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ABSTRACT
The problem of securely outsourcing computation has re-
ceived widespread attention due to the development of cloud
computing and mobile devices. In this paper, we first pro-
pose a secure verifiable outsourcing algorithm of single mod-
ular exponentiation based on the one-malicious model of two
untrusted servers. The outsourcer could detect any failure
with probability 1 if one of the servers misbehaves. We
also present the other verifiable outsourcing algorithm for
multiple modular exponentiations based on the same mod-
el. Compared with the state-of-the-art algorithms, the pro-
posed algorithms improve both checkability and efficiency
for the outsourcer. Finally, we utilize the proposed algo-
rithms as two subroutines to achieve outsource-secure poly-
nomial evaluation and ciphertext-policy attributed-based en-
cryption (CP-ABE) scheme with verifiable outsourced en-
cryption and decryption.
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1. INTRODUCTION
Verifiable computation (VC) allows a computationally weak

client to outsource evaluation of a function on many inputs
to a powerful but untrusted server [8, 13]. The client in this
model invests a large amount of off-line computation and
generates an encoding of its function. Given this encoding
and any input, the server performs the computation and re-
sponds with a result and a proof that the result is correct.
With the server’s response, the client can verify if the com-
putation has been carried out correctly using substantially
less effort than computing the function directly.

The problem of securely outsourcing computation has re-
ceived widespread attention due to the rise of cloud comput-
ing and the proliferation of mobile devices, such as smart
phones and netbooks [2]. For example, a computationally
weak device might off-load heavy computations, e.g., a cryp-
tographic operation or a photo manipulation, to a network
server. Moreover, a proof of the correctness of the result
might be desirable if not necessary.

In the cryptographic community, there is a long history
of outsourcing expensive cryptographic operations to a semi-
trusted device. Chaum et al. [4] first introduced the concept
of ”wallets with observers” that allows a piece of hardware
installed on the client’s device to carry out some computa-
tions for each transaction. Hohenberger et al. formalized
this model [17], and presented protocols for the computa-
tion of modular exponentiations based on two non-colluding
servers. Chen et al. [7] proposed an efficient outsourcing
algorithm of bilinear pairing in the one-malicious version of
two untrusted servers, where the outsourcer only carried out
5 point additions and 4 multiplications without any expen-
sive operations. Lai et al. [20] considered the verifiability
of attributed-based encryption (ABE) with outsourced de-
cryption, which guarantees that an outsourcer can efficiently
check if the server returns the correct result. Li et al. [21]
introduced outsourcing computation into identity-based en-
cryption (IBE) revocation, formalized the security definition
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and proposed a scheme to offload all the key-update relat-
ed operations to a cloud server. Other work targets specific
classes of functions, such as one-way function inversion [14],
large-scale linear equations [5] and so on.

Hohenberger et al. [17] presented the first security model
for outsourcing cryptographic computations, and proposed
the first outsource-secure algorithm for modular exponenti-
ations. In their model, the adversarial environment writes
the software for the malicious servers, but then does not
have direct communication with them once the device start-
s relying on them. In addition to security, they also provide
a framework for quantifying the efficiency and checkabili-
ty of an outsourcing implementation. In their algorithms,
the outsourcer has the ability to detect any failure if the
cloud servers misbehave. Chen et al. [6] proposed a new se-
cure outsourcing algorithm for modular exponentiations in
the one-malicious version of two untrusted program model.
Compared with the algorithm described in [17], the proposed
algorithm is better in both efficiency and checkability. They
also presented an efficient algorithm for outsourcing simulta-
neous modular exponentiations. In the proposed algorithms
of [6, 17], the checkability is 1/2 and 2/3 respectively, and
the outsourcer cannot detect the failure with probability 1
if it is cheated by the server. Therefore, it is possible for the
outsourcer to be cheated by the server and the outsourcer
cannot check the error successfully in the algorithms of [17]
and [6]. Ma et al. presented several outsourcing algorithms
for batch modular exponentiations [22], but the bases or ex-
ponents of the computations are public for the servers and
the algorithms cannot realize the input privacy completely.
All the algorithms in [6, 17, 22] are based on two untrusted
servers. Dijk et al. [9] presented an outsourcing algorithm
for exponentiation based on a single server, but it cannot
ensure the privacy of the input since the base of the expo-
nentiation is known for the server. Wang et al. [26] also
constructed an efficient algorithm for batch modular expo-
nentiation and realized provable data possession (PDP) [25,
27] based on an untrusted server, but the outsourcer needs
to execute one modular exponentiation itself when verifying
the outsourced result and the checkability is only for modu-
lar exponentiation. Therefore, the algorithm of Wang et al.
has no advantage in the efficiency and the checkability for
single modular exponentiation.

Our Contributions. In this paper, we first propose a se-
cure verifiable outsourcing algorithm of single modular ex-
ponentiation in the one-malicious model of two untrusted
servers. The outsourcer could detect any failure with prob-
ability 1 if one of the servers returns the fault result. We also
present another outsourcing algorithm for multiple modular
exponentiations which improves checkability and efficiency
for the outsourcer simultaneously compare with the previous
one. Finally, we utilize two proposed algorithms as subrou-
tines to achieve private outsourcing of polynomial evaluation
and CP-ABE scheme with verifiable outsourced encryption
and decryption.

2. SECURITY DEFINITION AND MODEL
In this section, we review the formal security definition

and model of an outsourcing algorithm introduced by [17].

2.1 Definition of Outsource-security
An algorithm Alg includes a trusted part T and an un-

trusted program U , and TU denotes the works that carried

out by T invoking U . An adversary A is simulated by a
pair of algorithms (E,U ′), where E denotes the adversarial
environment that submits adversarial inputs for Alg, and
U ′ represents an adversarial software written by E. As de-
scribed in [17], we assume that the two adversaries (E,U ′)
can only make direct communication before the execution
of TU , and in other cases, they can only communicate with
each other by passing messages through the outsourcer T . In
the real world, a malicious manufacturer E might program
its software U ′ to behave in an adversarial fashion; but once
U ′ is installed behind T ’s firewall, E should no longer be
able to directly send instructions to it [17]. We first intro-
duce the inputs and outputs for an outsourcing algorithm in
the following definition.

Definition 1. (Algorithm with outsource-I/O) An algo-
rithm Alg takes five inputs, and produces three outputs.
The first three inputs are generated by an honest party, and
are classified by how much the adversary A knows about
them. The first input is called the honest, secret input,
which is private for both E and U ′; the second is called the
honest, protected input, which may be known by E, but is
protected from U ′; and the third is called the honest, un-
protected input, which may be known by both E and U ′.
The last two inputs are generated by the environment E,
including the adversarial, protected input, which is known
to E, but protected from U ′; and the adversarial, unprotect-
ed input, which is public for both E and U ′. Similarly, the
first output is called secret and private for both E and U ′;
the second is protected, which may be known to E, but not
U ′; and the third is unprotected, which may be known by
both E and U ′.

The following definition of outsource-security ensures that
the malicious environment E cannot obtain any information
about the secret inputs and outputs of TU , even if T uses
the malicious software U ′ written by E.

Definition 2. (Outsource-security) Let Alg be an algo-
rithm with outsource I/O. A pair of algorithms (T,U) is
called an outsource-secure implementation of Alg if the fol-
lowing conditions hold.

1) Correctness: TU is a correct implementation of Alg.
2) Security: For all probabilistic polynomial-time (PPT)

adversaries A = (E,U ′), there exist two PPT simulators
(S) such that the following pairs of random variables are
computationally indistinguishable.

Pair One: EV IEWreal ∼ EV IEWideal, which means
that the malicious environment E cannot gain anything in-
teresting about the private inputs and outputs during the
execution of TU . Both of the real process and the ideal
process proceed in rounds.

The real process:
EV IEW i

real = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1)};
(estatei, ji, xiap, x

i
au, stop

i)← E(1k, EV IEW i−1
real, x

i
hp, x

i
hu);

(tstatei, ustatei, yis, y
i
p, y

i
u)←

TU
′(ustatei−1)(tstatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) :

(estatei, yip, y
i
u)}

EV IEWreal = EV IEW i
real if stopi = TRUE.

In round i, the honest, secret; honest, protected; and hon-
est, unprotected inputs (xihs, x

i
hp, x

i
hu) are selected using an

honest, stateful process I to which the environment E does
not have access. Then E chooses estatei, ji, xiap, x

i
au, stop

i

based on its view in the last round EV IEW i−1
real and hon-

est inputs (xihs, x
i
hp, x

i
hu) given to TU

′
, where estatei is a
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variable as remembering what it did next time it is in-
voked, xiap, x

i
au are two adversarial inputs, and stopi is a

Boolean variable determining whether round i is the last

round. Next, the algorithm TU
′

is executed on the inputs

(tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au), and produces a new state

tstatei for T , the secret, protected, and unprotected outputs
yis, y

i
p, y

i
u, where tstatei−1 is T ’s previously saved state. The

oracle U ′ saves current state ustatei based on its previous-
ly saved state ustatei−1. The view of the real process in
round i includes estatei, yip and yiu. The overall view of
U in the real process is its view in the last round, where
stopi = TRUE.

The ideal process:
EV IEW i

ideal = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1)};
(estatei, ji, xiap, x

i
au, stop

i)← E(1k, EV IEW i−1
ideal, x

i
hp, x

i
hu);

(astatei, yis, y
i
p, y

i
u)←

Alg(astatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei, Y ip , Y
i
u , rep

i)← S
U′(ustatei−1)
1

(sstatei−1, . . . , xj
i

hp, x
ji

hu, x
i
ap, x

i
au, y

i
p, y

i
u);

(zip, z
i
u) = repi(Y ip , Y

i
u)+(1−repi)(yip, yiu) : (estatei, zip, z

i
u)

EV IEWideal = EV IEW i
ideal if stopi = TRUE.

In the ideal process, we have a stateful simulator S1 who
is protected from the secret input xihs, but given the pro-
tected or unprotected outputs that Alg produces for round
i, decides to either output (yip, y

i
u) generated by Alg, or re-

place them with some other values (Y ip , Y
i
u). Note that this

is controlled by a Boolean variable repi. During the whole
process, S1 is allowed to query oracle U ′, and U ′ saves its
state as in the real experiment.

Pair Two: UV IEWreal ∼ UV IEWideal, which means
that the untrusted software U ′ written by E learns nothing
about the inputs and outputs during the execution of TU .

As defined in Pair One, the view that the untrusted soft-
ware U ′ in the real process is UV IEWreal = ustatei if
stopi = TRUE.

The ideal process:
UV IEW i

ideal = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1)};
(estatei, ji, xiap, x

i
au, stop

i)←
E(1k, estatei−1, xihp, x

i
hu, y

i−1
p , yi−1

u );

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei)←
S
U′(ustatei−1)
2 (sstatei−1, xj

i

hu, x
i
au) : (ustatei);

UV IEWideal = UV IEW i
ideal if stopi = TRUE.

In the ideal process, we have a stateful simulator S2 who
is only given the unprotected inputs (xihu, x

i
au). In the whole

process, S2 is allowed to access oracle U ′ and U ′ saves its
state as in Pair One.

Assume TU is a correct implementation of Alg, we have
the following definitions.

Definition 3. (α-efficient, secure outsourcing) A pair of
algorithms (T,U) is α-efficient if the running time of T is no
more than an α-multiplicative factor of that of Alg for any
input x.

Definition 4. (β-checkable, secure outsourcing) A pair of
algorithms (T,U) is β-checkable if T detects any deviation
of U ′ from its advertised functionality during the execution

of TU
′(x) with probability no less than β for any input x.

Definition 5. ((α, β)-outsource-security) A pair of algo-

rithms (T,U) are called an (α, β)-outsource-secure execution
of Alg if they are α-efficient and β-checkable.

2.2 Security Model
Hohenberger et al. [17] first presented two untrusted pro-

gram models for outsourcing exponentiations modulo a prime.
In this model, the adversarial environment E writes two
software U ′ = (U ′1, U

′
2), and T installs these software in a

manner such that all subsequent communication between
any two of E,U ′1 and U ′2 must pass through T . The new
adversary attacking T is A = (E,U ′1, U

′
2). We assume that

at most one of the software misbehaves, but we don’t know
which one. It is named as the one-malicious version of two
untrusted models. In the real-world applications, it is equiv-
alent to buy the two copies of the advertised software from
two different vendors and achieve the security as long as one
of them is honest [6].

3. VERIFIABLE SECURE OUTSOURCING
OF SINGLE MODULAR EXPONENTIA-
TION

In [17], a subroutine named Rand is used to speed up the
computations. The inputs for Rand are a prime p, a base
g ∈ Z∗p , and the output for each invocation is a random, in-

dependent pair of the form (k, gk mod p), where k ∈ Zq. In
our paper, we define another subroutine named Rand’, and
the inputs for Rand’ are same as Rand, and the output is a
random, independent tuple of the form (l, l−1, g−l mod p),
where l ∈ Zq. There are two approaches to implement these
functionalities. First, a trusted server computes two tables
of random, independent tuples in advance and then stores
them into the memory of T , which is called the table-lookup
method. For each invocation, T needs to retrieves a new
tuple in the table. Second, we can apply the EBPV gener-
ator, which is secure against adaptive adversaries and runs
in time O(log2L) for an L-bit exponent [23].

3.1 Verifiable Outsourcing Algorithm
We propose a new secure outsourcing algorithm VEx-

p for exponentiation modulo a prime in the one-malicious
model. In VExp algorithm, T outsources its modular expo-
nentiation computations to U1 and U2 by invoking the sub-
routine Rand and Rand’. A requirement for VExp is that
the adversary cannot know any useful information about the
inputs and outputs of VExp. In the following algorithm,
Ui(x, y)→ yx denotes that Ui takes (x, y) as input and out-
puts yx mod p, where i = 1, 2.

Let p, q be two large primes and q|p − 1. The input of
VExp is a ∈ Zq, and u ∈ Z∗p such that uq ≡ 1( mod p) for
an arbitrary base u and an arbitrary power a. The output of
VExp is ua mod p. Both of a and p are computationally
blinded to U1 and U2. The proposed VExp algorithm is
described as follows:

1) T firstly runs Rand to create four blinding pairs (α, gα),
(β, gβ), (t1, g

t1), (t2, g
t2), and then runs Rand’ to obtain two

blinding tuples (b, b−1, g−b), (c, c−1, g−c). We denote:

v = gα mod p, µ = gβ mod p.

2) T splits ua = (vw)a = gαawa = gβgγwa mod p, where
w = u/v mod p, γ = (αa− β) mod q.

3) Next, T queries U1 and U2 respectively as below:
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U1(b/t1, wg
t1)→ D11 = wb/t1gb,

U2(c/t1, wg
t1)→ D21 = wc/t1gc.

4) After receiving the outsourcing result from U1 and U2,
T computes:

wb/t1 = D11 · g−b, wc/t1 = D21 · g−c.

and queries U1 in random order as:

U1(γ/t2, g
t2)→ D12 = gγ ,

U1(at1/c, w
c/t1)→ D13 = wa.

Similarly, T queries U2 in random order as:

U2(γ/t2, g
t2)→ D22 = gγ ,

U2(at1/b, w
b/t1)→ D23 = wa.

5) Finally, T verifies that both U1 and U2 generate the cor-
rect outputs, that is to say,

D12 = D22, D13 = D23.

If not, T outputs ”error”; otherwise, T can compute

ua = µgγwa mod p.

Remark 1. In the one-malicious model, the equations

D12 = D22, D13 = D23

implies both U1 and U2 generate the correct gγ and wa since
b, c, t1, t2 are randomly chosen from Z∗q and secret for the two
servers. The VExp algorithm is verifiable with probability
1 for the randomness of b, c, t1, t2, where the checkability of
the algorithm in [6] is only 2/3, and the malicious server
may cheat the outsourcer with probability 1/3. For the out-
sourcer, we need 12 MM, 5 MInv operations and invoke the
Rand or Rand’ six times. So, the proposed scheme improves
the checkability of the modular exponentiations though a lit-
tle computation cost is added.

3.2 Security Analysis
Theorem 3.1. In the one-malicious model, the algorithm

(T, (U1, U2)) proposed in Section 3.1 is an outsource-secure
implementation of VExp, where the input (a, u) may be
honest, secret; honest, protected; or adversarial, protected.
Proof. Let A = (E,U ′1, U

′
2) be a PPT adversary that in-

teracts with a PPT algorithm T in the one-malicious model.
First, we prove EV IEWreal ∼ EV IEWideal, which means

that the environment E learns nothing during the execution
of (T, (U1, U2)). If the input (a, u) is honest, protected, or
adversarial, protected, it is obvious that the simulator S1

behaves same as in the real execution. Therefore, it only
needs to prove the case where (a, u) is an honest, secret
input.

So, suppose (a, u) is an honest, secret input. The simula-
tor S1 in the ideal experiment behaves as follows. On receiv-
ing the input on round i, S1 ignores it and instead makes
one random query of the form (α′j , β

′
j) to both U ′1 and U ′2.

After receiving the outputs of U ′1 and U ′2, S1 then submits
two random queries of the form (αj , βj) to both U ′1 and U ′2.

Finally, S1 checks one output β
′α′j
j and two outputs β

αj
j from

each program. If an error is detected, S1 saves all states and
outputs Y ip = ”error”, Y iu = ∅, repi = 1, and thus the final

output for ideal process is (estatei, ”error”,∅); otherwise,
S1 outputs Y ip = ∅, Y iu = ∅, repi = 0, and the final output

for ideal process is (estatei, yip, y
i
u).

In addition, we need to show that the inputs to (U ′1, U
′
2)

in the real experiment are computationally indistinguishable
from that in the ideal one. In the ideal experiment, the in-
puts are selected uniformly at random. In the real one, each
part of all three queries that T makes to any program is gen-
erated by invoking the subroutine Rand or Rand’ and thus
computationally indistinguishable from random. Therefore,
we consider three possible conditions. If (U ′1, U

′
2) both be-

have honest in round i, EV IEW i
real ∼ EV IEW i

ideal since
the outputs of VExp are not replaced and repi = 0. If
one of (U ′1, U

′
2) is dishonest in round i, the fault must be

detected by both T and S1 with probability 1, resulting in
an output of ”error”. Thus, EV IEW i

real ∼ EV IEW i
ideal

even when one of (U ′1, U
′
2) misbehaves, so we conclude that

EV IEWreal ∼ EV IEWideal.
Note that if both U ′1 and U ′2 deviated from their adver-

tised functionalities, this argument would not work. The
reason is that while the event that U ′1 or U ′2 misbehaves is
independent of the input (a, u), but the event that both of
them misbehaves is not independent of the input (a, u).

Secondly, we prove UV IEWreal ∼ UV IEWideal, which
means that the untrusted software (U ′1, U

′
2) learns nothing

during the execution of (T, (U ′1, U
′
2)). In the ideal exper-

iment, the simulator S2 always behaves as follows: when
receiving the input on round i, S2 ignores it but submits
one random query of the form (α′j , β

′
j) to U ′1 and U ′2. Af-

ter receiving the outputs of U ′1 and U ′2, S2 then makes two
random queries of the form (αj , βj) to U ′1 and U ′2. Then
S2 saves its states and those of (U ′1, U

′
2). Since the honest,

secret; or honest, protected; or adversarial, protected inputs
are all private for (U ′1, U

′
2), the simulator S2 is applicable to

all those conditions. As shown in Pair One, the inputs to
(U ′1, U

′
2) in the real experiment is computationally indistin-

guishable from those in the ideal one randomly chosen by
S2. Therefore, UV IEW i

real ∼ UV IEW i
ideal for each round

i, which means that UV IEWreal ∼ UV IEWideal.
Theorem 3.2. In the one-malicious model, the algorithm

(T, (U1, U2)) proposed in Section 3.1 is verifiable, that is to
say, the outsourcer can test the error with probability 1 if
one of the servers outputs the fault result.

Proof. Assume U2 is a malicious server and U1 is an honest
server. At the end of the algorithm, the outsourcer verifies
the result as follows:

D12 = U1(γ/t2, g
t2) = U2(γ/t2, g

t2) = D22 (1)

D13 = U1(at1/c, w
c/t1) = U2(at1/b, w

b/t1) = D23 (2)

Since the outsourcer sends γ/t2, g
t2 to two servers, and

U1 must return true value of gγ , U2 also computes gγ =
(gt2)γ/t2 . Otherwise, the formula (1) cannot pass the veri-
fication successfully. Thus, U2 only possibly cheats the out-
sourcer during the verification of formula (2).

In our algorithm, the outsourcer splits ua = (gβgγwa)
mod p, and queries U1(b/t1, wg

t1), U2(c/t1, wg
t1), where b, c, t1

are randomly chosen from Zq. Since U2 is a malicious serv-

er, he may return a fault result wc
′/t1gc

′
but U1 returns

wb/t1gb. Next, the outsourcer computes:

wb/t1gb · (gb)−1 = wb/t1 , wc
′/t1gc

′
· (gc)−1 = wc

′/t1gc
′−c

and queries U1(at1/c, w
c′/t1gc

′−c) and U2(at1/b, w
b/t1).

In order to pass the verification, U2 must return the same
value as U1. Because U1 is an honest server, he computes
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Table 1: Comparison of the Outsourcing Algorithms
for Single Modular Exponentiation

Algorithm HL [17] Exp [6] GExp [26] VExp
MExp(T ) 0 0 1 0
MM(T ) 9 7 12 13
MInv(T ) 5 3 4 3
Invoking

subroutine 6 5 7 6
MExp(U) 8 6 4 6

Servers two two one two
Checkability 1/2 2/3 1/2 1

U1(at1/c, w
c′/t1gc

′−c)→ w
ac′
c g

at1c
′

c
−at1 .

If the formula (2) can be verified successfully, that is,

U1(at1/c, w
c′/t1gc

′−c) = U2(at1/b, w
b/t1) = w

ac′
c g

at1c
′

c
−at1 .

U2 must return w
ac′
c g

at1c
′

c
−at1 , therefore he must know

t1, b, and then forges c′ and computes a. As shown in Sec-
tion 3.1, t1, b are randomly chosen from Zq by the Rand and
Rand’, and thus secret and uniformly distributed for U2.
The outsourcer can verify the returned result with probabil-
ity 1.

Therefore, U2 cannot pass the verification of formula (1)
and (2) simultaneously if he returns the error result and the
proposed algorithm is verifiable with probability 1.

Theorem 3.3. In the one-malicious model, the algorithm

proposed in Section 3.1 is an (O( log2 L
L

), 1)-outsource-secure
implementation of VExp.

Proof. The proposed algorithm VExp makes 6 calls to
Rand or Rand’, and 13 modular multiplication (MM) and
3 modular inverse (MInv) in order to compute ua mod p.
As shown in [17], VExp takes O(logL) or O(1) MM using
the EBPV generator or table-lookup method, respectively,
where L is the bit length of a. It is well known that it takes
roughly 1.5L MM to compute ua mod p by the square-
and-multiply method. Thus, the proposed algorithm is an

(O( log2 L
L

))-efficient implementation of VExp. On the other
hand, it must be detected with probability 1 if U1 or U2 fails
during any execution of VExp from Theorem 3.2.

3.3 Comparison
We compare the outsourcing algorithms for single mod-

ular exponentiation with input privacy in Table 1. In Ta-
ble 1, ”MExp, MM, MInv” denote the computation of
modular exponentiation, modular multiplication and mod-
ular inverse, respectively. We omit other operations such as
modular addition in the outsourcing algorithms.

From Table 1, we conclude that the GExp algorithm [26]
has no advantage for single modular exponentiation since
the outsourcer has to execute one modular exponentiation
although it is based on a single untrusted server. Compared
with the algorithm in [17], the proposed algorithm VEx-
p improves checkability and efficiency simultaneously since
MInv operation needs more computation cost than MM. The
VExp algorithm also improves the checkability though a lit-
tle computation is appended compare with the algorithm in
[6]. In detail, the checkability of our algorithm is 1, where
it is 1/2 and 2/3 in the algorithm of [17] and [6].

4. VERIFIABLE SECURE OUTSOURCING
OF MULTIPLE MODULAR EXPONEN-
TIATIONS

In this section, we propose the other verifiable outsourc-
ing algorithm to compute multiple modular exponentiations
ua11 ua22 . . . uann mod p(n ≥ 2), which is applicative in many
cryptographic schemes, such as multivariate polynomial e-
valuation [19], attributed-based encryption [24], provable
data possession (PDP) [25, 27], and so on.

4.1 Verifiable Outsourcing Algorithm
We propose a verifiable outsourcing algorithm of multi-

ple modular exponentiations VMExp in the one-malicious
model.

Let p, q be two large primes and q|p−1. Given n arbitrary
bases u1, u2, . . . , un ∈ Z∗p and n exponents a1, a2, . . . , an ∈
Zq such that the order of u1, u2, . . . , un is q. The proposed
algorithm VMExp is described as follows:

1) T firstly runs Rand to create four blinding pairs (α, gα),
(β, gβ), (t1, g

t1), (t2, g
t2), and then runs Rand’ to create two

blinding tuples (b, b−1, g−b), (c, c−1, g−c). We denote:

v = gα mod p, µ = gβ mod p.

2) T splits:

ua11 ua22 . . . uann = (vw1)a1(vw2)a2 . . . (vwn)an

= gα(a1+...+an)wa11 . . . wann

= gβgγwa11 wa22 . . . wann

where w1 = u1/v,w2 = u2/v,. . .,wn = un/v,

γ = [(a1 + . . .+ an)α− β] mod q.

3) Next, T randomly chooses i ∈ {1, 2, . . . , n} and queries
U1 in random order as:

U1(b/t1, wig
t1)→ D111 = w

b/t1
i gb,

U1(b/t1, (Π
n
j=1,j 6=iwj)g

t1)→ D112 = (Πn
j=1,j 6=iwj)

b/t1gb.

Similarly, T queries U2 in random order as:

U2(c/t1, wig
t1)→ D211 = w

c/t1
i gc,

U2(c/t1, (Π
n
j=1,j 6=iwj)g

t1)→ D212 = (Πn
j=1,j 6=iwj)

c/t1gc.

4) After receiving D111, D112 and D211, D212 from U1 and
U2 respectively, T computes:

w
b/t1
i = D111g

−b, (Πn
j=1,j 6=iwj)

b/t1 = D112g
−b,

w
c/t1
i = D211g

−c, (Πn
j=1,j 6=iwj)

c/t1 = D212g
−c.

Then T queries U1 in random order as:

U1(γ/t2, g
t2)→ D12 = gγ ,

U1(a1 − c/t1, w1)→ D131 = w
a1−c/t1
1 ,

. . .,

U1(ait1
c
, w

c/t1
i )→ D13i = waii ,

. . .,

U1(an − c/t1, wn)→ D13n = w
an−c/t1
n .

Similarly, T queries U2 in random order as:
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U2(γ/t2, g
t2)→ D22 = gγ ,

U2(a1 − b/t1, w1)→ D231 = w
a1−c/t1
1 ,

. . .,

U2(ait1
b
, w

b/t1
i )→ D23i = waii ,

. . .,

U2(an − b/t1, wn)→ D23n = w
an−b/t1
n .

5) T computes:

D13 = D131 . . . D13i . . . D13n(

n∏
j=1,j 6=i

wj)
c/t1

= w
a1−c/t1
1 . . . waii . . . wan−c/t1n (

n∏
j=1,j 6=i

wj)
c/t1

= wa11 wa22 . . . wann

D23 = D231 . . . D23i . . . D23n(

n∏
j=1,j 6=i

wj)
b/t1

= w
a1−b/t1
1 . . . waii . . . wan−b/t1n (

n∏
j=1,j 6=i

wj)
b/t1

= wa11 wa22 . . . wann

and then verifies :

D12 = D22, D13i = D23i, D13 = D23.

If not, T outputs ”error”; otherwise, T computes

ua11 ua22 . . . uann = gβgγwa11 wa22 . . . wann mod p.

Remark 2. In fact, outsourcing multiple modular expo-
nentiations ua11 ua22 . . . uann can be executed by invoking sin-
gle modular exponentiation ua for n times, which requires
13n MM and 3n MInv operations for the outsourcer, where
the VMExp algorithm only needs 4n+ 13 MM and 3 MInv
operations. Thus, the proposed VMExp algorithm is much
more efficient than invoking single modular exponentiation
directly for n ≥ 2.

4.2 Security Analysis
Theorem 4.1. In the one-malicious model, the proposed

algorithm (T, (U1, U2)) is an outsource-secure implementa-
tion of VMExp, where the input (a1, . . . , an;u1, . . . , un)
may be honest, secret; honest, protected; or adversarial, pro-
tected.

Proof. The proof is similar to Theorem 3.1, and the dif-
ference is that the real experiment may be corrupted. Let
A = (E,U ′1, U

′
2) be a PPT adversary that interacts with a

PPT algorithm T in the one-malicious model.
First, we prove EV IEWreal ∼ EV IEWideal, which mean-

s that the environment E learns nothing during the exe-
cution of (T, (U1, U2)). If the input (a1, . . . , an;u1, . . . , un)
is honest, protected; or adversarial, protected, it is obvi-
ous that the simulator S1 behaves same as in the real ex-
ecution. Therefore, it only needs to prove the case where
(a1, . . . , an;u1, . . . , un) is an honest, secret input.

So, suppose (a1, . . . , an;u1, . . . , un) is an honest, secret
input. The simulator S1 in the ideal experiment behaves as
follows. On receiving the input on round i, S1 ignores it
and instead makes two random query of the form (α′j , β

′
j) to

both U ′1 and U ′2. After receiving the outputs of U ′1 and U ′2,

S1 then submits n + 1 random queries of the form (αj , βj)

to both U ′1 and U ′2. Finally, S1 checks two outputs β
′α′j
j and

two random outputs β
αj
j from each program. If an error is

detected, S1 outputs Y ip = error, Y iu = ∅, repi = 1. If no
error is detected, S1 verifies the remaining n− 1 outputs. If
all checks pass, S1 outputs Y ip = ∅, Y iu = ∅, repi = 0; else,

S1 chooses a random element r ∈ Z∗p , and outputs Y ip = r,

Y iu = ∅, repi = 1. In either condition, S1 saves its own
states and those of (U ′1, U

′
2).

In addition, we need to show that the inputs to (U ′1, U
′
2)

in the real experiment are computationally indistinguish-
able from those in the ideal one. In the ideal experimen-
t, the inputs are selected uniformly at random. In the
real one, each part of all n + 3 queries that T makes to
any program is generated by invoking the subroutine Rand
or Rand’ and thus computationally indistinguishable from
random. Therefore, we consider three possible condition-
s. If (U ′1, U

′
2) both behave honest in round i, EV IEW i

real ∼
EV IEW i

ideal since the outputs of VMExp are not replaced
and repi = 0. If one of (U ′1, U

′
2) is dishonest in round i, the

fault must be detected by both T and S1 with probabil-
ity 1 − 1

2n(n+1)
, resulting in an output of ”error”. Thus,

EV IEW i
real ∼ EV IEW i

ideal also holds even when one of
(U ′1, U

′
2) misbehaves in the round i, so we conclude that

EV IEWreal ∼ EV IEWideal.
Secondly, we prove EV IEWreal ∼ EV IEWideal, which

means that the untrusted software (U ′1, U
′
2) learns nothing

during the execution of (T, (U ′1, U
′
2)). In the ideal exper-

iment, the simulator S2 always behaves as follows: when
receiving the input on round i, S2 ignores it but submit-
s two random query of the form (α′j , β

′
j) to U ′1 and U ′2.

After receiving the outputs of U ′1 and U ′2, S2 then makes
n + 1 random queries of the form (αj , βj) to U ′1 and U ′2.
Then S2 saves its states and those of (U ′1, U

′
2). Since the

honest, secret; or honest, protected; or adversarial, pro-
tected inputs are all private for (U ′1, U

′
2), the simulator S2

is applicable to all those conditions. As we know, E can
easily distinguish the real and ideal experiments since the
outputs of the ideal experiment are never corrupted, but
he cannot send the information to (U ′1, U

′
2) since they can-

not communicate each other during the execution of TU .
In addition, the inputs to (U ′1, U

′
2) in the real experimen-

t are computationally indistinguishable from those in the
ideal one which are randomly chosen by S2. Therefore,
UV IEW i

real ∼ UV IEW i
ideal for each round i. In all, we

conclude that UV IEWreal ∼ UV IEWideal.
Theorem 4.2. In the one-malicious model, the proposed

algorithm (T, (U1, U2)) is verifiable, which means that the
outsourcer can detect the error with probability 1− 1

2n(n+1)

if one of the servers outputs the fault result.
Proof. Similarly, we assume that U2 is a malicious server

and U1 is an honest server. At the end of the algorithm, the
outsourcer verifies the result as follows:

D12 = U1(γ/t2, g
t2) = U2(γ/t2, g

t2) = D22 (3)

D13i = U1(ait1/c, w
c/t1
i ) = U2(ait1/b, w

b/t1
i ) = D23i (4)

D13 = D131 . . . D13i−1D13i . . . D13n(
∏n
j=1,j 6=i wj)

c/t1

= D231 . . . D23i−1D23i . . . D23n(
∏n
j=1,j 6=i wj)

b/t1

= D23

(5)
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As proven in Theorem 3.2, U2 must return the same val-
ue as U1 during the verification of the formula (3) and (4).
Thus, U2 only possibly cheats the outsourcer during the ver-
ification of formula (5).

In our algorithm, the outsourcer splits

ua11 ua22 . . . uann = (gβgγwa11 wa22 . . . wann ) mod p,

and queries

U1(b/t1, (
∏n
j=1,j 6=i wj)g

t1), U2(c/t1, (
∏n
j=1,j 6=i wj)g

t1),

where b, c, t1 are randomly chosen from Z∗q . Since U2 is a
malicious server, he may return a fault result D′212, but U1

returns true result D112 = (
∏n
j=1,j 6=i wj)

b/t1gb. Next, the
outsourcer computes:

D112(gb)−1 = (
∏n
j=1,j 6=i wj)

b/t1 , D′212(gc)−1,

and queries U1, U2 about D131, . . . , D13i−1, D13i+1, . . . , D13n

and D231, . . . , D23i−1, D23i+1, . . . , D23n, respectively. Be-
cause U1 is an honest server, he computes the true values of
D131, . . . , D13i−1, D13i+1, . . . , D13n. If the formula (5) can
be verified successfully, that is to say,

D13 = D131 . . . D13i−1D13iD13i+1 . . . D13nD
′
212g

−c

= D′231 . . . D
′
23i−1D23iD

′
23i+1 . . . D

′
23nD112g

−b

= D′23,

which means

D′212
D′231...D

′
23i−1D

′
23i+1...D

′
23n

= D23iD112g
c−b

D131...D13i−1D13i...D13n
.

As we know, U2 can compute the true values of D231, . . .,
D23i−1, D23i+1, . . . , D23n if he behaves honestly, and

D13 = D131 . . . D13i−1D13iD13i+1 . . . D13nD212g
−c

= D231 . . . D23i−1D23iD23i+1 . . . D23nD112g
−b

= D23,

so U2 can obtain

D212
D231...D23i−1D23i+1...D23n

= D23iD112g
c−b

D131...D13i−1D13i...D13n
.

Therefore, U2 can forge fault results of

D212 and D231 . . . D23i−1D23i+1 . . . D23n,

which are denoted asD′212 andD′231 . . . D
′
23i−1D

′
23i+1 . . . D

′
23n,

to make the formula (5) hold and generate the wrong value
of D13 if he knows two values of

D212 and D231 . . . D23i−1D23i+1 . . . D23n

from queries in random order executed by the outsourcer.
As shown in Section 4.1, the outsourcer first executes t-

wo queries D211, D212 and then n+ 1 queries D22, D231, . . .,
D23i−1, D23i+1, . . . , D23n to U2. It is obvious that U2 can
guess D212 from D211, D212 truly with probability 1/2. In
addition, U2 can obtain the true value of

D231 . . . D23i−1D23i+1 . . . D23n

from n + 1 queries D22, D231, . . . , D23i−1, D23i+1, . . . , D23n

with probability 1
n(n+1)

since he can guess D22, D23i from

n+1 queries correctly and computes the product of other n−
1 queries with probability 1

n(n+1)
. Therefore, the malicious

server U2 can cheat the outsourcer with probability 1
2n(n+1)

Table 2: Comparison of the Outsourcing Algorithms
for Multiple Modular Exponentiations

Algorithm GExp [26] VMExp
MExp(T ) 1 0
MM(T ) 4n+ 9 4n+ 13
MInv(T ) 2n+ 2 3
Invoking

subroutine 7 6
MExp(U) 2n+ 2 2n+ 6

Servers one two
Checkability 1

n+1
1− 1

2n(n+1)

and thus the outsourcer can verify the returned result with
probability 1− 1

2n(n+1)
.

Therefore, U2 can pass the verification of formula (3), (4)
and (5) simultaneously if he returns the error results with
probability 1

2n(n+1)
and the proposed algorithm is verifiable

with probability 1− 1
2n(n+1)

.

Theorem 4.3. In the one-malicious model, the pro-

posed algorithm (T, (U1, U2)) is an (O( log2 L+n
nL

), 1− 1
2n(n+1)

)

-outsource-secure implementation of VMExp.
Proof. As we know, the proposed algorithm VMEx-

p makes 6 calls to Rand or Rand’ and 4n + 13 modular
multiplication (MM) and 3 modular inverse (MInv) in or-
der to compute ua11 ua22 . . . uann , so VMExp algorithm takes
O(n) or O(log2 L+n) MM using table-lookup method or the
EBPV generator, respectively, where L is the bit length of
a1, . . . , an. As shown in [16], it takes roughly 0.2nL MM
to compute ua11 ua22 . . . uann by joint sparse form (JSF) using
windows method with window width 4. Therefore, the pro-

posed algorithm VMExp is an (O( log2 L+n
nL

))-efficient im-
plementation of multiple modular exponentiations. On the
other hand, we know that it must be detected with probabil-
ity 1− 1

2n(n+1)
if U1 or U2 misbehaves during any execution

of VMExp from Theorem 4.2.

4.3 Comparison
In Table 2, we compare the outsourcing algorithms for

multiple modular exponentiations with input privacy pro-
posed in [26] and this paper.

As described in Table 1, ”MExp, MM, MInv” denote the
computation of modular exponentiation, modular multipli-
cation and modular inverse, respectively.

From Table 2, we conclude that VMExp algorithm great-
ly improves the checkability and efficiency of outsourcing
computation for multiple modular exponentiations by using
two servers in the one-malicious model. Compare with the
algorithm presented in [26], we need no MExp operations,
and only need executing 4n + 13 MM, 3 MInv, 6 invoca-
tions of Rand or Rand’, and 2n + 6 queries to U1 and U2

for n modular exponentiations. Moreover, the VMExp al-
gorithm can verify the result returned by the server with
probability 1 − 1

2n(n+1)
where the checkability is only 1

n+1

in the algorithm of [26].

5. APPLICATIONS
In this section, we introduce two applications of the pro-

posed VExp and VMExp algorithm, including private out-
sourcing of univariate and multivariate polynomial evalua-
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tion and CP-ABE scheme with verifiable outsourced encryp-
tion and decryption.

5.1 Private Outsourcing Scheme of Polynomi-
al Evaluation

Polynomial evaluation is an important tool in constructing
many cryptographic protocols, such as proof of retrievability
[18], verifiable keyword search [3] and so on. In general, the
evaluation of polynomials does not need high computation
complexity, but the magnitude of data prevents the client to
evaluate them itself when the polynomial or the input are
derived from large datasets.

Benabbas et al. [2] presented the outsourcing scheme of
polynomial evaluation, which can protect the polynomials
themselves, but cannot realize the input privacy . Fiore et
al. constructed an outsourcing scheme of polynomial evalu-
ation with public verifiability, which means that anyone can
verify the correctness of computing result returned from the
server. However, the scheme may reveal the input or the
polynomial [10]. Recently, Zhang et al. described a ver-
ifiable outsourcing scheme of polynomial evaluation using
multilinear maps [11, 12], and the polynomial function and
the input are also private for the server [28]. All of the
outsourcing schemes are based on homomorphic encryption
(HE) scheme [1], which is costly for the outsourcer with weak
computation ability in practice.

A direct application of VExp or VMExp algorithm is
to evaluate the univariate or multivariate polynomials over
large datasets without using HE scheme. The proposed
schemes are as follows:

Assume the outsourcer T wants to evaluate the univariate
polynomial of d degree f(x) =

∑d
i=0 fix

i, it first runs

VExp(i;x)→ f(i) = xi for 0 ≤ i ≤ d,

and then computes f(x) =
∑d
i=0 fix

i.
Similarly, if T wants to evaluate the polynomial of n vari-

ables and d degree

f(x1, . . . , xn) =
∑

0≤i1+...+in≤d fi1,...,inx
i1
1 . . . xinn ,

it first runs

VMExp(i1, . . . , in;x1, . . . , xn)→ f(i1, . . . , in) = xi11 . . . xinn

for 0 ≤ i1 + . . .+ in ≤ d, and then computes

f(x1, . . . , xn) =
∑

0≤i1+...+in≤d f(i1, . . . , in).

Remark 3. The proposed schemes above are verifiable s-
ince VExp and VMExp algorithm are verifiable with prob-
ability 1 or close to 1. Moreover, it realizes input privacy
and function privacy simultaneously without HE scheme.
The disadvantage is that the proposed schemes are inter-
active based on two servers while the scheme described in
[28] is non-interactive and can verify the outsourcing result
with probability 1 based on one server since an HE scheme
is required.

5.2 CP-ABE scheme with verifiable outsourced
encryption and decryption

Sahai and Waters [24] introduced the notion of attribute-
based encryption (ABE) for complex access-control over en-
crypted data. The main efficiency drawback of the most
existing ABE schemes is that encryption and decryption are

expensive for resource-limited devices due to modular expo-
nentiation and pairing operations. Green et al. [15] and Lai
[20] proposed ABE schemes with outsourced decryption that
largely eliminates the decryption overhead for users. Cur-
rently, there is no ABE scheme with outsourcing encryption
and decryption simultaneously proposed. Now we present
a verifiable ABE scheme with outsourcing encryption and
decryption based on two servers U1, U2 in the one-malicious
model using VExp and VMExp algorithm.

The proposed outsourcing scheme of CP-ABE consists of
the following algorithms:

Setup(λ,D): Take as input a security parameter λ and
a small universe description D = {1, 2, . . . , l}. It first runs
G(λ) to obtain (p,G,GT , e), where G and GT are cyclic
groups of prime order p and e is a bilinear map from G
and G to GT , and randomly chooses g ∈ G, α, a ∈ Z∗p . It
also chooses random si ∈ Z∗p for each attribute i ∈ D, and
computes Ti = gsi . The public parameters are published as:

PK = (G,GT , e, g, g
α, e(g, g)α, Ti(i ∈ D)),

and the master secret key is MSK = α.
KeyGen(PK,MSK,S): For a set of attributes S, picks

random t ∈ Z∗p , and computes:

K = gαgat, K0 = gt, Ki = T ti (i ∈ S),

So the private key SKS = (S,K,K0,Ki(i ∈ S)).
Encrypt(PK,M,A): Take as input the public parame-

ters PK, a message M ∈ GT , and an LSSS access structure
A = (A, ρ), where A is an l× n matrix and ρ is a map from
each row Ai of A to an attribute ρ(i), it randomly chooses
a vector ~v = (s, v2, . . . , vn) ∈ (Z∗p )n. For each row Ai of A,
the outsourcer T generates the ciphertext as follows:

1) T runs

VExp(s; e(g, g)α)→ C′′1 = e(g, g)αs,
VExp(s; g)→ C′1 = gs,

and computes C1 = M · C′′1 .
2) T runs Rand for l times to obtain (ri, g

ri), i ∈ {1, . . . , l},
and sets Di = gri .

3) T runs

VMExp(Ai~v,−ri; ga, Tρ(i))→ Ci = gaAi~vT−riρ(i) ,

where i ∈ {1, . . . , l}.
The final ciphertext CT = ((A, ρ), C1, C

′
1, Ci, Di).

Decrypt(PK,SKS , CT ): Take as input the public keys
PK, a private key SKS = (S,K,K0,Ki(i ∈ S)) for a set of
attributes S, and a ciphertext CT = ((A, ρ), C1, C

′
1, Ci, Di)

for an access structure A = (A, ρ). If S does not satisfy the
access structure A, it output ⊥. Else, it computes constant
ωi ∈ Z∗p such that

∑
i∈I ωiAi = (1, 0, . . . , 0), where I = {i :

ρ(i) ∈ S}, and I ⊂ {1, 2, . . . , l}. Then it decrypts:

M = Ci ·
∏
i∈I(e(Ci,K0)e(Kρ(i), Di))

ωi

e(C′1,K)

= M · e(g, g)αs ·
∏
i∈I(e(g, g)atAivωi)

e(g, g)αse(g, g)ats
.

If a user T ′ wants to outsource the decryption of the ci-
phertext, it executes the following algorithms:

GenTKout(PK,SKS): Take as input the public param-
eters PK, a private key SKS = (S,K,K0,Ki(i ∈ S)) for
a set of attributes S. The outsourcer T ′ randomly chooses
z1, z2 ∈ Z∗p , runs VExp algorithm as follows:
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VExp(1/z1;K)→ K′1 = K1/z1 ,

VExp(1/z2;K)→ K′2 = K1/z2 ,

VExp(1/z1;K0)→ K′10 = K
1/z1
0 ,

VExp(1/z2;K0)→ K′20 = K
1/z2
0 ,

VExp(1/z1;Ki)→ K′1i = K
1/z1
i , i ∈ S,

VExp(1/z2;Ki)→ K′2i = K
1/z2
i , i ∈ S,

and sets two transformation keys and retrieving keys as:

TKS1 = (S,K′1 = K1/z1 ,K
′
10 = K

1/z1
0 , K′1i = K

1/z1
i ),

TKS2 = (S,K′2 = K1/z2 ,K
′
20 = K

1/z2
0 , K′2i = K

1/z2
i ),

RKS1 = z1, RKS2 = z2.

Then T ′ sends TKS1, TKS2 to the servers U1, U2, respec-
tively.

Transformoutout(PK,CT, TKS): Take as input the pub-
lic parameters PK, a ciphertext CT = ((A, ρ), C1, C

′
1Ci, Di)

for an access structure A = (A, ρ) and a transformation key
TKS1 = (S,K′1,K

′
10,K

′
1i). The server U1 computes:

T ′1 =
e(C′1,K

′
1)∏

i∈I(e(Ci,K
′
10)e(K′1,ρ(i), Di))

ωi

=
e(g, g)αs/z1e(g, g)ats/z1∏

i∈I e(g, g)atAi~vωi/z1

= e(g, g)αs/z1 ,

and outputs the transformed ciphertext as

CT ′1 = (T1 = C1, T
′
1).

Similarly, the server U2 computes:

T ′2 =
e(C′1,K

′
2)∏

i∈I (e(Ci,K
′
20)e(K

′
2,ρ(i)

,Di))
ωi

= e(g, g)αs/z2 ,

and outputs the transformed ciphertext as

CT ′2 = (T2 = C1, T
′
2).

Decryptout(PK,CT,CT
′
1, CT

′
2, RKS1, RKS2): Take the pub-

lic keys PK, a ciphertext CT = ((A, ρ), C1, C
′
1, Ci, Di), two

transformed ciphertexts CT ′1 = (T1 = C1, T
′
1), CT ′2 = (T2 =

C1, T
′
2), and two retrieving keys RKS1 = z1, RKS2 = z2 for

a set of attributes S as input. If T1 6= C1 or T2 6= C1, the
outsourcer T ′ outputs ⊥. Else, T ′ computes

M = T1/(T
′
1)z1 ,M ′ = T2/(T

′
2)z2 .

If M = M ′, outputs the message M , else, it outputs ⊥.
Remark 4. In the one-malicious model, it is obvious

that the result of outsourcing encryption is verifiable be-
cause of the verifiability of VExp and VMExp algorith-
m. The result of the outsourcing decryption is also verifi-
able since the outsourcer T ′ can check the error by verifying
T1/(T

′
1)z1 = T2/(T

′
2)z2 if one of the servers outputs the fault

result.

6. PERFORMANCE EVALUATION
In this section, we provide an experimental evaluation

of the proposed outsourcing algorithms. Our experiment
is simulated on two machines with Intel Core i5 Processor
running at 3.1GHz with 4G memory (cloud server), and Pen-
tium T4300 Processor running at 2.1GHz with 2G memory
(the outsourcer), respectively. The programming language
is JAVA.

Figure 1: Simulation for VExp Algorithm.

Figure 2: Simulation for VMExp Algorithm.

The parameters of p and q are same to Federal Information
Processing Standards for DSA (FIPS-186-2) [6]. That is, p
is a 512-bit prime and q|p− 1 is a 160-bit prime.

In Fig.1, we provide the simulation of VExp algorithm,
where the fault can be found with probability 1 if one of
the servers misbehaves. We also present the simulation of
VMExp algorithm for n = 10 in Fig.2, which shows that
the outsourcer can check the error with probability 0.9955
if one of the servers returns the false result when comput-
ing ua11 ua22 . . . ua1010 . It is obvious that the time cost for T is
much smaller than that for directly computing single mod-
ular exponentiation and multiple modular exponentiations
since that a number of computations have been delegated to
two servers. Therefore, the proposed VExp and VMExp
algorithm are the implementations of secure verifiable out-
sourcing single modular exponentiation and multiple modu-
lar exponentiations.

In Table 3, we compare the evaluation time for the out-
sourcing algorithms of single modular exponentiation pro-
posed in [6, 17, 26] and this paper, respectively. From Table
3, we conclude that for the outsourcer T , the VExp algo-
rithm is superior to HL and GExp algorithm in efficiency,
and it appends little computation cost to improve the check-
ability compared with Exp algorithm. We also compare the
time for the outsourcing algorithms of multiple modular ex-
ponentiations proposed in [26] and this paper in Table 4.
Similarly, for the outsourcer T , the proposed VMExp al-
gorithm is more efficient than the GExp algorithm. Thus,
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Table 3: Time Comparison for Single Modular Ex-
ponentiation Algorithms

HL [17] Exp [6] GExp [26] VExp
T (ms) 4.206 2.570 4.359 3.038
U1(ms) 4.601 3.529 3.219 3.549
U2(ms) 4.549 3.575 0 3.558

Table 4: Time Comparison for Multiple Modular
Exponentiations Algorithms

n VMExp(T )(ms) GExp(T )(ms) [26]
2 2.296 7.160
3 3.014 7.455
4 3.494 7.642
5 3.699 7.802
6 3.961 8.096
7 4.184 8.330
8 4.447 8.723
9 4.884 8.902
10 5.011 9.376

the proposed VExp and VMExp algorithm improves the
checkability and efficiency for the outsourcer simultaneously
based on two servers in the one-malicious model.

7. CONCLUSION
In this paper, we propose two verifiable outsource-secure

algorithms for single modular exponentiation and multiple
modular exponentiations. The security model of our pro-
posed algorithms is based on two non-colluding servers, and
the outsourcer can detect any failure with probability 1 or
close to 1 if one of the servers misbehaves. Compare with
the previous ones, the proposed algorithms improve both the
checkability and efficiency for the outsourcer.
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