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ABSTRACT
During the last ten years, power analysis attacks have been
widely developed under many forms. They analyze the re-
lation between the power consumption or electromagnetic
radiation of a cryptographic device and the handled data
during cryptographic operations. The goal of this paper is
to give a global view of statistical attacks based on side
channel analysis. These techniques are classified into two
classes: attacks without reference device (e.g. Differential
Power Analysis, Correlation Power Analysis) and attacks
using a reference device (e.g. Template Attack, Stochastic
Model Attack). In this paper, we present the attacks with an
easy comprehensible way and focus on their implementation
aspect. The pros and cons of each attack is highlighted in
details with concrete electromagnetic signals. At least, our
paper proposes also some solutions to enhance the existing
attacks.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; B.8 [Performance and Re-
liability]: Miscellaneous

General Terms
Security

Keywords
Side Channel Attacks, DPA, DEMA, CPA, Template At-
tack, Stochastic Model.

1. INTRODUCTION
Since the first publication of Kocher et al. [1] titled ”Dif-

ferential Power Analysis”, many power analysis attacks have
been developed. Power analysis attacks exploit the depen-
dence between the instantaneous power consumption of a
cryptographic device and the data it processes and/or the
operation it performs. This type of attacks is known as a
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powerful technique for revealing confidential data (e.g. a
secret key of a cryptographic algorithm) because it is im-
perceptible to users and it does not require expensive equip-
ments like the micro probing technique [2, 3].

The Simple Power Analysis (SPA) [1] is a visual inspec-
tion using only one (or very few) power consumption signals
measured during cryptographic operations. The Differential
Power Analysis (DPA) is a statistical test which examines
a large number of power consumption signals to retrieve se-
cret keys. The DPA is multiform itself. It can be performed
by analyzing the intermediate values of one bit (mono-bit
DPA) [1] or a set of several bits (multi-bit DPA) [4, 5, 6].
It can also be observed at one instant of time [1] (first-order
DPA) or at some instants of time (higher-order DPA) [7, 8,
9]. In recent years, the Correlation Power Analysis (CPA)
technique based on the correlation between the real power
consumption of the device and a power consumption model
has been widely studied [10, 11, 12, 13]. It is demonstrated
that CPA can be written under a form of DPA divided by a
normalization factor [6].

Electromagnetic radiation signals acquired by dedicated
sensors were also successfully used to detect secret infor-
mation [14, 15, 16]. One can combine power consumption
and electromagnetic signals to perform multi-channel at-
tacks [17]. For the sake of simplicity, hereafter, the terms
SPA, DPA and CPA will be generalized to any side chan-
nel signals. Thus, speaking of power consumption models or
analysis can be directly extended to electromagnetic radia-
tion signals.

All DPA and CPA attacks are based on a power consump-
tion model such as the Hamming weight model1, the Ham-
ming distance model2, or the most recent ”switching distance
leakage model” [18]. However, in practice, these models do
not always fit totally to the real power consumption of a
device. The idea of using a reference device, which is iden-
tical (or very close) to the attacked one, to build a database
stocking power consumption information dedicated to a type
of device was initially proposed in [19]. This class of attacks
was then developed under the name Template Attack [20]. It
consists of two stages: a profiling stage and a key extraction
stage. The profiling stage is performed on a large number
of signals to learn details of the device implementation. In
the key extraction stage, the secret key is obtained by ana-
lyzing very few signals. The template attack does not try to

1Hamming weight of a set of bit B is the number of bits 1
of B
2Hamming distance of a set of bit B is the number of 0-1
and 1-0 transitions between B and a reference state R
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Figure 1: Electromagnetic signal

reduce noise but uses a multivariate-Gaussian noise model
to extract information present in a single sample.

The stochastic model attack proposed in [21] can be con-
sidered as a combination of the attacks based on power con-
sumption models (e.g. DPA, CPA) and the template at-
tack. The power consumption of the device is estimated by a
model with predefined functions. Moreover each predefined
function will be balanced by a weight, which varies from a
type of device to another. Hence, the stochastic model at-
tack is also composed of two stages: the profiling stage to
determine the weights of predefined functions and noise dis-
tribution; and the key extraction stage to detect the secret
key.

In the power analysis, the key detection is possible because
of the dependency between the power consumption of de-
vices and the intermediate values of the cryptographic algo-
rithms. Therefore, if we want to prevent from power analysis
attacks, this dependency should be broken. Countermea-
sures against power analysis are distinguished into two cate-
gories: hardware and software countermeasures. The goal of
hardware countermeasures is to randomize the power con-
sumption of the device. As a consequence, the dependency
between the power consumption and the intermediate values
is hidden. It can be done by adding a random noise or desyn-
chronizing power consumption signals with a time jitter or a
Random Process Interrupts [22, 23]. Software countermea-
sures, as for them, can be implemented at the algorithm level
without changing the power consumption characteristics of
the cryptographic device. They use the masking technique
to randomize the intermediate values [24, 25].

In the context where many different power analysis meth-
ods have been proposed, a synthesis and a multifaceted in-
vestigation are both a need and a demand for further en-
hancements. To the best of our knowledge, there does not
exist any paper which evaluates DPA, CPA, template at-
tack and stochastic model attack side-by-side, in a same
measurement condition and with an identical cryptographic
device. Hence, our aim is to perform such an evaluation
with real experimental signals to first explain and illustrate
thoroughly each method, and then show out its advantages
and inconveniences. In our experiment, we use a device in
which countermeasures are not implemented. However, one
may note that if hardware countermeasures are present, the
sliding window technique can be used to reduce the effects
of noise and of desynchronization as proposed in [22, 26,
27]. Regarding software countermeasures with the masking
technique, the higher-order DPA can be applied [7, 8, 9].

The paper is structured as follows. In Section 2 we in-
vestigate the attacks which do not need any reference cryp-
tographic device like DPA and CPA. The power analysis

attacks using a reference device such as the template attack
or the stochastic model attack are studied in Section 3. The
comparison of two power analysis classes is shown in Section
4 followed by conclusions in the last section.

2. SIDE-CHANNEL ATTACKS WITHOUT
REFERENCE DEVICE

In order to perform the attacks, we measure the electro-
magnetic emanations of a synthesized ASIC during a Data
Encryption Standard (DES) operation. We want to detect
the sub-key used in the first S-box of the first round of DES.
The size of the sub-key is 6 bits, so there are 64 key assump-
tions. An electromagnetic signal as presented in Figure 1 is
obtained when a plain text is encrypted.

In this section, we first present the classical mono-bit
DPA. We synthesize then two ways to generalize the DPA.
We consider the Partitioning Power Analysis (PPA) method
[6] and propose two conditions that make it possible to en-
hance PPA. The correlation analysis CPA is studied in the
last subsection with a detailed evaluation about the solution
to reduce noise.

2.1 Mono-bit Differential Power Analysis
The original DPA is based on the fact that the power

dissipation to manipulate a bit b to 1 is different from the
power dissipation to manipulate it to 0. To test different
key assumptions Kk (k = 0, ..., 63 in our case), DPA uses N
texts Ci (i = 1 . . . N). Let us denote W (Ci) as the power
consumption (or electromagnetic) signal corresponding to
the text Ci. In function of the intermediate values3 of b (0
or 1) estimated by key assumption Kk, N signals W (Ci) will
be distributed in two groups:

G0,k = {W (Ci), i = 1 . . . N |H(Ci, b, Kk) = 0}

G1,k = {W (Ci), i = 1 . . . N |H(Ci, b, Kk) = 1}
where H(Ci, b, Kk) is the Hamming weight (or the Ham-

ming distance to a reference state) of b, corresponding to
text Ci and estimated by key assumption Kk. Let us denote
N0,k and N1,k as the number of elements of G0,k and G1,k

respectively. The DPA signal corresponding to key assump-
tion Kk is ∆k(b):

∆k(b) =

∑
G1,k

W (Ci)

N1,k
−

∑
G0,k

W (Ci)

N0,k
(1)

In theory, if the assumption Kk is correct, the ∆k(b) 6= 0
at the instant τ when b is handled. It is thus represented
3For example, the Hamming weight or the Hamming dis-
tance of one bit in the output of an S-box.
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Figure 2: DPA signals of the correct key and a wrong key.
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Figure 3: PPA signals of the correct key and a wrong key (d = 4)

by a peak in the DPA signal at the instant τ (DPA peak).
For incorrect key assumptions, ∆k(b) tends to 0 and no sig-
nificant peak appears. However, in practice, due to the bit
distribution conditions and some output correlations of key
assumptions, we observe other peaks at τ in DPA signals
corresponding to wrong key assumptions (ghost peaks), or
secondary peaks which appear at an instant other than τ
in a DPA signal corresponding to any key assumption (see
Figure 2).

2.2 Multi-bit Differential Power Analysis
The first way to generalize the mono-bit DPA is to ex-

tend the notion of groups as proposed the method Parti-
tioning Power Analysis (PPA) [6]. Instead of considering
one bit b, a set of d bits B = b1b2...bd

4 is examined. The
group partition will be then based on the estimated Ham-
ming weight H(Ci,B, Kk) of B, corresponding to text Ci and
key assumption Kk (or the Hamming distance compared to
a reference state R). Hence, the number of groups is (d+1).

Gj,k = {W (Ci), i = 1 . . . N |H(Ci,B, Kk) = j}
for j = 0, ..., d. The PPA signal corresponding to key

assumption Kk is given by:

Σk(B) =

d∑
j=0

aj,k

∑
Gj,k

W (Ci)

Nj,k
(2)

where Nj,k is the number of elements of group Gj,k and
aj,k is the weight corresponding to Gj,k.

The weights aj,k can be dependent or independent of key
assumption Kk. In latter case, we have aj,k = aj for any
key Kk. From Figure 2 and Figure 3, we observe that the
ghost peaks and secondary peaks raise highly in the mono-
bit DPA signals. They are reduced in the case of PPA signals
resulting from d = 4 bits. This shows the advantage of
multi-bit concept against the mono-bit one.

The performance of PPA depends on the choice of weights
aj but this dependency has not been shown in [6]. Therefore,

4For example, 4 bits in the output of an S-box.

in this paper, we want to determine the conditions related
to weights aj for an efficient key detection. Assume that the
relation between the real power consumption W of the de-
vice and the Hamming weight (or the Hamming distance) H
is represented by a model F (W = F (H)). Two conditions
on weights aj are (see more details in Appendices 1 & 2):

1. The PPA signal Σw
k (B) corresponding to a wrong key

assumption is equal to zero:

(

d∑
j=0

aj)(

d∑

k=0

Ck
d

2d
F (k)) = 0 ⇔

d∑
j=0

aj = 0 (3)

2. The signal-to-noise ratio (SNR) of the PPA signal cor-
responding to the correct key is maximized.

max{aj}SNR =
|∑d

j=0 ajF (j)|√∑d
j=0 σ.a2

j/Nj,k

(4)

⇔ a2 = 0,−2a0 = −a1 = a3 = 2a4

in case of F linear and d = 4.

where σ is the standard deviation of noise.

The first condition
∑d

j=0 aj = 0 is interesting because it
does not depend on the power consumption model F . It
means that if no information about the device is available,
it is still possible to detect the secret key by only choosing
aj satisfying this condition. The second condition shows a
relation between weights aj and power consumption model
F . For each model F , one can make the PPA attack more
powerful by selecting suitable weights aj .

In order to evaluate the attack performance, we use two
indexes presented in [6]. The first index i1 is defined as the
ratio between the PPA peak corresponding to the correct
key (expected peak) and the highest PPA peak resulting
from wrong keys (ghost peaks). These peaks are observed
at the same time location τ when the data are handled. If
this index is greater than 1, the expected peak is higher than
any ghost peak and the key detection is reliable. The second
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index, denoted as i2, is the signal-to-noise ratio of the PPA
signal corresponding to the correct key.

To validate two previous conditions, we test the PPA at-
tack with different sets of weights:

• sets of weights aj whose sum is not equal to 0: {-1, -2,
3, 2, 1} and {0, 1, 2, 3, 4},

• sets of weights aj whose sum is equal to 0: {-4, 1, 1,
1, 1} and {-1, 0, 0, 0, 1},

• the optimal set of weights aj of a linear model F : {-1,
-2, 0, 2, 1}.

The Figures 4 and 5 represent the variation of i1 and i2
corresponding to the five sets of weights. They show that if
the sum of weights is different from 0 ({-1, -2, 3, 2, 1} and {0,
1, 2, 3, 4}), index i1 is always equal to 1. It means that the
PPA cannot distinguish the difference between the signal of
the correct key and the one of a wrong key. In the contrary,
if the sum of weights is equal to 0 ({-4, 1, 1, 1, 1} and {-1,
0, 0, 0, 1}), we can detect the correct key from about 800
signals with a good signal-to-noise ratio. The optimal set
{-1, -2, 0, 2, 1} gives the best performance and the correct
key can be detected with only about 300 signals.

The second way to perform the multi-bit DPA of the set
of d bits B is to calculate the mono-bit DPA signals ∆k(bn)
for each bit bn of B (n = 0, ..., d) and then take the sum of
these signals as proposed in [5]. The multi-bit DPA signals is

Σk(B) =
∑d

n=0 ∆k(bn). Two methods to improve this multi-
bit DPA were proposed in [28]. These solutions consider that
all the targeted bits do not give the same contribution to the
power consumption. Therefore, each mono-bit DPA signal
∆k(bn) is balanced by a weight αn.

Σk(B) =

d∑
n=0

αn∆k(bn) (5)

The first method proposed in [28] consists of finding out
the optimal ratio among the weights αn of a specific device.
It is thus an attack based on a reference device that we will
discuss in details in the next section. The second one is a
statistical analysis which does not need a reference device as
well as the suitable set of weights. It tests a large number
of sets of weights {αn}. For each set, the key assumption
that gives the highest DPA peak is considered as the cor-
rect key. Therefore, each key assumption has a frequency
of being designated as the correct key. The key assumption
which gives the highest occurrence frequency is considered
as the correct key. Although a large number of sets {αn}
are tested, the mono-bit DPA signals ∆k(bn) are computed
only one time for each key assumption Kk. Therefore, the
computation time of this method is not so long.

2.3 Correlation Power Analysis
The CPA exploits the correlation between the power con-

sumption W of a device and its power consumption model
F [12, 11, 13]. The most common model is given under
a linear form such as the Hamming weight model and the
Hamming distance model. The correlation factor between
W and F is proportional to the correlation factor between
W and H. The correlation factor of CPA is given by the
following formula [13]:

ρ̂WH,k(B) =
E(W.Hk)− E(W ).E(Hk)

σW σHk

(6)

where E(W ), E(Hk), E(WHk) represent the expectations
of W , Hk (the values of H estimated by the key Kk) and
W.Hk; σW and σHk are the variances of W and Hk. The
Figure 6 illustrates CPA signals corresponding to the correct
key and a wrong key assumption.

According to [6], the correlation between W and H can
be rewritten under a PPA form divided by a normalization
factor:

ρ̂WH,k(R) =

d∑
j=0

(
αj,k

∑
Gj,k

W (Ci)

Nj,k

)

σW σHk

(7)

It is demonstrated in [6] that the normalization factor
induces a high noise level in CPA signals. A solution was
proposed to reduce this normalization effect by adding to
σW (t) a positive constant ε:

ρ̂WH,k(B) =
Σk(B)

(σW + ε)σHk

(8)

The enhancement of CPA depends thus on the choice of ε.
In order to illustrate this dependency, we use two indexes i1

36



0 2000 4000 6000 8000 10000

−0.2

0

0.2

correct key

0 2000 4000 6000 8000 10000

−0.2

0

0.2

wrong key

CPA peak

Figure 6: CPA signals of the correct key and a wrong key (d = 4)
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and i2 previously presented. The value of ε varies from 0 to
15 mV. When ε tends to ∞, the normalization factor tends
to a constant and the CPA will be equivalent to the PPA.
The variation of i1 and i2 in function of ε corresponding to
the CPA method is shown in Figure 7 and Figure 8. We
observe that the fact of adding a positive constant ε allows
CPA to improve indexes i1 and i2. However, if the value ε
is too high, the correlation factor is modified and by con-
sequence index i1 reduces. Hence the positive ε should be
selected in such a way to compromise the performance of i1
and i2.

In conclusion, the CPA attack can be considered as a
multi-bit DPA attack. The epsilon-adding method allows
CPA to reduce the noise level of signals. The choice of ε
depend on the signal form, the noise level and the number
of signals used in CPA. Our evaluation on value ε presented
in this subsection shows the influence of ε on the CPA per-
formance and gives a useful indication on how to choose it.

3. SIDE CHANNEL ATTACKS WITH
A REFERENCE DEVICE

In this section, we focus on the template and the stochas-
tic attacks. Instead of considering the signal as a random
variable that depends on time, we consider it as L random
variables at different points of interest t1 . . . tL. Thus the
signal study is bi-dimensional according to time and input
messages with covariance matrices that represent the noise.
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Figure 8: CPA: variation of i2 in function of ε

Moreover these methods use the noise estimation instead of
the correlation to a consumption model. For each method,
a summary is presented in the first time followed by exper-
imental results obtained from our electromagnetic signals.

3.1 Template Attack

3.1.1 Survey of the template attack
As the DPA and CPA attacks are based on power con-

sumption models, their efficiency is strongly depends on the
considered one. If the power consumption is wrongly mod-
elled, the key detection is impossible. In general, these at-
tacks need a large number of signals to detect the secret key
due to the presence of noise. This condition is sometimes
difficult to satisfy in practice. Facing up to the ”shortcom-
ing” of DPA and CPA attacks, a new class of power attacks
was initially proposed in [19] and then developed under the
well-known name, the Template Attack [20]. This class of at-
tacks contains two stages: the profiling stage to learn about
the device and the key extraction stage to detect the secret
key.

In the profiling stage , a large number of signals is used to
build a database dedicated to a type of device. The database
contains different templates which are important elements of
the template attack. In the original work [20], a template
T (Ci, Kk) is defined for each pair of text Ci and key as-
sumption Kk. A template is composed of mean signal mi,k

computed from Ni,k power consumption signals and covari-
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ance matrix Ci,k which represents the noise probability dis-
tribution. Using this definition, the number of template is
very large. For example, in the case of DES, there are 26

possibilities for Ci and 26 possibilities for Kk. Hence there
are in total 212 = 4096 templates. One may note that the at-
tack based on templates T (Ci, Kk) is not practical. Firstly,
the number of templates is too large and by consequence,
the time to build the database and to find the key is very
long. Moreover, one has to build the templates for all key
assumptions. The latter condition is not always attained in
practice since the encryption key can only be changed if the
device is in the test mode.

In order to make the template attack more practical, one
can employ other types of templates. Template based on bit
values like the output of an S-box used in [29] is a solution.
The output contains 4 bits, there are thus 24 = 16 templates,
denoted by T (V ) (V = 0, ..., 15). Each template contains
also mean signal mV and covariance matrix CV . We can
also use a function like the Hamming weight (distance) to
build templates. We have 5 templates corresponding to 5
possible Hamming weight values of an S-box output. The
templates is denoted by T (H) (H = 0, ..., 4). As usual, a
template T (H) consists of mean signal mH and covariance
matrix CH .

Attacks using the templates T (V ) or T (H) are easier to
implement because the number of templates is only 16 or 5
respectively and we only use one key (which is already im-
plemented in the device) to build all templates. However,
these solutions do not make it possible to determine directly
the secret key by analyzing only one signal. It is due to the
fact that there does not exist a one-to-one mapping rela-
tion between the templates and the key assumptions. More
precisely, if the templates T (H) are considered, 64 key as-
sumptions are mapped to only 5 templates. Therefore, sev-
eral signals must be employed in the second stage to find out
the secret key. Note also that the computing and processing
time of the covariance matrices is related to the signal size L.
Hence, one should not take all samples present in measured
signals to compute the covariance matrix. Only the points
of interest, where the leakage is significant, are considered.
Several solutions to select these points were proposed in [30,
21].

The task of the key extraction stage is to determine the
correct key using the database built in the profiling stage.
Multivariate noise statistics are applied to extract the maxi-
mum of information from a single signal (or very few signals).
Noise, represented by (s −m), is supposed to be Gaussian.
The probability that signal s of length L corresponds to the
template of mean signal m and covariance matrix C is5 [20]:

p(s; (m, C)) =
exp(− 1

2
(s−m)T C−1(s−m))√

(2π)Ldet(C)
(9)

Such detection method is based on the maximum likeli-
hood metric (ML). The best template of s is the one giving
the highest probability p(s; (m, C)).

Some authors [21] simplify the computation of the de-
tector p(s; (m, C)) by setting the covariance matrix to the
identity matrix (do not consider the covariances between the

5Mean signal m can be mi,k, mV , mH and covariance matrix
C can be Ci,k, CV , CH

points). In this case, Eq. (9) becomes:

p(s; m) =
exp(− 1

2
(s−m)T (s−m))√

(2π)L

ln(p(s; m)) = −1

2
(s−m)T (s−m)− L

2
ln(2π) (10)

From equation (10), maximizing p(s; m) becomes mini-
mizing the Euclidean distance between two vectors s and
m. In this case, the detection method is referred to the
minimal distance metric (MD), which uses only the mean
signals.

In order to reveal the secret key, in the key extraction
stage, we need to analyze a set of q signals si (i = 1 . . . q)
associated with texts Ci. Assume that templates based on
the Hamming distance TH (H = 0 . . . 4) are used. For each
signal si, if the template TH is estimated, the probability
p(si; (mH , CH)) will be added up to all key assumptions
corresponding to TH . At the end, when all q signals si are
processed, the key assumption which has the maximal sum
will be considered as the correct key.

3.1.2 Performance evaluation
In our experiment, we build the templates based on the

Hamming distance. There are thus five templates. The at-
tack using bit value based templates, which are not pre-
sented here, can be performed in a similar way. We select
L points around the instant τ where data are handled as
points of interest. 3000 electromagnetic signals are used to
build the data base. Both maximum likelihood and minimal
distance metrics are tested in the key extraction stage to
compare the efficiency of these metrics.

The Figures 9 and 10 represent the mean signals mH

(H = 0 . . . 4) corresponding to five templates. A test signal
s corresponding to the template 1 is presented by the dotted
curve. We observe that the distance between the test signal
and the corresponding mean signal m1 is much larger than
the distances among mean signals m0, ..., m4 themselves. We
performed the noise variation computation and the result
shows that the noise standard deviation of electromagnetic
signals is about 7mV compared to the maximal distance
between two consecutive mean signals at the top of peaks
v = 1.7mV (see Figure 10). It means that if only mean sig-
nals are used in the key extraction stage like the MD metric,
the detection may not be exact due to a high noise level.

We study the performance of the ML and MD metrics in
the template estimation when only one signal is used in the
key extraction stage. The Figure 11 represents the distri-
bution of test signals into 5 templates (one signal per test).
The first histogram corresponds to the correct distribution
of signals into templates; the second histogram corresponds
to the distribution of templates estimated by the MD met-
ric; the third histogram corresponds to the distribution of
templates estimated by the ML metric. As noise is high
compared to the distance between mean signals, the test
signal s can be easily out of the zone Z with MD metric (see
Figure 10) and the estimated template is either 0 or 4 (the
template 4 instead of the template 1 in this case). There-
fore, the second histogram has high values for the template
0 and the template 4. Otherwise, with ML metric, we ob-
serve that the distribution is very similar to the first one.
The templates are well estimated by the ML metric.

We evaluate the template estimation in relation to the
number of points of interest L. We define pTMD (pTML) the
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Figure 11: Different distributions of templates. Signal size L = 100
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Figure 9: Mean signal of 5 templates with 50 points
around τ and a test signal used in the key extraction
stage
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Table 1: pMD and pML of the template attack.

Num. of signals 4 6 8 10 20 40

pMD(%) 7 8 9 10 13 21

pML (%) 92 96 99 100 100 100

empirical probability (occurrence percentage) that a signal
is estimated to the correct template by the MD (ML) metric.
A method is efficient if its template estimation frequency is
high. The Figure 12 represents the evolution of pTMD and
pTML in function of the number of points of interest L. The
pTML tends to 100% with about 150 points of interest and the
pTMD is always low (about 20%). The result shows clearly
the advantage of the ML metric, which uses information of
noise from covariance matrices, compared to the MD metric,
which uses only mean signals.

As stated previously, the secret key detection needs sev-
eral signals in the key extraction stage. The key detection
performance is now examined. We define pMD (pML) the
occurrence percentage that the correct key is correctly de-
tected with the MD (ML) metric. The Table 1 gives different
values of pMD and pML according to the number of signals
used in the second stage. The number of points of inter-
est L is set at 100 in this case. It shows that by using the
maximum likelihood metric, the secret key can be correctly
detected with only 10 signals. The maximum distance met-
ric is undoubtedly less efficient.

According to the previous experimental results, we demon-
strate that the template attack can be easily implemented
using templates based on the Hamming weight (distance)
function. Useful information contained in noise is well ex-
ploited by using the maximum likelihood metric. The attack
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is powerful since the secret key can be detected with only
10 signals in the key extraction stage.

3.2 Stochastic Model Attack

3.2.1 Implementation
The stochastic model attack [21] is based on two stages

as the template attack. In the profiling stage , instead of
using mean signal m computed from measured signals, the
stochastic model attack estimates the power consumption
by predefined functions. In the case of DES, four predefined
functions are defined as the values of four bits bn (n = 1 . . . 4)
in the output B of an S-box. The stochastic power consump-
tion model is then formulated as:

P (B) = β0 +

4∑
n=1

βnbn (11)

The weight β0 represents the non-data dependent signal
part, it is thus fixed for every value of B. The weights βn

(n = 1 . . . 4) are the bit-wise data dependent signal por-
tions. According to [21], vector β containing weights βn

(n = 0, .., 4) is computed as: β(t) = (AT A)−1AT s(t). The
vector s(t) corresponds to the values at the instant t of N
power consumption signals used in the profiling stage and
A = {ai,n} is matrix of size N × 5. All elements of the first
column of matrix A, which correspond to the fixed weight
β0, are set to 1. Element ai,n, n 6= 0 corresponds to the
value of bit bn (n = 1 . . . 4) when text Ci are encrypted by
the correct key. A covariance matrix which represents the
noise distribution is also computed in the profiling stage for
each value of B. There are thus 16 covariance matrices.

In the key extraction stage , the weights βn (n = 0 . . . 4)
calculated in the profiling stage are used to estimate the
power consumption corresponding to each value of B, in-
stead of the mean for template attack. It is the main differ-
ence between the template attack and the stochastic attack.
Both MD and ML metrics can be employed to estimate the
noise and detect the secret key as in the template attack.6

3.2.2 Experimental results
Figure 13 represents the variation of βn(t) (n = 0, .., 4) in

time. We observe that the non-data dependent signal part
(β0) is very large compared to the bit-wise data dependent
signal portions (β1,...,β4). The weights β1, ..., β4 are zoomed
in Figure 14. These weights vary in time and they are not
identical. It means that a Hamming distance model would
not really precise in this case since this model considers that
all bits are equivalent. If the weights β1, ..., β4 are identical,
the stochastic model attack is exactly the template attack
based on the bit values T (V ).

In the key extraction stage, for each test signal, there
are 64 key assumptions which map to only 16 possibilities
of B7. Hence, there does not exist a one-by-one mapping
relation between the stochastic power consumption model
and key assumptions. Like the template attack based on a
model or intermediate values, the stochastic attack can not
detect directly the secret key with only one signal in the key

6In case of MD metric, the covariance matrices are the iden-
tity.
7There are 4 bits bn, each bit has 2 possibilities 0 and 1. So
there are in total 24 = 16 possibilities of B

Table 2: pMD and pML of the stochastic model attack.

Num of signals 4 6 8 10 20 40

pMD(%) 5 5 6 7 10 27

pML (%) 100 100 100 100 100 100

extraction stage. One should use several power consumption
signals to estimate the secret key.

We use the same notation pML and pMD to represent the
occurrence percentage that the secret key is correctly de-
tected with the ML and MD metrics. The points of interest
are similarly chosen as in the template attack with L = 100
points. The variation of pML and pMD of the stochastic at-
tack in function of number of signals used in the key extrac-
tion stage is given in the Table 2. Once again, the attack
based on the ML metric is much more powerful than the
one based on the MD metric. It is explained by the fact
that the ML metric exploits useful information contained in
noise. The stochastic model attack with ML metric needs
only about 4 signals in the key extraction stage to find out
the secret key. This result is better than the one of the
template attack since the stochastic model template takes
into account the non-equivalence among the bits by using
the stochastic weights βn in the power consumption model.

The multi-bit DPA presented at the end of the subsection
2.1 uses also the weights αn to compensate the imbalance
of bits. These weights can be determined by using a ref-
erence device. However this multi-bit DPA attack and the
stochastic model attack are not identical. In the case of
the multi-bit DPA, the weights αn are applied to mono-bit
DPA signals to obtain a multi-bit DPA signal, which allows
a more efficient key detection. Meanwhile, the weights βn

of the stochastic model attack are applied to the predefined
functions to model precisely the power consumption of the
device.

In conclusion, the stochastic attack can be considered as
a variation of the template attack in which a template con-
sists of a stochastic power consumption model given by pre-
defined functions and a covariance matrix.

4. DISCUSSION
The Sections 2 and 3 give a general view about two power

analysis classes: attacks without a reference device and at-
tacks with a reference device. It is not an easy task to quan-
titatively compare the performance of these attacks because
they are not performed in the same conditions. The first
class, which consists of DPA and CPA attacks, does not
need any reference device. Their performance is basically
evaluated by the number of signals needed to detect the se-
cret key. This number depends on the quality of signals such
as the noise level or the misalignment level.

In our experiment, the mono-bit DPA attack needs about
2000 signals, the 4-bit DPA needs about 300 signals, the
template attack and the stochastic model attack need only
10 signals to detect the correct key with the ML metric.
However, in order to obtain such performance, the second
class of attacks has to have a powerful database, which char-
acterizes the power consumption and the noise distribution
of the device. Such a powerful database can only be built if
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time.
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Figure 14: The weights β1, β2, β3,β4 in function of
time (zoom).

the reference device is identical or very close to the attacked
device. If this requirement is not fully satisfied, the efficiency
of the template and stochastic attacks will be dramatically
reduced.

When comparing the template attack and the stochastic
model attack, one can easily observe that the second one
is much more practical to the first one in the original ver-
sion (e.g. a template is built for each pair (Ci, Kk)). The
detailed comparison of these attacks can be found in [31].
However, if we adopt the bit-value based template and the
Hamming weight based template, the template attack be-
comes more pragmatic and its complexity and its efficiency
are equivalent to those of the stochastic method.

Thanks to the use of covariance matrices, the template
and stochastic model attacks are well stand up to the noise
problem. However, the misalignment of signals is not con-
sidered in these methods. If the signal misalignment effect
of DPA can be reduced by the sliding window technique [26,
27], this latter, which suppresses also the noise, seems to
be difficult to apply in the template and stochastic model
attacks.

Following our experiment, the time to inverse covariance
matrices that are only used in ML metric is not really long
because the number of covariance matrices is small (5 or 16
matrices in our cases) and the number of signals to detect
the key is not large. Furthermore, according to the results
presented in Sections 2 and 3, the template and stochastic
methods work much better with the ML metric than with
the MD metric. Therefore, we advise using the maximum
likelihood technique to estimate the secret key in the key
extraction stage.

The existing points of interest selection strategies pre-
sented in the literature aim only at taking the points which
have a high dependence with data. However, our results
show that not only highly-data-dependent points are useful
for the key detection. Among L = 100 points around the
instant τ , there are only several points which are directly
depend on the key and texts but the other points, which in
general are not considered, can also contribute to the key
detection. The covariance matrices exploit the correlation
between points and this correlation is really significant if the
considered points are consecutive.

In conclusion, the choice of an attack method depends on
the attacker’s context. If he has a device which is identical
to the attacked one, the template (or stochastic) attack is
the best choice. Contrary, if no reference device is available,
the attacker should use DPA or CPA attacks. As the DPA
signals have a noise level lower than the CPA signals, he can
in the first time analyze the signals with DPA to find out
significant leakage instants and then apply the CPA to detect
the secret key. The DPA and CPA methods can be used
for one or several bits, and combined with different signal
processing tools to reduce noise and misalignment effects.

5. CONCLUSIONS
The goal of the article is to give readers a deep look into

power analysis attacks, particularly the experimental aspect.
It begins with an introduction and a state of the art in this
domain. The main part of the paper focus on two classes of
power analysis: the attacks without reference device such as
DPA, CPA and the attacks with a reference device such as
the template and the stochastic attacks. We try to present
the attacks with a simple manner and a lot of illustration
figures based on the same signals.

The paper presents also some advanced analysis to im-
prove existing attacks. Precisely, we develop two conditions
which make it possible to improve a multi-bits DPA method.
An evaluation of how to enhance the CPA is also given. Dif-
ferent parameters and metrics of the template and stochastic
attacks have also been evaluated.

Finally we compare the template/stochastic model attacks
and the DPA/CPA attacks. Depend on each situation, one
can choose a suitable attack or combine several attacks to
efficiently detect the secret key.
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Clédière , ”Novel Approaches for Improving the Power
Consumption Models in Correlation Analysis”. In
Cryptology ePrint Archive, Available online:
http://eprint.iacr.org/2007/306

[29] D. Agrawal, J.R Rao, P. Rohatgi and K. Schramm,
”Templates as Master Keys” In proceedings of CHES
2005, Springer, Edinburgh, UK, 2005.

[30] C. Rechberger and E. Oswald, ”Practical Template
Attacks”, In Workshop on Information Security
Applications, WISA 2004, Jeju Island Korea, August
2004.

[31] B. Gierlichs, K. Lemke-Rust and C. Paar, ”Template
vs. Stochastic Methods”, In Proceedings of CHES
2006, LNCS 4249, Springer-Verlag, Yokohama, Japan
2006

APPENDIX
A. APPENDIX 1
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We assume that the relation between the real power con-
sumption of the device and the Hamming weight (or the
Hamming distance) H(Ci,B, K) (simply denoted by Hi) of
B estimated by the correct key K is represented by a func-
tion F . It means that W (Ci) = F (Hi). We calculate the
value of the PPA signal corresponding to the correct key
at the moment τ , denoted by Σc

k(B). The signals are dis-
tributed in (d + 1) groups according to the estimated values
Hi, which are the real values. We assume also that aj,k = aj .

Σc
k(B) =

d∑
j=0

aj

∑
Gj,k

W (Ci)

Nj,k

=

d∑
j=0

aj

∑
Gj,k

F (Hi)

Nj,k
=

d∑
j=0

aj

∑
Gj,k

F (j)

Nj,k

=

d∑
j=0

ajF (j) (12)

We estimate now the value of the PPA signal correspond-
ing to a wrong key at the moment τ , denoted by Σw

k (B). As
the key is wrong, the estimated values Hi can be different
from the real values. Therefore, there exists signals which
are distributed in wrong groups. We consider that the bits
of B is uniformly distributed. It means that in group Gj,k,
(j = 0...d), there are Nj,k.Ck

d /2d signals which should be-
long, a priori, in group Gl,k, (l = 0...d). The Σw

k (B) is given
by:

Σw
k (B) ≈

d∑
j=0

aj

∑
Gj,k

W (Ci)

Nj,k

≈
d∑

j=0

aj

∑d
l=0 Nj,k

Cl
d

2d F (l)

Nj,k

≈ (

d∑
j=0

aj)(

d∑

l=0

Cl
d

2d
F (l)) (13)

According to Eq. (12) and Eq. (13), we determine condi-
tions of weights aj to detect efficiently the secret key. There
are two principal conditions.

1. The signal Σw
k (B) is equal to zero:

(

d∑
j=0

aj)(

d∑

k=0

Ck
d

2d
F (k)) = 0 ⇔

d∑
j=0

aj = 0 (14)

2. The signal-to-noise ratio (SNR) of the PPA signal cor-
responding to the correct key is maximized. If the stan-
dard deviation of noise of each electromagnetic signal
is σ, the standard deviation of noise present in the sig-

nal Σc
k(B) is

√∑d
j=0 σ.a2

j/Nj,k. According to Eq. (12),

maximizing the SNR of Σc
H(B) is equivalent to maxi-

mizing the ratio:

SNR =
|∑d

j=0 ajF (j)|√∑d
j=0 σ.a2

j/Nj,k

(15)

B. APPENDIX 2

In Appendix 1, we determine the relation between con-
sumption model F and the weights αi of the PPA method.
In this section, we estimate the optimal weights for a linear
model F . As the first condition is independent to F , we are
interested in the second condition about the signal-to-noise
ratio:

SNR =
|∑d

j=0 ajF (j)|√∑d
j=0 σ.a2

j/Nj

(16)

For a linear model, we have F (j) = a.j + c where a and c
are constants. The SNR is given by:

SNR =
|∑d

j=0 aj(a.j + c)|√∑d
j=0 σ.a2

j/Nj

(17)

Consider the case where d = 4 and the texts are uniformly
distributed in groups. The number of elements of group Gj

is Nj = Cj
d/2dN . Maximizing the SNR becomes maximiz-

ing

SNR =
|a0.0 + a1.1 + a2.2 + a3.3 + a4.4|√

a2
0
1

+
a2
1
4

+
a2
2
6

+
a2
3
4

+
a2
4
1

(18)

As the SNR is always positive, we search the weights
which maximize SNR2. Under the condition

∑d
i=0 ai = 0,

we have a0.0+a1.1+a2.2+a3.3+a4.4 = −2.a0−a1+a3+2.a4,
and

SNR2 =
(−2.a0 − a1 + a3 + 2.a4)

2

a2
0
1

+
a2
1
4

+
a2
2
6

+
a2
3
4

+
a2
4
1

(19)

The numerator does not depend on a2. The SNR2 is
maximized if a2 = 0 and it is equal to:

SNR2 = 4
(−2.a0 − a1 + a3 + 2.a4)

2

4.a2
0 + a2

1 + a2
3 + 4.a2

4

= 4
(−2.a0 − a1 + a3 + 2.a4)

2

(−2.a0)2 + (−a1)2 + a2
3 + (−2.a4)2

(20)

Denote x = (−2.a0), y = (−a1), z = a3, w = a4, we
obtain:

SNR2 = 4
(x + y + z + w)2

x2 + y2 + z2 + w2
(21)

According to Cauchy-Schwartz inequality, ∀x, y, z, w ∈ R
we have:

(x + y + z + w)2 ≤ 4(x2 + y2 + z2 + w2)

In consequence: SNR2 ≤ 16. The equality occurs when
x = y = z = w, or −2a0 = a1 = a3 = 2a4. This relation
validates also the condition

∑d
i=0 ai = 0. Therefore, the

maximal value of SNR is obtained if −2a0 = a1 = a3 = 2a4

and a2 = 0 (for example: a0 = −1, a1 = −2, a2 = 0, a3 =
2, a4 = 1)
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