose an attribute (one dimension
in the space), then query the median value among tuples in
the region, and finally partition the region at the median
point. To answer the medium query, one can use the ap-
proach based on smooth sensitivity. This method, however,
has a number of drawbacks. First, it is unclear how to best
choose the attribute on which to partition. Second, it is
unclear how to deal with attributes with categorical values,
where the concept of median does not apply.

We propose using the exponential mechanism to partition
the dataset. This method can be adapted to both continuous
and discrete attributes. For continues attributes, we choose
a granularity, and consider all multiples of the granularity.
For instance, given a domain range [0, 100] and granularity
1, we consider partitions along 1, 2, . . . to 100. For discrete
attributes, we can either consider all possible partitions of
the attribute domain if the domain is sufficiently small. Al-
ternatively, we can consider an order (possibly random) over
the domain and partition linearly along this order. Such de-
cisions can be made based on the database schema.

Another advantage of using the exponential method is
that, with one query we can consider all possible ways of
partitioning along different dimensions at once instead of
choosing one dimension a priori. For example, suppose that
we have only two attributes: education and salary. Here
we would consider all possible ways to partition along ed-
ucation and all possible ways to partition along salary. By
considering the union of such partitions as the output of the
partition mechanism, we can use the exponential mechanism
to choose the best partition along both dimensions.

An interesting challenge is what quality function to use.
In general, we choose a quality function that would give
higher preference to an even split. When even split is the
only objective, the quality of the partition (R1, R2) ∈ R is
defined as follows:

q(d, (r1, r2)) =
n− |r1 − r2|

4
(2)

where r1 and r2 are the number of elements in R1 and R2

respectively, and n = r1 + r2.
Removing one record will change the size of one of the

partitions by 1; hence the sensitivity of q is

∆q ≤
n− |r1 − r2|

4
−

(n− 1)− (|r1 − r2|+ 1)

4
=

1

2

We have found that different application domains may
benefit from different choices of the quality function. We
discuss such choices when discussing different application
domains in Sections 4 and 5.

Furthermore, the running time is proportional to the size
of the attribute domain, which can be limited to a constant,
and is linear to the size of the dataset in the region.

Choosing a stopping condition. To determine whether
one should stop further partitioning a region R or not, sev-
eral methods can be used. The first is to stop when a cer-
tain depth is reached. This has two benefits. One is that
one can allocate the privacy budget to be used in each level
using the knowledge of the maximum depth. The other is
that this requires no query on D and consumes no privacy
budget; hence one can conserve the privacy budget for other



queries.
Alternatively, we can stop when the region contains too

few tuples. To determine whether this is the case, the al-
gorithm would issue a count query to determine how many
tuples D has in the region R and decide to stop if the result
is lower than a threshold. Because count queries have low
sensitivities, the standard method of adding Laplace noise
is accurate enough for this purpose.

We can also stop when the size of the region is small
enough. For example, if the region already contains a sin-
gle possible value, i.e., all tuples are already the same, then
it makes no sense to perform additional partitioning. Even
when some attributes are continuous, perhaps one would
consider a region to be small enough so that consuming ad-
ditional privacy budget in further partitioning is no longer
beneficial. Using this stopping condition also consumes no
privacy budget.

In our implementation, we choose to use a combination
of the above methods. A maximum depth limit is used. In
addition, the algorithm also stops when the region is narrow
enough, and when the noisy count returns a number smaller
than a threshold (we experimented with 1, 3, 5, 10). In our
experiments, we evaluate the choice of the threshold on the
utility of the resulting dataset.

Summarizing the resulting partitions. When the stop-
ping condition is reached, we need to summarize the tuples
in the region R. To do this, we need to determine how many
tuples to generate in the region and then generate these tu-
ples based on the region R.

There are two alternatives to determine how many tuples
to generate in the region. The first is to generate based on
the depth and the size of the dataset. For example, if the
current depth is d, and the dataset size is N , we generate
N/2d tuples in R. This approach consumes no privacy bud-
get. The other approach is to issue another count query to
get the number c of tuples that are in R, which can be an-
swered using all remaining privacy budget, as this is the last
query along this path.

To generate a tuple in R, a natural approach is to gener-
ate each attribute independently from other attributes. For
an ordered attribute, several alternatives exist. One could
sample a random value in the region, choose the mid point
(mean) between the two boundary values, and in some cases
(such as when dealing with node degree sequences in Sec-
tion 5) choosing one end of the region turns out to be the
best approach. For a categorical attribute, we simple use
the set of all values in the region. Alternatively, for each
attribute, one could randomly choose a value in the range.

Allocating the privacy budget. Many strategies can
be applied in allocating the privacy budget among different
queries, depending on whether partitioning, checking stop-
ping condition, and summarizing need to consume the pri-
vacy budget, and the relative importance of different sub-
routines for an application. In our experiments, we choose
to leave half the privacy budget for the final query needed to
summarize a leaf region, in order to get a reasonably accu-
rate count, and the other half for partitioning and checking
stopping condition. Other alternatives are possible. An-
other intriguing idea is how to split the privacy budget for
each level between partitioning and checking stopping con-
dition. It may be beneficial that on shallower levels, one
does not check for stopping conditions and use all budget
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Figure 1: Utility of a single attribute under differ-

ent instantiations of RPS that differ on ǫ, depth, and
stopping count. The graphs plot ǫ vs Earth Mover’s Dis-
tance to the original distribution. Smaller values are better.

for partitioning.
The relative effectiveness of different instantiations of RPS

algorithms likely depends on the input dataset and the pri-
vacy budget at hand. In a data publishing scenario, the data
curator may want to experiment with different settings and
choose the most desirable output to publish.

4. ANONYMIZING MULTIDIMEN-
SIONAL DATA

We evaluate RPS on multidimensional data. A multidi-
mensional dataset, D, is a set of records. Each record con-
sists of a list of values corresponding to a set of attributes,
or dimensions. The applications of this for such types of
data are wide and varied and include Census data, medi-
cal records, and many others. In this section, we first show
the general applicability of our approach by anonymizing a
synthetic dataset under different instantiations of the RPS
algorithm. We then apply the framework to a general cen-
sus dataset: the UCI Machine Learning Adult dataset [1],
which has been used in several studies on privacy preserv-
ing data publishing. We study the efficacy of our approach
by examining characteristics of the anonymized dataset as
compared to the original and by measuring accuracy of data
mining workloads. We repeat each experiment 5 times and
report the mean with the standard error.

4.1 Results on Synthetic Data
To synthesize data, we sampled points from a predefined

space. We first set to evaluate the ability of the algorithm to
preserve the distribution of each attribute (dimension) in the
data. Hence, we sampled a set of 10,000 points in R from a
normal distribution with µ = 50 and σ = 25. This is similar
to the experimental approach used to evaluate Mondrian
[20]. To evaluate how well the distribution is preserved, we
measured the Earth Mover’s Distance between the original
dataset and the anonymized counterpart.

The Earth Mover’s Distance (EMD) is also referred to as
the 1st Mallows distance or 1st Wasserstein distance. Given
two empirical probability distributions, the EMD measures
the minimum cost of turning one distribution into another.
Informally, we can view one distribution as a mass of dirt
over the space, and the other as a collection of holes in the
same space. EMD measures the least amount of work needed
to fill the holes with dirt; where work refers to the amount
of dirt times the distance by which it is moved. EMD can
be calculated by solving the transportation problem. More
formally, for two sorted numerical datasets X and Y in R,
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Figure 2: Similarity of tuples within a region under different instantiations of RPS that differ on ǫ, depth,

stopping count, and partition method. Larger values are better

the EMD is calculated as follows:

EMD(X,Y ) =

√

1

n

∑

i

(Xi − Yi)
2

where Xi maps to Yi such that the overall amount of work is
minimized. The EMD was used by Li et al. [21] in evaluating
the utility of anonymized datasets.

The results for this evaluation are shown in Figure 1. We
evaluate the efficacy of RPS by changing different parame-
ters: the stopping condition including maximum allowable
partition depth and a noisy stopping condition, and the pri-
vacy parameter (ǫ). In Figure 1(a), we fix the stopping
condition to a noisy count ≤ 5, and we vary the maximum
allowable depth from 5 to 100. We test this under values of
epsilon ranging from 0.01 to 5. In Figure 1(b), we fix the
maximum depth to 50 and vary the stopping count.

We can conclude the following from the results. First, the
choice of depth matters. A depth which is too shallow (ex: 5)
gives bad results. This is because the algorithm terminates
while the partitions are coarse grained. Similarly, a depth
which is too large (ex: 100) also gives bad results under
small ǫ. This is because the privacy budget allocated to
individual queries would be very small. For the dataset at
hand, a depth of 50 gives the best results achieving an EMD
close to 0. A depth of 10 or 20 gives slightly worst results.
Similar reasoning can be applied to the stopping condition,
although the differences in the results are less noticeable.
A small noisy count (3) and a large noisy count (10) give
slightly worst results for smaller values of ǫ. Finally, an
interesting thing to note here is that changes in parameters
are most noticeable under small values of ǫ. As ǫ gets larger,
the accuracy stabilizes under the different changes and the
variance in the results decreases.

The next thing we evaluate is the ability of the RPS algo-
rithm to respect clustering inherent in a multidimensional
dataset. The reasoning behind this evaluation is as follows:
RPS generates a set of regions, where each region would
contain a set of tuples. Ideally, we want tuples in the same
cluster to be in the same region. Hence, we created a 5-
dimensional dataset in which tuples are generated by three
different processes (i.e. there are three clusters of tuples).
Each tuple was sampled from one of three different mul-
tivariate Gaussian distributions. These distributions were
chosen to have different means and different covariance ma-
trices. We then applied different instantiations of the RPS
framework and assessed the similarity of the tuples in each

region. We labelled each region with the generator that
created the majority of the tuples in that region. We then
calculated the percentage such tuples hold over all the tuples
in the region and aggregated the results over all regions.

We present the results in Figure 2. Again, we instanti-
ated the RPS framework with different parameters as we did
above. Figure 2(a) varies the maximum depth of the par-
titions while fixing the noisy stopping count to 5. It again
shows that too small or too large of a maximum depth hin-
ders utility. Figure 2(b) fixes maximum depth at 10 and
varies the noisy stopping count. As the value of ǫ increases,
the difference in this condition is negligible. Having a larger
count gives slightly worst utility. A smaller noisy count also
gives worst utility at smaller values of ǫ. In general, setting
the noisy count to 5 works well. Figure 2(c) fixes the noisy
count at 5 and varies the partition method under two dif-
ferent settings of maximum depth. We compare a method
of partitioning that uses the median (via the exponential
method) and a method that just takes the midpoint of the
boundary interval as the splitting value. The results favor
the partition method that uses the median. This is because
it more accurately reflects how data is clustered, while taking
the mean introduces some errors into how the final regions
are defined.

4.2 Results on the Adult Dataset
We also evaluate the effectiveness of our algorithm on

the UCI Machine Learning Adult dataset [1]. The Adult
dataset is a general census dataset that is commonly used
to predict the income of an individual (either above 50K
or below 50K) by taking into account several features such
as level of education, sector of industry, country, age, etc.
The dataset has 30,162 records that do not contain miss-
ing values. We consider 11 attributes for each record: age,
workclass, education, marital-status, occupation, relation-
ship, race, sex, hours-per-week, native-country, and salary
(<=50K, >50K).

We evaluate the dataset by applying data mining clas-
sification algorithms: the Naive Bayes algorithm and the
C4.5 decision tree algorithm. This approach has several ad-
vantages. First, it allows us to evaluate a dataset for the
purpose it is intended to serve. Hence, we can evaluate util-
ity objectively. Second, it allows us to evaluate the efficacy
of our algorithm in maintaining the relationships between
attributes. Classification algorithms take into account the
relationships between attributes in building the classifica-
tion model. The more these relationships are intact, the



better the results compared to the original data. To evalu-
ate the accuracy of our results, we performed (k = 5)-fold
cross validation. This is a standard technique in data min-
ing evaluation which partitions the dataset into k folds, then
repeats the algorithm k times, each time keeping one fold
for testing and using the others as the learning dataset.

To partition the dataset in RPS, we consider integer gran-
ularity for continuous attributes. For each discrete attribute
domain, we consider an order over the values in the domain.
We use orders that are already available when applicable (ex:
for education) and generate a random order otherwise (ex:
for native country). We furthermore tune the algorithm to
the specific utility guarantees needed; i.e. the classification
task with a binary class attribute. In this case, we want the
partitions over the median to separate the different values of
the class attributes in the partitions. We modify the quality
function to support that. Suppose that the dataset being
anonymized has a class attribute that can take two values:
+ and −. Further suppose that in a partition (R1, R2) ∈ R,
the number of + and − in R1 are x1 and x2 and that the
numbers in R2 are y1 and y2. We can specify the quality
function as:

q(d, (r1, r2)) =
n− |r1 − r2|+max (x1 + y2, y1 + x2)

2
(3)

When summarizing the resulting partitions, we can choose a
class attribute for each partitions by taking a noisy majority
vote.

The results of the anonymization are in Figure 3. In these
experiments, the attribute on which to partition is chosen
randomly at each step. We vary ǫ and measure the clas-
sification accuracy under two stopping conditions: a noisy
count of 5 and continuing to a maximum depth of 50 (i.e.
stop at a count of 0). To evaluate our results we use three
benchmarks. The first is the accuracy of the classification
algorithm on the original data. We want to achieve an ac-
curacy closest to this. The second is the baseline accuracy
for the dataset. This is the accuracy if we take a simple
majority vote for the class label. For the Adult dataset,
this is 0.75. Finally, we compare the result with the original
Mondrian algorithm.

In Figure 3(a) we can see that the RPS algorithm is able
to achieve an accuracy close to that of the Naive Bayes al-
gorithm. Since this algorithm relies on conditional probabil-
ities given the class labels, we can assert that our algorithm
largely maintains the correlation between attributes and the
class label. Furthermore, we can see that RPS at a noisy
count of 5 performs better than continually recursing to the
maximum depth. This is primarily because the latter might
result in empty or sparse regions which would add noise to
the summarization. In addition, our algorithm surprisingly
outperformed the Mondrian algorithm for k-anonymity. Our
intuition is that this is because of the way Mondrian per-
forms the partitioning. Mondrian gets the actual median
without considering the class label. Our algorithms favor
an even split while keeping the class label in mind.

In Figure 3(b), we run the C4.5 classifier on the datasets.
For this classifier, our algorithm performed slightly worse
compared to the previous result. This may be because the
C4.5 classifier is more sensitive to changes in attribute dis-
tributions than the pervious algorithm.

5. ANONYMIZING GRAPH PROPERTIES
We extend our approach to show how to efficiently

anonymize other types of data. The problem of anonymizing
graph data has been motivated by Backstorm, Dwork et al.
[2, 8]. In this section, we focus on anonymizing properties
of the graph that can be used to regenerate an anonymized
version of the graph itself. In particular, we look at the
problem of anonymizing the degree sequence of the graph
while protecting individual nodes in the graph.

The problem of releasing the degree sequence has been
analyzed by Hay et al. [16]. The main contribution of Hay
et al.’s method relies on viewing the degree sequence query
as a series of queries returning the ith largest degree in the
graph. Since the query returns the degree distribution in
sorted order, the sensitivity of the query as a whole due to
the removal of one edge is 2. Analogously, the sensitivity
due to removing up to Λ edges is 2Λ. Hence, noise can be
added to each degree using the Laplacian method propor-
tional to the sensitivity. In addition, Hay et al. leverage the
fact that the unanonymized degrees are sorted in order to
improve on the accuracy of the anonymized result using a
constrained inference algorithm. This is currently the only
known method of releasing the degree sequence while satis-
fying differential privacy.

This method, however, has focused on protecting the indi-
vidual edges in the graph rather than nodes themselves since
the latter requires the addition of an unacceptably large
amount of noise using the Laplacian mechanism. Edge dif-
ferential privacy, however, is insufficient. Ideally, one needs
to prevent the re-identification of nodes, rather than whether
there is a relationship between two nodes. Here, we show
how to answer the degree sequence query efficiently and ac-
curately while satisfying node-differential privacy. We ex-
perimentally compare our approach to this current state of
the art.

5.1 Anonymizing the Degree Sequence
More formally, the anonymization problem we consider

can be defined as follows. Given a graph Gn
Λ with n nodes

such that the maximum degree of any node is Λ, we release
a sorted sequence of size n which corresponds to the de-
gree sequence of the graph. Generally, for a graph of size n,
Λ = n− 1. However, in some publishing scenarios is it rea-
sonable to assume that the maximum degree of the graph is
known. For instance, the data publisher may a priori sample
the graph or prune nodes that exceed a particular degree.
Alternatively, one can obtain a differentially private estimate
of the maximum degree and use that in the anonymization.
In essence, if Λ = n − 1 is much larger than the maximum
degree of the graph, then the anonymized degree distribu-
tion is likely to be biased at the tail since the highest degree
nodes will be over generalized. Since this is generally the
case, we might want to exploit different methods of sum-
marizing the resulting graph partitions. Furthermore, the
choice of Λ will have the greatest effect on only one parti-
tion in the sequence; this might result in an overestimation
of the degrees in that partition. We can slightly account for
this bias by deterministically choosing the lower boundary
of the domain for each region. Our experimental evaluation
that follows, show that graph datasets can benefit from this
type of summarization.

Partitioning Method To partition, we have to adjust
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Figure 3: Classification Accuracy for the Adult Dataset - Accuracy is expressed as a percentage. The larger the value
the better

the quality function to account for the increased sensitivity
of graph queries. We consider the case where we need to
protect individual nodes in the graph. Removing one node
will change up to Λ + 1 entries in the degree sequence: the
degree of the node itself will be set to 0, and the degrees
of all its neighbors will decrease by 1. Thus far, this has
been a hurdle preventing development of accurate dissemi-
nation algorithms for graph queries. The higher sensitivity
of the degree sequence query still manifests itself in the RPS
algorithm; however, the specific mechanism by which the al-
gorithm partitions the sequence and summarizes the results
helps minimize the effect of the increased sensitivity. That
is, since we do not add noise to the individual degrees, the
negative effects of the increased sensitivity would not be sub-
stantial. We would only need to sacrifice some accuracy in
choosing the partitions.

We account for this by changing the quality function that
determines an even split to decrease its sensitivity. We there-
fore define the quality of the partition (R1, R2) ∈ R in as
follows:

q(d, (r1, r2)) =
r1 + r2 − |r1 − r2|

4n+ 2
(4)

where r1 and r2 are the sizes of R1 and R2 respectively and
n is the total number of nodes in the graph.

Removing one node will change the degrees of up to Λ+1
nodes in the sequence. This can cause up to Λ + 1 nodes
to shift in the partitions (i.e. move from R1 to R2, or vice-
versa). Hence ∆q for the degree sequence query is:

∆q ≤
r1 + r2 − |r1 − r2|

4n+ 2
−

r1 + r2 − 1− (|r1 − r2| − 2(Λ + 1))

4n+ 2

=
2(Λ + 1) + 1

4n+ 2
≤

2n+ 1

4n+ 2
=

1

2

Stopping condition We also need to consider the sensi-
tivity of the degree sequence query when taking the counts
in each region. Note that the sensitivity of the count query
here is no longer 1, therefore we cannot use the normal count
query. We therefore allow the algorithm to continue until a
maximum depth is reached. We use a depth of 15 in our
experiments.

Summarizing the resulting regions When summarizing
each region at the end, we calculate the smooth sensitivity

nodes edges α maxd
Caltech 769 16656 1.14 248
Georgetown 9414 425638 1.04 1235
UNC 18163 766800 1.05 3795
Enron (Undirected) 36692 183831 1.56 1383

Table 1: Graph Statistics - α is the power law coefficient
of the degree distribution, and maxd is the maximum degree
of nodes in the graph

of the count query. The reasoning behind this approach
is that removing one node will most likely only shift some
of the node degrees in a region by 1 and remove, at most,
one node completely. Hence, in addition to the removed
node, only the nodes with degrees at the region boundaries
will affect the count. By calculating the smooth sensitivity
based on these counts (and adding noise sampled from a
fat tailed distribution, ex: Cauchy), we can release accurate
counts for each region while satisfying differential privacy.
Finally, we deterministically choose the lower boundary of
the domain for each region to represent the degree of nodes
in the region.

5.2 Experimental Evaluation
The previous anonymization scheme was implemented and

tested on 4 graph datasets with varying sizes and properties.
The properties for the datasets are summarized in Table 1.
The datasets Caltech, Georgetown and UNC are Facebook
college networks captured in 2005 [30]. These datasets show
the full intra-school links as they were in September 2005.
Each node represents an individual and each edge represents
a friendship link. Each of these datasets contains a differ-
ent number of nodes and a different density of edges; and
hence show the efficacy of our approach on graph with a few
hundred nodes to graphs of tens of thousands of nodes. The
last dataset we use is the Enron email network [18]. Each
node in the dataset represents an individual, and each undi-
rected edge indicates that at least one email was exchange
between the two parties. This graph is sparser compared to
the Facebook networks.

Utility Measures To evaluate our results, we employ two
statistical distance measures commonly used in the litera-
ture for evaluating the similarity of two distributions [16,



21]. The first is the Kolmogorov-Smirnoff statistic, also
known as the KS-distance. Given two empirical distribu-
tion functions FX and FY , where FX(x) = 1

n

∑n

i=1
IXi≤x,

the KS-Distance between two such distributions is defined
as the maximum distance between the two distributions at
any point: KS(X,Y ) = maxx |FX(x)−FY (x)|. It is sensitive
to differences in both location and shape of the empirical cu-
mulative distribution functions of the two samples. Smaller
values of KS-distance indicate closer distributions and better
utility. The KS-distance is widely used as as a general non-
parametric distance measure. It was also employed by Hay
et al. to evaluate the distance between a degree sequence and
its anonymized counterpart [16]. The KS-distance, however,
is less sensitive to the tail of the distributions. We thus use
another distance measure to account for such discrepancies.

The second measure we use is the Earth Mover’s Distance
(EMD), as described in the previous section. Hay et al.
employed the Mallow’s distance at p=2 (equivalent to the
EMD) for their evaluation of similarity of degree sequences
[16].

Results Figure 4 and Figure 5 (in Appendix A) show the
results for the KS-distance and the Earth Mover’s Distance
respectively. Each anonymization was repeated 5 times for
each value of ǫ ranging from 0.01 to 10.0. The graphs show
the results along with the standard error. We also repeat
the experiments under different assumptions of maximum
degree. In Figure 4(a) and Figure 5(a), we assume a priori
knowledge of the maximum degree and hence set Λ to be the
actual maximum degree shown in Table 1. In Figure 4(b) and
Figure 5(b), we set Λ to its maximum possible value given
a graph of size n (Λ = n − 1). In this case, we summarize
the partitions by choosing the lower bound for the partition
domain.

We compare the results of our anonymization method to
the work of Hay et al. [16], which presents the only other
method of satisfying differential privacy for graph degree se-
quence queries. The experimental results look very promis-
ing. While considering the KS-distance (Figure 4), the RPS
algorithm can achieve fairly high accuracy. Furthermore,
the KS-Distance for the both settings of Λ was small. This
is even more the case with larger graphs. We note, however,
that this is because larger values of Λ only affect higher de-
gree nodes and hence only the tail of the distribution to
which the KS-distance is less sensitive. The results imply
that accurate degrees are reported for most of the nodes in
the graph and this is sufficient in several analysis scenarios.
In addition, the RPS algorithm performed much better than
the Laplacian and constrained inference alternative. This
remained to be the case for all graphs under all values of ep-
silon. The deviation is most accentuated for smaller values
of epsilon, which imply a large amount of noise added via
the Laplacian mechanism.

We also analyzed the accuracy of the anonymized degrees
under the Earth Mover’s distance (Figure 5). This measure
allocates equal sensitivity to all nodes in the graph and is
thus as sensitive at the tail as it is at the median. The re-
sults are also very good for both settings of Λ. As expected,
Λ = maxd results in better accuracy; however the deviation
between both settings of Λ is not large. Furthermore, the
EMD for both is considered good. For ǫ ≥ 1, the result is
close to 10 and is at least 100 units smaller than the result
for the constrained inference method. We attribute this to
the benefits of the flexibility RPS gives in choosing how to

summarize the partitions. The results for all graphs consis-
tently outperformed the constrained inference alternative.

6. RELATED WORK
Work on privacy is largely motivated by a number of pri-

vacy breach incidents [29, 3, 25, 26]. Most work done, how-
ever, has focused on syntactic methods of achieving privacy,
which are deemed insufficient for privacy protection [29, 22,
21]. In this paper we utilize a stronger privacy guarantee:
differential privacy. Differential privacy was presented in a
series of papers [6, 11, 4, 9, 7] and methods of satisfying it
are presented in [7, 27, 24].

The Mondrian algorithm [20] performs a similar partition-
ing and summarization of the dataset, however it aims to
satisfy the weaker privacy notion of k-anonymity. In ad-
dition, Blum et al. [5] proposed an approach that employs
non-recursive partitioning, but their results are mostly theo-
retical and lack general practical applicability. [14] gives an
approach for data mining for differential privacy that uses
the exponential mechanism; however, their approach is not
concerned with publishing an entire dataset. Privacy Inte-
grated Queries (PINQ) [23] is a platform which provides
methods, including count and median, to implement the
RPS algorithm. PINQ, however, only provides mechanisms
for differentially private database access, rather than actual
data sanitization methods.

Work has also been done on improving the accuracy of
interactive data release [28]. This classifies queries as “easy”
or “hard”, according to whether or not the majority of
databases consistent with previous answers to hard queries
would give an accurate answer to it. A “hard” query is an-
swered using the Laplacian mechanism. An “easy” query
simply returns the corresponding median value. Our ap-
proach, however, deals with the non-interactive case.

Anonymizing graph properties has been motivated by [2,
8]. In addition, [16] present a method to release the de-
gree sequence while protecting edges. We show how our
framework can be used to release the degree sequence while
protecting nodes.

7. CONCLUSION
In this paper we tackle the problem of differentially private

data release. We first consider the non-interactive mode
of differentially private data release. We examine current
negative results and comment on how they are inapplicable
to general differentially private data publication.

We then propose a general and practical anonymization
framework called Recursive Partitioning and Summarization
(RPS). RPS works by issuing a set of differentially private
queries to recursively divide the dataset into several regions.
We then generate a synthetic dataset by summarizing each
region in a differentially private manner. We experimen-
tally evaluate the utility of our framework in three domains.
First, we benchmark our method using synthetically gener-
ated datasets and show that RPS can indeed preserve the
characteristics of such datasets. Next, we apply RPS to the
Adult census dataset. We run common data mining algo-
rithms and evaluate the effect of anonymization. Finally, we
show how our framework can be applied to graph datasets by
anonymizing the degree sequences of four real-world graph
datasets with different properties. All our results indicate
the applicability of our framework to general data release.
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APPENDIX

A. UTILITY OF DEGREE SEQUENCE
ANONYMIZATION

To demonstrate the utility of anonymizing the degree se-
quence query, we provide the results for the experiments
described in Section 5 in Figures 4 and 5. Figure 4 uses the
KS-Distance of the anonymized sequences to the original.
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Figure 4: Degree Distribution Accuracy under Node Differential Privacy - the plots show ǫ vs. accuracy (KS-
Distance). The smaller the values, the better.
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(a) Setting Λ = maxd
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(b) Setting Λ = n− 1
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Figure 5: Degree Distribution Accuracy under Node Differential Privacy - the plots show ǫ vs. accuracy (Earth
Mover’s Distance). The smaller the values, the better. The y-axis is given in log scale


