
WedgeTail: An Intrusion Prevention System for the Data
Plane of Software Defined Networks

Arash Shaghaghi1,2, Mohamed Ali Kaafar2 and Sanjay Jha1

1School of Computer Science and Engineering, The University of New South Wales (UNSW), Australia
{a.shaghaghi, sanjay.jha}@unsw.edu.au

2Data61, CSIRO, Australia
{dali.kaafar}@data61.csiro.au

ABSTRACT
Networks are vulnerable to disruptions caused by malicious
forwarding devices. The situation is likely to worsen in Soft-
ware Defined Networks (SDNs) with the incompatibility of
existing solutions, use of programmable soft switches and
the potential of bringing down an entire network through
compromised forwarding devices. In this paper, we present
WedgeTail, an Intrusion Prevention System (IPS) designed
to secure the SDN data plane. WedgeTail regards forward-
ing devices as points within a geometric space and stores the
path packets take when traversing the network as trajecto-
ries. To be efficient, it prioritizes forwarding devices before
inspection using an unsupervised trajectory-based sampling
mechanism. For each of the forwarding device, WedgeTail
computes the expected and actual trajectories of packets
and ‘hunts’ for any forwarding device not processing pack-
ets as expected. Compared to related work, WedgeTail is
also capable of distinguishing between malicious actions such
as packet drop and generation. Moreover, WedgeTail em-
ploys a radically different methodology that enables detect-
ing threats autonomously. In fact, it has no reliance on
pre-defined rules by an administrator and may be easily im-
ported to protect SDN networks with different setups, for-
warding devices, and controllers. We have evaluated Wed-
geTail in simulated environments, and it has been capable
of detecting and responding to all implanted malicious for-
warding devices within a reasonable time-frame. We report
on the design, implementation, and evaluation of WedgeTail
in this manuscript.

Keywords
Software Defined Networks; SDN Security; Data Plane Se-
curity; Intrusion Prevention System

1. INTRODUCTION
An attacker may compromise a network forwarding de-

vice by exploiting its software or hardware vulnerabilities.
Compromised forwarding devices may be then used to drop
or slow down, clone or deviate, inject or forge network traf-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02-06, 2017, Abu Dhabi, United Arab Emirates
c© 2017 ACM. ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3053039

fic to launch attacks targeting the network operator and its
users. As discussed in [22, 24], compromised forwarding de-
vices may even grant an attacker the capability to wrest
control of an entire Software Defined Network (SDN). This
paper looks at the specific problem of protecting SDNs from
malicious forwarding devices by determining if the traffic
forwarding function of the switch itself is secure.

Securing the network against malicious switches have not
been the subject of many studies in SDN security research
– see [3, 25, 38] for comprehensive surveys of SDN secu-
rity. In fact, even with the latest proposals, there seems
to be an oversight regarding the malicious forwarding de-
vices that may exist in SDN data plane [13]. In general, the
development of SDN security applications and controllers
and real-time verification of network constraints, separately,
have been the primary focus of SDN security literature (see
[3, 25] for surveys). However, no combination of these pro-
vides effective protection against compromised forwarding
devices [8, 11,13].

Recently, a few proposals specifically look into the threats
associated with malicious forwarding devices. However, these
either suffer from a simplistic threat model (e.g. [17]) or sub-
stantial processing overhead imposed to the network (e.g.
[21, 42, 43]). For example, cryptographic solutions such as
[21] have been designed to enforce path compliance in the
presence of strong adversaries, nevertheless, a universal de-
ployment may be infeasible due to high overload required for
per packet cryptographic operations, increased packet size,
and etc.

SPHINX [11] is one of the solutions designed for securing
the SDN data plane that does not assume forwarding devices
are to be trusted. SPHINX detects and mitigates security
attacks launched by malicious switches by abstracting the
network operations with incremental flow graphs. It detects
attacks as per the policies defined by the administrator and
responds accordingly. SPHINX also checks for flow consis-
tency throughout a flow path using a similarity index metric,
where this metric must be similar for ‘good’ switches on the
path.

We argue the following three factors as the main limita-
tion of SPHINX. First, the system does not tolerate Byzan-
tine forwarding faults. Therefore, SPHINX does not assume
malicious forwarding device could behave arbitrarily and is
not capable of distinguishing between malicious actions (e.g.
packet drop and fabrication), and it cannot detect when
a malicious forwarding device is delaying packets. Second,
the detection mechanism mainly relies on the policies de-
fined by an administrator to detect attacks. In fact, the

849

http://dx.doi.org/10.1145/3052973.3053039

flow-graph component does not validate forwarding device
actions against the controller policies but only compared to
their behavior over time – hence, radical network configu-
ration changes will lead to false positives. Moreover, the
flow-graph feature requires that the majority of forward-
ing devices be trustworthy. Indeed, an alternative more ro-
bust solution will have to be independent of this assump-
tion. Thirdly, SPHINX does not prioritize its inspection of
forwarding devices. Arguably, an efficient solution should
prioritize this task to improve detection performance.

Here, we introduce WedgeTail, a controller-agnostic Intru-
sion Prevention System (IPS) designed to ‘hunt’ for forward-
ing devices failing to process packets as expected. WedgeTail
regards packets as ‘random walkers’ [30] in the network and
analyzes packet movements as trajectories in a geometric
space. By analyzing the expected and actual trajectories
of packets, our proposed solution is capable of automati-
cally localizing malicious forwarding device and identifying
the exact malicious behavior (e.g. packet drop, fabrication).
WedgeTail response to threats can be programmed using
administrator-defined policies. For example, an instant iso-
lation policy may be customized such that initially, the po-
tentially malicious device is instructed to reset all the flow
rules and then, evaluated at various intervals by re-iterating
the same packet(s) raising suspicion.

In order to make the scanning more efficient and increase
the probability of finding malicious devices earlier, Wed-
geTail begins by prioritizing forwarding for inspection. We
adopt Unsupervised Trajectory Sampling [35] to cluster for-
warding devices into scanning groups of varying priority de-
pending on the cumulative frequency of occurrence in packet
paths traversing the network. To retrieve the expected tra-
jectories, WedgeTail intercepts the relevant OpenFlow mes-
sages exchanged between the control and data plane and
maintains a virtual replica of the network. This virtual
replica is processed by its integrated Header Space Analysis
(HSA) [19] component to calculate the expected packet tra-
jectories. The actual packet trajectories are, however, com-
puted by tracking a custom hash of the packet header. Alter-
natively, if NetSight [15] is deployed, WedgeTail queries for
packet history to retrieve the packet trajectory. We briefly
review [15] and [19] in §2.

The contributions of this work can be summarised as fol-
lows:

(a) We define an advanced threat model for the security
of SDN data plane that has not been considered up to now
(§3). In §4, we first discuss the main factors that exacerbate
the protection of SDN networks against malicious forward-
ing devices. Thereafter, the requirements for an effective
solution and the key insights behind our proposed solution
is presented.

(b) In §5, we present WedgeTail’s target identification
mechanism, where we detail how to retrieve the packet tra-
jectories and analyze them to create scanning regions.

(c) In §6, we present our proposed attack detection al-
gorithms and localization logic. We also discuss how Wed-
geTail distinguishes between different malicious packet pro-
cessing actions (e.g. packet replay and drop). WedgeTail’s
response engine and its capabilities are discussed in §7.

(d) We discuss WedgeTail’s implementation in §8. There-
after, in §9, we evaluate WedgeTail’s performance and accu-
racy over three different simulated networks. We conclude
the paper by comparing our solution with related work and
outlining the future work (§10).

2. BACKGROUND

2.1 Header Space Analysis (HSA)
Header Space Analysis (HSA) [19] is a method for debug-

ging network configuration. HSA deals with a L-bit packet
header as L-dimensional space, and models all processes of
routers and middle-boxes as transfer functions, which trans-
form subspaces of the L-dimensional space to other sub-
spaces. Therefore, by analyzing forwarding rules of the net-
work, HSA can calculate the path a packet traversing the
network on a certain port will take. We have included an ex-
ample usage of HSA and how it serves for predicting packet
trajectories in §4.

2.2 NetSight
NetSight [15] is a network troubleshooting solution that

allows SDN application to retrieve the packet history. net-
shark is an example of tools built over this platform, which
enables users to define and execute filters on the entire his-
tory of packets. With this tool, a network operator can also
view the complete list of packet’s properties at each hop,
such as input port, output port, and packet header values.
In §6 we show how WedgeTail may inter-operate with Net-
Sight to retrieve the actual packet trajectories.

3. THREAT MODEL
We assume a resourceful adversary who may have taken

full control over one, or all, of the forwarding devices. This
is, in fact, the strongest possible adversary that may exist at
the SDN data plane, which to the best of our knowledge is
not considered in the related work. For example, [11,18–20,
28], assume all, or the majority, of the forwarding devices to
be trustworthy. Interestingly, we have noticed an imprecise
definition of adversary leading to oversights in SPHINX [11],
the closest work to ours. For instance, authors discuss an
attack exhausting the TCAM memory of a switch that will
cause a switch dropping packets over a period of time. As
devastating as this may be, this device cannot be used to
execute attacks requiring packet modification or misrouting.
Here, we assume the following capabilities for the adversary:

• The attacker may drop, replay, misroute, delay even
generate (includes both modify and fabricate) packets,
in random or selective manner all or part of the traffic.

The above capabilities grant the adversary the capability
to launch attacks against the network hosts, other forward-
ing devices or the control plane. For example, executing
a Denial of Service (DoS) attack against the control plane
by replaying or spoofing Packet In messages. Note that
detecting packet reordering is currently out of scope (§11.

We regard a forwarding device as ‘malicious’ when both of
the following properties are met: A) The device is not han-
dling the network packets according to the rules specified
by the control plane. B) The maliciousness is cloaked from
basic troubleshooting tools. For example, the malicious de-
vice ‘correctly’ responds to ping or traceroute probes while
corrupting other packets.

Arguably, the above characteristics may also be witnessed
with a misconfigured, or a faulty, forwarding device too. In
fact, the differentiating factor between these is the underly-
ing intentions and hardly their behavior or impact. Hence,
for the purpose of this work, we expand the definition of a
malicious forwarding device to encompass both faulty and

850

misconfigured devices. This implies that the proposed solu-
tion could also be used to detect faulty and misconfigured
forwarding devices which are functioning anomalously – see
Section 10.

We make the following assumptions for WedgeTail to work:
1. The control plane itself and the defined policies are

trustworthy and securely transferred to the data plane (e.g.
using TLS protocol [6]). There is an increasing body of lit-
erature aiming to achieve this, see [3, 38] for surveys. In
other words, with SDN, the policy definition and enforce-
ment points are separated in networks [25] and here, we ex-
clusively focus on the the Policy Enforcement Point (PEP).
Hence, preventing incidents such as [16] caused by erroneous
administrator defined policies is out of scope.

2. Packet reordering and time behaviour [31] are well-
studied and proposed solutions are complementary to Wed-
geTail. This is also true regarding protocol-level attacks
including TCP/IP and OSPF that can be addressed using
existing solutions. In fact, WedgeTail is designed to de-
tect forwarding devices failing to execute their main function
and not to protect them from being compromised. In other
words, the prevention refers to the automated triggering of
pre-defined policies against identified threats.

3. The forwarding devices may lie about anything except
their own identity – similar assumption is also made in [11].

4. WEDGETAIL
As mentioned in §1, securing SDN networks against ma-

licious forwarding devices is challenging. In fact, similar
to [11], we also argue that the problem of protecting net-
works and their host against malicious forwarding devices
is exacerbated in SDN context. We believe this due to five
main reasons – the first three factors are extracted from [11]
with some minor amendments and additions.

First and foremost is the incompatibility of existing solu-
tions to secure SDN. In fact, due to the removal of intelli-
gence from the forwarding devices, the defense mechanisms
used for traditional networks may no longer work. [11] pos-
tulates that for a comprehensive defense against traditional
attacks either a fundamental redesign of OpenFlow [29] pro-
tocol would be required, or we would need to patch the con-
troller per each attack.

The second factor is the unverified and complete reliance
of control plane on forwarding devices. An SDN controller
relies on PACKET IN messages for its view of the network,
yet this is not securely authenticated nor verified. A mali-
cious forwarding device may send forged spoofed messages
to subvert the controller view of the network – even with
having TLS authentication in place. The same vulnerabil-
ity enables a compromised forwarding device the capability
to overload the controller with requests causing a Denial of
Service (DoS) attack.

Third, securing programmable soft-switches such as Open
vSwitches is more challenging compared to hardware equiva-
lents. The former run atop of end host servers and are more
susceptible to attacks compared with the hardware switches,
which is harder for an attacker to physically access.

Our fourth argument is that the SDN security domain is a
moving target with the protocols and standards undergoing
constant changes. For example, several controllers have al-
ready been proposed with varying specifications, which are
undergone constant updates. Hence, relying on the capabil-
ities of one would limit practicality on another. The same
argument is also valid on the OpenFlow [2] standard.

Figure 1: Forwarding devices in ISP Network. The red devices
are misbehaving. The green links are expected paths.

Fifth, motivated by performance advantages such as lower
latency response to network events and better protocol stan-
dardization such as for encryption, MAC learning and codec
control message (CCM) exchanges, proposals have been made
to delegate more control to the SDN data plane [33]. The
increased authority improves the network’s fault tolerance
with the continuation of basic network operations under fail-
ing controllers. However, this increases the vulnerability of
the network to traditional attacks and expands the range of
attacks a compromised device may launch against the net-
work.

Considering the aforementioned factors and the limita-
tions of existing work such as SPHINX (see § 1), we posit
the ‘must-have’ features of an effective solution against ma-
licious forwarding devices to include:
1) Minimum reliance on pre-defined rules/policies for detec-
tion: to be able to detect unknown attacks exploiting either
hardware or software vulnerabilities of forwarding devices,
2) Ability to systematically and autonomously prioritize for-
warding devices for inspection: to improve detection perfor-
mance and success rate,
3) Capability to distinguish malicious forwarding actions
and localize maliciousness: to avoid executing conflicting
and redundant policies when responding to threats,
4) Programmability for responding to threats: to be able to
customize response when detecting threats, and
5) Causing minimal disruption to the network performance
when detecting and responding to threats: so the proposed
solution is practical for real-world network deployment.
The rest of this paper describes how we address each of
the aforementioned requirements in our proposed solution,
WedgeTail.

4.1 Overview
As shown in Figure 1, WedgeTail is composed of two main

parts namely, Detection Engine (§6) and Response Engine
(§7). The former listens to OpenFlow messages exchanged
between the control and data plane and by doing so main-
tains a virtual replica of the network, which is used to com-
pute the expected packet trajectories. The Response En-
gine, however, is placed as an application on top of the con-
troller and submits policies to the network operating system,
which makes the final decision on how, and whether, to ap-
ply them.

Now, assume an ISP network with AARNet Setup traffic
flow as shown in Figure 1. Using its integrated HSA com-
ponent, WedgeTail retrieves 10010x10 ∪ 10011x10 as the

851

header space of packets that can be sent from Forwarding
Device (FD) a to c1, or FD(a)→ FD(c1), on Porti. Com-
posing the history attributes of the propagation graph it
learns that the Expected Packet Trajectories between these
two nodes is as follows:
FD(a) → FD(b) → FD(c) → {FD(d) OR FD(i)} →
FD(e)→ FD(c1) – shown in green colour in Figure 1.

The main intuition behind WedgeTail is that whenever the
Actual Packet Trajectories are not a subset of the Expected
Packet Trajectories, one or more of the forwarding devices
in the packet path may be malicious – recall that in §3 ‘ma-
licious’ was extended to cover faulty and misconfigured too.
For instance, in Figure 1, the red colored trajectory is a
non-allowed trajectory and FD(b) is malicious.

Algorithm 1 presents WedgeTail’s workflow. On each run,
WedgeTail inspects the whole network on a specific port
– out of the designated target ports. The detection en-
gine entails Find-Target-Forwarding-Devices() and Scan-for-
Attacks(), which provide input to the main protection engine
function, Isolate-Forwarding-Device().

Algorithm 1 WedgeTail Detection and Response

Response Policy RP
Select Porti ∈ {Port}
Find-Target-Forwarding-Devices (Porti)
Select FD(i) ∈ {Target Forwarding Devices}
for all Porti ∈ {Port} do

Scan-for-Attacks (FD(i))
if FD(i) is ‘Malicious’ then

Isolate-Forwarding-Device (RP, FD(i))
end if

end for

5. TARGET IDENTIFICATION

5.1 Trajectory Creation
Definition of Trajectory: We first define the notion

of trajectory, denoted as TR hereon, in the context of our
work. A packet trajectory is the route a uniquely identifiable
packet takes while traversing a network from one forwarding
device to another. We consider different paths for the same
packet as distinctive trajectories. In other words, a packet
may be routed through various paths in respect to network
configurations and condition on each iteration. For instance,
as shown in Figure 1, a packet traversing through green line
from FD(a) to FD(e) may be routed through FD(i) or
FD(d) depending on the QoS requirements. However, mul-
tiple repetitions of the same path for the same packet is only
regarded as one trajectory.

Retrieving the Actual Packet Trajectories: We pro-
pose two alternative solutions to retrieve the packet trajec-
tories. As succinctly reviewed in §2, NetSight is a recently
proposed network troubleshooting solution that allows re-
trieving all the forwarding devices that a packet visited while
traversing the network. Therefore, if NetSight was deployed
in a network, a convenient approach would be to query
for each packet header route and create the trajectories.
This may be achieved by integrating a simple module for
WedgeTail, which uses existing API provided by NetSight.
Our preferred method to retrieves the actual trajectories is
through NetSight.

An alternative approach would be for WedgeTail to run a
deterministic hash function over the packet header and use

Figure 2: Forwarding devices in ISP network. The dotted lines
represent traffic paths.

this hash to track packet as it traverses the network (i.e. gen-
erating labels). The choice of an appropriate hash function
would be crucial for this matter as is selecting the proper
packet header values. To achieve this, we use the packet
hashing function used in [12]. We then pick packet header
values such as source address, destination address from IP
header and source port and destination port in TCP header.
All the values used for the hashing are shown in Figure 3.
Note that in practice the labels can be quite small (e.g., 20
bit) – although the size of the packet labels depends on the
specific situation. Evidently, in this case, the overhead to
collect trajectory samples is small since the traffic that has
to be collected from nodes only consists of such labels (plus
some auxiliary information) [12].

An issue to consider is that in the unlikely case that col-
lisions were to occur, WedgeTail’s performance will not be
affected. This is because such collisions will break the or-
der of forwarding devices when retrieving trajectories and
will result in invalid trajectories. Moreover, we envision the
hashing-based solution to be used as an alternative where
NetSight is not available and at most within small networks,
where collisions are much less likely to occur.

5.2 Scanning Zones
WedgeTail prioritizes forwarding devices for its inspection.

The core idea is that the analysis has to begin from the for-
warding devices that the majority of packets encounter while
traversing the network. To identify these, WedgeTail keeps
track of trajectories for all packets on all ports over time
and identifies the most commonly involved forwarding de-
vices by looking at the denser regions. For instance, looking
at Figure 2 and the drawn trajectories, it is evident that
FD(b), FD(g) and FD(f) are more commonly encountered
by packets. Indeed, identifying these is much more compli-
cated in a large network with a huge number of trajectories.
Therefore, WedgeTail reduces this large set into a repre-
sentative sample that encapsulates the most commonly vis-
ited forwarding devices. Formally, let TR[FD(i), FD(j)] de-
note the set of all the trajectories traversing between FD(i)
and FD(j) for all packets on all ports. Accordingly, de-
fine {TR(N)} as the set of all trajectories in network N, or
{TR(N)} = {TR[FD(i), FD(j)] | ∀(FD(i), FD(j)) ∈ N}.
Denote {TR(N)}′ as a subset of {TR(N)}, which if in-
spected by WedgeTail without loss of generality results in de-
tecting compromised forwarding devices. Indeed, such sam-
pling is challenging due to the complexity of packet routing
(e.g. lack of ordering, lack of compact representation). To

852

Figure 3: Packet header fields used for labeling.

automatically compute this, in an optimised and unsuper-
vised way, WedgeTail adapts the Unsupervised Trajectory
Sampling technique proposed in [35].

The three-step Unsupervised Trajectory Sampling solu-
tion proposed in [35] may be summarized as follows. The
first step involves adopting a symbolic representation of tra-
jectories to model all of the collected trajectories in an ap-
proximate way as vectors. The symbolic representation is
lossless in terms of mobility patterns and improves the speed
of computation. Thereafter, on top of the representation,
each trajectory is represented using a continuous function
that implicitly describes the representativeness of each con-
stituent part of it with respect to all of the collected tra-
jectories. Symbolic Trajectory algorithm, or SyTra, is used
to improve the initial representation of each trajectory by
relaxing its vector representation. ‘The idea is to adopt a
merging algorithm that identifies the maximal time period
wherein the mobility pattern of each trajectory is preserved,
while in this augmented period it presents uniform behav-
ior in terms of representativeness’ [35]. In the third step,
an automatic method for trajectory sampling, known as T-
Sampling, based on the representativeness of the trajectories
is used. T-Sampling takes into account not only the most
(i.e., dense, frequent) but also the least representatives. This
is an important aspect of this work, which makes it the best
match for our requirements. In fact, alternative sampling
techniques suffer from shortcomings that limit their appli-
cation for WedgeTail. For example, [4,5] are explorative and
supervised sampling techniques that assume a priori knowl-
edge of the underlying trajectories. Alternatively, [14, 27]
downsize the collection of trajectories and fail to select tra-
jectories important for mobility patterns.

Once the most commonly visited forwarding devices are
extracted from the network they are allocated the highest
priority of inspection and the remaining forwarding devices
are assigned a lower priority for inspection.

6. ATTACK DETECTION
The main attack detection algorithm (Scan-for-Attacks)

is presented in Algorithm 2. The algorithm takes as input
both a target forwarding device and a port and returns a ma-
licious node detailing its malicious action. First, a snapshot
of all network forwarding device configurations is retrieved.
Accordingly, the trajectories that a packet may take against
each of the other forwarding devices, and the control plane,
is computed – Note that the packets required for creating
the trajectories are chosen randomly in the control plane and
cannot be known by an attacker to influence this process.
Thereafter, the actual trajectories for the selected packets
are retrieved using mechanisms discussed in §5.1. At this
point, whenever the set of forwarding devices in the actual

trajectory is not a subset of the expected trajectories, a ma-
licious forwarding device is detected.

Formally, let A denote the total ordered set of actual for-
warding devices for a packet traversing from target FD(i) to
FD(j) and E the ordered set of expected forwarding devices
for the same trajectory. If A 6⊆ E then FD(i) is malicious.
The comparison logic can be extended to differentiate be-
tween the four types of malicious actions (see §3) as follows:

Algorithm 2 Attack Detection Algorithm

Scan-for-Attacks(FD(i), PortPi) {
Status S = Check-State-Change();
File F = Dataplane-Configrautions-Snapshot(S);
while Check-State-Change() == S do

List L = F.ForwardingDevices() – FD(i)
for all FD(j) ∈ L do

Packet Pck;
Trajectory Actual, Expected;
Pck.Source() = FD(i);
Pck.Destination() = FD(j);
Pck = Find-Packet(Pck.Source,
Pck.Destination);
Expected = HSA-Trajectory(Pck);
Actual = Actual-Trajectory(Pck);
if Actual 6= Expected then

Identify-Attack(FD(i), Port(i));
end if

end for
end while
}

Here, without loss of generality we assume, there exists
only one valid trajectory between two forwarding devices.

1. Packet Replay: Occurs when a forwarding device
sends a copy of the packet to a third destination as well
as the intended destination. Figure 1 shows a packet repli-
cation attack example, where FD(b) replicates packets to
FD(f) which in turn an attacker may use to forward some,
or all, of traffic to a machine under his control. A forwarding
device that replays packets(s) enables an attacker to execute
attacks such as surveillance and authentication attacks.

Detection: Let FD(k) be a forwarding device other than
FD(i)andFD(j). A′ be the set of forwarding devices in the
actual path excluding FD(k), or A−{FD(k)}. If ∃FD(k) ∈
A : FD(k) 6∈ E and A′ ⊆ E then WedgeTail detects a packet
replay attack.

2. Packet Misrouting: Occurs when a packet is di-
verged from the original destination and does not reach its
intended destination. This may be used to launch an attack
against network availability or as part of more complicated
threats. For example, by forming a triangle routing and
creating routing loop resulting in packet TTL value expira-
tion the network congestion may result in a partial, or total,
shutdown of the network.

Detection: Let FD(k) be a forwarding device other
than {FD(i), FD(j)} and A′ be the set of forwarding de-
vices in the actual path excluding FD(k), or A− {FD(k)}.
If ∃FD(k) ∈ A : FD(k) 6∈ E and A′ 6⊆ E then WedgeTail
detects a packet misrouting attack.

3. Packet Dropping: A compromised forwarding de-
vice that drops packets creates a black or gray hole in the
network. In the former, it drops all the packets, and in
the latter, it drops packets periodically or retransmission
of packets or drops packets randomly. Packet dropping is

853

used in attacks such Denial of Service (DoS) against network
provider. WedgeTail detects packet dropping as follows:

Detection: If A 6⊆ E and card(A) < card(E).
4. Packet Generation: A compromised forwarding de-

vice may fabricate packets or modify existing ones. This
may be used to mount attacks such as DoS. Such changes
are detected by WedgeTail through its labeling mechanism.
In other words, once any attribute used for labeling pack-
ets is changed, the label is changed, and the trajectory is
undefined. WedgeTail detects packet generation as follows:

Detection: If A 6⊆ E and E −A = E.
5. Packet Delay: Occurs when a forwarding device de-

lays traffic and increases jitter. A packet delay is a threat
against time-sensitive traffic [13]. A delay of TCP stream
also causes spurious timeouts and unnecessary re-transmission,
which severely threatens the TCP throughput [44].

Detection: Let Te be the estimated time for packeti
moving from FD(i) and FD(j) over a trajectory τ̄ . Accord-
ingly, let Ta be the actual time that it took for this packet to
traverse τ̄ . Assume the maximum valid delay due to network
congestion on this trajectory is Td. If ∆Te,a > Td then there
is a packet delay attack.

Note that the estimated time may be set to be the average
time for all packets traversing that route or computed by
sending simple ping packets. The maximum valid congestion
may be computed using [36] or [40], where it is possible to
achieve real-time congestion detection and measurement.

6.1 Malicious Localization
As mentioned a trajectory is regarded as a total ordered

set. Once one of the malicious actions is detected, it is possi-
ble to locate the associated forwarding device by comparing
A and E (see previous section). Consider Figure 1 and as-
sume when inspecting FD(a) we retrieve E(τ̄) and A(τ̄) as
expected and actual trajectories between FD(a) and FD(e),
respectively.
A(τ̄): FD(a)→ FD(b)→ FD(f)→ FD(e) equivalent to

total ordered set E = {FD(b), FD(f)}.
E(τ̄): FD(a) → FD(b) → FD(c) → FD(d) → FD(e)

equivalent to total ordered set A ={FD(b), FD(c), FD(d)}
In this case, by intersecting E and A we retrieve that
{FD(b)} is the malicious node, where packet misrouting
was initiated. The analysis is continued with FD(c) and
FD(d) (or, A − E,) so that at the end of this process any
forwarding device that my be malicious is identified. The
same approach can be used for malicious actions 1, 3 and 4.
To locate a forwarding device that is delaying packets how-
ever, we retrace time hop by hop in A and compare with the
relevant expected time.

6.2 Practical Considerations
Network congestion will result in packet drops and delays.

Therefore, to minimize the number of false positives, Wed-
geTail has to estimate with a high accuracy the number of
packets drops and delays associated with network conges-
tion. Several solutions have already been proposed in the
literature to achieve this. [32] can detect packet dropping or
gray hole attacks in networks by exploiting the correlation
between packet delays and packet losses due to congestion.
Their proposed methodology is based on passive observa-
tions of the one-way network delay experienced. For the
scope of this work, the main advantage of this solution com-
pared with the better-known proposals such as [32] is that
we could implement it without any additional overhead or

Feature Attributes

Subject Forwarding Device(id) | Controller

Object Packet(id) | Flow(id) | Switch(id)

Action Isolate(FD(id)) |
Update forwarding table(FD(id)) |
Alarm | Block Messages(FD(id)) |
Test Again(FD(id))

Exception Policy Pi

Validity t (millisecond)

Table 1: Overview of the response engine policy syntax

support from the network – [32] assumes the routers in the
network cooperate and provide real-time data related to the
queue lengths at their interfaces.

7. THE RESPONSE ENGINE
WedgeTail can be programmed to automatically reply to

identified threats using its response engine. The response
engine takes as input a set of XML-formatted policies and
translates them into actions for the controller. Developing a
fully fledged policy engine and ensuring the logical correct-
ness of them is out of scope for this work. We developed
a simplified policy engine for our initial evaluation of Wed-
geTail.

Policy Syntax: Each policy requires six main features
and attributes describing them. The features include Sub-
ject, Object, Actions, Condition, Exception and Validity
time. Table 1 lists the attributes currently supported for
these features. The naming used for attributes are assumed
to be self-descriptive. Note that the values in parenthesis are
expected to be provided as input for each of these attributes.
While each policy may have only one subject, the other fea-
tures may have more than just one associated attribute. The
Exception attribute is mainly used to build hierarchy for the
policies and validity is used to specify timing.

We now look at two examples. Let us revisit Figure 1 and
assume only FD(f) is detected as malicious. An administrator-
defined policy may specify two different policies matching
this forwarding device (i.e. one using the Forwarding Device
attribute and another using Controller attribute). First, it
may specify FD(g) as subject and instruct it to use an alter-
native route to forward traffic. Second, it may specify for the
Controller to block all incoming OpenFlow messages. Now,
consider the same scenario as before but this time with only
FD(b) identified as malicious. In this case, there may be an
Exception feature stating if a policy for FD(f) is still active
then no action is executed from this policy.

8. IMPLEMENTATION
We envision WedgeTail to be integrated as an applica-

tion for SDN controllers for both detection and response.
However, at this stage, to demonstrate WedgeTail’s com-
patibility with different platforms, evaluate it over differ-
ent controllers and to ease the implementation we imple-
mented the detection engine as a proxy sitting in between
the control and data plane – a similar architecture is also
used in [11]. In fact, the detection engine requires advanced
functions that, currently, is not consistently available across
controllers. Currently, the response engine is programmed
as an application for Floodlight controller. WedgeTail’s cur-
rent architecture is shown in Figure 4.

854

Figure 4: WedgeTail Architecture

We implemented our system, mainly, in Java using ap-
proximately 1500 lines of code. WedgeTail work starts by
creating scanning regions. To do this, it creates a unique
hash from a large number of packets. The packets are then
continuously tracked as they traverse the network by inter-
cepting the PACKET IN messages sent from the data plane
to control plane. This information is then used to create
database records that list all the forwarding devices visited
by packets along with some packet information and a times-
tamp attached to it. WedgeTail composes these records to-
gether and generates the actual packet trajectories using its
Actual Trajectory Extractor module.

Once the scanning zones are generated, and the target
forwarding devices identified, WedgeTailed requires having
the expected trajectories of packets to initiate its inspection.
Hence, WedgeTail queries the controller for current topology
and launches a Mininet matching the same setup. It then in-
tercepts all the OpenFlow messages exchanged between the
control plane and data plane including FLOW MOD and
PACKET IN messages. The OpenFlow messages sent from
the controller to forwarding devices (e.g. FLOW MOD) is
first translated into a database INSERT command. This
command stores the rule, forwarding device receiving the
rule along with a time value in a MySQL database. There-
after, using the DB to Mininet Translator component, these
are retrieved from the database and translated into appro-
priate Mininet commands. The result is a virtual network
replica, which is continuously updated. The virtual network
replica is used by the Hassel Expected Trajectory module
to compute the expected trajectories of packets1.

9. EVALUATION
We evaluated WedgeTail over simulated networks, which

were different in terms of the number of forwarding devices,
forwarding rules, network subnets, and trajectories – with
our latest simulation closely resembling real-world network

1We acknowledge that the authors of [35] provided the
source code of their program, which we used in our Target
Identification module.

Number of AARNet
Setup

Zib54
Setup

Sprint
Setup

FD 12 54 316
Subnet 40 800 48,966
Rules 391 21,387 15,649,486

Trajectory 403 38,654 638,271

Table 2: Overview of simulated networks

conditions. We replicated a number of attacks against SDN
networks that were previously reported in the literature and
analyzed the accuracy of WedgeTail in detecting these at-
tacks. In order to further evaluate WedgeTail’s detection
engine, we then wrote scripts that synthetically implanted a
total 500 attacks covering all of the malicious actions speci-
fied in §3 in our simulated networks.

Here, we report on WedgeTail’s accuracy and performance
including its detection and prevention success, average de-
tection time, user perceived latencies, overheads related to
policy verification, etc. To further challenge WedgeTail’s
detection engine, we also introduced congestion to the sim-
ulated networks causing packet losses and measured the re-
sulting false alarms. Moreover, we also compared our pro-
posal with related works and argued how WedgeTail, in most
cases, outperforms them both in detection and response. Fi-
nally, given that target identification and virtual network
replica reconstruction are new features introduced as part
of WedgeTail and may be of use in other domains, we report
on their performance separately.

9.1 Experimental Setup
We simulated three different networks namely AARNet

Setup, Zib54 Setup and Sprint Setup. AARNet Setup was
used in our initial feasibility study and resembled a minimal-
istic backbone ISP network topology with only 12 forwarding
devices. The forwarding rules in this network reached 390,
and we generated benign traffic such that about 400 trajec-
tories existed in the snapshots taken for inspection by Wed-
geTail. In Zib54 Setup, we extended our simulated network
to more than 50 forwarding devices. Snapshots are taken for

855

analysis contained up to 21000 forwarding rules and 38000
trajectories over 800 subnets. A large network is presumed
to have more forwarding devices as well as many more trajec-
tories at any given instance. These motivated us to evaluate
WedgeTail under Sprint Setup. The Sprint Setup contained
316 forwarding devices with more than 600000 trajectories
over a network with more than 15 million rules and 48000
subnets.

Network Topologies: The network topologies for AAR-
Net Setup, Zib54 and Sprint were extracted from The In-
ternet Topology Zoo [23], SNDlib [34] and Rocketfuel [39],
respectively. Figure 11.a and 11.b (in Appendix) represent
AARNet Setup and Zib54. In these setups, each node is
assumed to contain only one forwarding device, and there
is only one link in-between these devices as also depicted in
the figures. Figure 11.c (in Appendix) depicts the intercon-
nection of different domains at Sprint backbone network,
which we used as the network topology for Sprint Setup.
Note that in Figure 11.c, for clarity, the forwarding devices
at each node are not depicted, and only one link connects
the nodes to each other.

Flow Entries: We were unaware of any publicly avail-
able flow entry data set for our simulated networks. Hence,
to add flow-entries, we created an interface for a subset of
prefix found in a full BGP table from Route Views [37] and
spread them randomly and uniformly to each router as ‘lo-
cal prefixes’. We then computed forwarding tables using
shortest path routing. The resulting forwarding rules and
subnets for each setup are shown in Table I. We report that
a similar methodology is also adopted by relevant work such
as [8], [41].

Traffic Generation: We used Mausezahn [1] and a cus-
tom script to add benign traffic to the networks. Similar
to [11], our custom written script imported three real-world
network traces from [9,10,26] to drive traffic into Mininet.

We hosted the simulated networks on a machine equipped
with Intel Core i5, 2.66 GHz quad-core CPU and 16 GB
of RAM. The SDN controller equipped with WedgeTail was
hosted on a machine with Intel Core i7, 2.66 GHz quad-core
CPU and 8 GB of RAM.

9.2 Attack Scenarios
We replicated all the attacks presented by the authors

of [11] against networks using ODL, Floodlight, POX and
Maestro as controllers. We also implemented further attacks
including Network-to-Host DoS attack. All of these attacks
use one or more of the capabilities defined in §3 and were
successfully detected by WedgeTail. As examples, we briefly
revise the main characteristics of six different attacks and
discuss how WedgeTail successfully detects all of them. We
also compare the advantages of WedgeTail with SPHINX
when detecting these threats – note that the authors did
not provide the source of their solution and therefore, we
cannot provide a numerical performance comparison at this
stage. We report on the performance metrics separately in
§9.4 and §9.5.

I. Network DoS: In this case, compromised forwarding
devices direct traffic into a loop and magnify a flow until it
completely fills out the available link bandwidth. We report
that all four controllers were vulnerable to this attack and
this completed in sub-second time intervals.

DETECTION: This attack involves a compromised for-
warding device that either generates, misroutes or replays
packet(s). These anomalies can be easily detected using

the trajectory-based attack detection algorithms presented
in §6. Compared to SPHINX, WedgeTail does not rely on
any administrator defined policies for detection of a Network
DoS attack.

II. Network-to-Host DoS: Here, one or more forward-
ing devices send a large amount of traffic to the host network
causing a DoS. This may bring down a host machine in ex-
treme cases, and when dealing with mission critical systems,
the impact would be catastrophic. Existing controllers do
not have any detection mechanism against this attack.

DETECTION: Malicious forwarding device(s) may gen-
erate, replay or misroute packets towards a network host to
cause a DoS attack. The result of the aforementioned actions
is having unexpected trajectories in the network, which are
automatically detected by WedgeTail. However, unless there
are administrator-defined policies for each host, SPHINX
is unable to detect Network-to-Host DoS. Furthermore, the
number of policies to be processed in real-time will be a fac-
tor of the total number of hosts and forwarding devices. The
performance of SPHINX when processing such large number
of policies is unknown. Moreover, even with such policies in
place, the attack may go undetected as the downlink to host
may not reach any suspicious threshold (note that in most
cases this attack adds a negligible processing overhead to
the compromised forwarding device(s) and may also have a
negligible impact on the bandwidth).

III. TCAM Exhaustion: TCAM is a fast associative
memory used to store flow rules. Malicious hosts may send
arbitrary traffic and force the controller into installing a
large number of flow rules, thereby exhausting the switch’s
TCAM. As also discussed in 3, this may result in significant
latency or packet drops. None of the controllers tested can
detect nor prevent attacks such as TCAM Exhaustion.

DETECTION: Attacks similar to III results in packet
delay or drop, which will result in anomalies between ex-
pected and actual trajectories and are detected by Wed-
geTail. SPHINX has a totally different approach for de-
tecting such attacks. The latter checks for FLOW MOD
messages sent by the controller and detects a threat if the
rate continues to be high over time. While both approaches
will lead to detecting the threat, with SPHINX, the con-
troller messages may not violate the administrator defined
policies and still cause the switch to fail (e.g. the switch
may be already experiencing a load higher than usual that
is not covered in the policy description). In such cases, the
attack will not be detected by SPHINX.

IV. Forwarding device Blackhole: In this case, flow
path ends abruptly, and the traffic cannot be routed to
the destination. A forwarding device either drops or de-
lays packet forwarding to launch this attack. We installed
malicious rules on switches in networks, and none of the
controllers had any mechanism to prevent nor detect them.

V. ARP Poisoning: Malicious network hosts can spoof
physical hosts by forging ARP requests and fool the con-
troller to install malicious flow rules to divert traffic. This
may be used for eavesdropping or in other cases to mount
IP slicing attacks and creating network loops. We replicated
the attack with the exact similar setup used in [11] and we
also report that all of the tested controllers are vulnerable
to it. Note that ARP poisoning corrupts the physical topo-
logical state. We discuss how WedgeTail detects attacks
targeting the logical topological state in §10.

DETECTION: There are no network policies that a
forged ARP request violates in a network. However, the ac-

856

tual path that a packet traveling from hosts to the controller
takes is visible to WedgeTail. Hence, ARP requests with an
anomalous trajectory (i.e. originated from hosts rather than
forwarding devices) can be monitored and blocked before
poisoning the network. SPHINX is also capable of detecting
this attack either using its flow graph feature (which binds
MAC-IP) or using administrator defined detection policies.

VI. Controller DoS: With OpenFlow, a packet that
does not match any of the currently installed flow rules of
a forwarding device is buffered, and an associated OFPT
PACKET IN message containing the data packet’s header
fields is forwarded to the controller. When a controller re-
ceives a large number of new packet flows within a short
period, its buffer is filled up and has to forward complete
packets to the controller. This causes heavy computational
load on the controller, and it may bring it down altogether.
We used Cbench [7] and flooded the controller with a high
throughput of PACKET IN messages to analyze the con-
trollers’ performance. Similar to [11], we report that all
except Floodlight exhibited this attack. However, while
Floodlight throttles the incoming OpenFlow messages from
switches as a prevention mechanism, the connection of the
switches with the controller is broken when a large number
of switches attempt to connect with it.

DETECTION: A compromised forwarding devices may
execute this attack by either replaying packets or generating
packets destined to the controller. If there are an abnormal
number of trajectories between a forwarding device and a
controller in a snapshot taken from the network, then Wed-
geTail will detect a threat and can react as per the policies
defined by its administrator – note that WedgeTail may com-
pute the threshold number of trajectories over time period
∆τ by itself or, the administrator could custom define this.
SPHINX detects a controller DoS by observing the flow-level
metadata and computing the rate of PACKET IN messages,
which is compared with the administrator-defined policies.
Compared to SPHINX, WedgeTail also has the advantage
of computing the aggregated flow heading to the controller
rather than each individual link.

9.3 Attack Implantations
As mentioned, WedgeTail successfully detected all of the

attacks implemented in §9.2. However, to cover all of the
malicious actions specified in §3 and perform extended per-
formance analysis, we wrote scripts to implant 500 synthetic
malicious threats in our simulated networks. The resulting
malicious forwarding devices maliciously processed: 1. All
packets on all ports in approx. 30% of all attacks, 2. A
subset of packets on a specific port in approx. 19% of all
attacks, 3. A subset of packets on a specific port in approx.
19% of all attacks, 4. Packets pertaining to a specific port
in approx. 25% of all attacks, 5. A subset of packets per-
taining to a specific port in approx. 15% of all attacks, 6.
Packets destined to the control plane in approx. 11% of all
attacks.

Malicious Actions: We used custom scripts to ran-
domly introduce synthetic malicious forwarding devices in
our networks. The resulting forwarding devices maliciously
replayed packets (40% of all attacks), dropped packets (30%),
misrouted packets (5%), generated packets (10%), and de-
layed packets (15%). A packet replay may be used in a range
of threats (e.g. surveillance, DDoS, etc.) and is less likely
to be detected compared to packet drops – i.e. traffic not
reaching the destination is presumably much more notice-

able. Hence, this distribution of attacks is deemed to be
reasonable.

Compound Attacks: We define compound attacks as
those involving more than one malicious forwarding device.
For example, a surveillance attack may involve more than
one malicious forwarding device (see Figure 1). Compound
attacks are challenging for solutions such as SPHINX as
compromised forwarding devices may intelligently install cus-
tom rules and avoid reporting to the controller thus aiming
to conceal their maliciousness. This is less of an issue for
WedgeTail’s detection engine as any custom rule not match-
ing those set by the control plane will eventually result in
deviation of actual trajectories from expected ones, and this
will trigger an alarm. We report that in our simulations a
total of 108 attacks involved more than one malicious for-
warding devices. Specifically, 35% of these involved four ma-
licious forwarding devices, 25% six forwarding device, 40%
nine forwarding devices. In real-world scenarios, an attacker
who has taken over nine forwarding devices of a network is a
strong adversary. Specifically, in AARNet Setup this means
that the 75% of forwarding devices are compromised (this is
a condition not supported by [11] requiring the majority of
forwarding devices to be non-malicious).

9.4 Accuracy & Detection Time
We measured WedgeTail’s detection accuracy in respect

to A) Successful detection rate against attacks implanted in
our simulated networks, B) Successful detection rate under
network congestion leading to packet loss C) Successful ap-
plication of pre-defined policies against malicious forwarding
devices.

For A, we implanted attacks as specified in §9.3 over our
simulated networks. We then used WedgeTail to measure
the absolute time taken to detect the faults. The detection
time is defined as the time taken to raise an alarm from
the instant a malicious packet is routed over the network
by a forwarding device. We report that all of the 500 at-
tacks implanted in the networks were successfully detected
by WedgeTail. The distribution of attacks over the net-
works was as following: 50 were over AARNet Setup, 250
over Zib54 Setup and 200 over Sprint Setup. Essentially,
AARNet Setup was part of our feasibility study stage and
Zib54, and Sprint Setups serve to prove the practicality of
WedgeTail in real-world. We illustrate the detection time of
50 attacks separately over network AARNet Setup, B and
C in Figure 5, 7 and 6, respectively. The average detection
time over AARNet Setup is about 54 second with a stan-
dard deviation of 12 seconds. For Zib54 Setup, the average
detection time is about 705 second with a standard devia-
tion of 80 seconds. For Sprint Setup, the average detection
time is 5600 second with a standard 730 second. Moreover,
the average detection times were not affected in the presence
of Compound Attacks (see §9.3). The latter is, in fact, ex-
pected given that the detection algorithm entails analyzing
each and every forwarding device and the response engine is
not triggered until the end of a full scan.

The aforementioned performance metrics show that Wed-
geTail’s detection time scales well as the network size in-
creases. The detection time of attacks over network snap-
shots is also acceptable. In other words, for a network ad-
ministrator to be able to detect and locate malicious for-
warding device after about 90 minutes without defining any
policies or manual investigation is quite satisfactory.

857

Detection
Delay

Accuracy False
Positive

False
Negative

3 minutes 98.83 3 0.76
5 minutes 99.17 3 0.69
10 minutes 99.38 8 0.48

Table 3: Overall detection results of attacks in the presence of packet
drops due to congestion.

For B, we added random congestion to the simulated net-
works, which resulted in packet drops at various points in
the simulated networks. The dropped rate varied as 0, 0.005,
0.0075, 0.01, 0.015 and 0.02 of the 1K TCP flows sent over
the simulated networks. Table 2 shows the overall detection
results after detection delays of 3, 5 and 10 minutes – Wed-
geTail attack detection is started after the detection delay
time. Note that we added multiple bottlenecks throughout
the networks. The results prove that packet loss due to
congestion is not a prohibitive factor for our system. Wed-
geTail is now only able to distinguish between packet drops
due to congestion and maliciousness. We acknowledge that
we have not measured the impact of congestion on successful
malicious forwarding device localization and we leave further
investigation for our future work.

Regarding C, we report that WedgeTail has matched poli-
cies with the threats and applied the actions specified in the
policies for all attacks.

9.5 Performance Analysis
In this section, we report on some of the main performance

metrics of WedgeTail. Thereafter, we compare WedgeTail’s
performance with related work.

1. Target Identification: Figure 8 illustrated the target
identification time with respect to the number of forwarding
devices that exist in networks. The algorithm takes approx.
18 seconds to identify the target forwarding devices in AAR-
Net Setup with 400 trajectories. This number increases to
up to 12 minutes for Sprint Setup, where there are approx.
640000 trajectories.

2. Network Replica: We calculated the replication de-
lays after 500 instances of updates in the original network,
and we observed an upper bound of approx. 15 seconds. To
the best of our knowledge, this is the first system to main-
tain a virtual network replica both of the control plane and
data plane in SDNs.

3. Response Policy Matching: As shown in Figure
10, we observe that the average policy matching time as we
increase WedgeTail’s administrator defined policies from 0
to 1000 is approximately 120 milliseconds. Note that un-
like SPHINX, WedgeTail’s policies are used by its response
engine only.

4. Resource Utilization: We observe WedgeTail reaches
a maximum CPU usage of approx. 15% and memory us-
age of approx. 18%. The CPU usage is mainly associated
with target identification and packet tracking components
of WedgeTail.

5. User Perceived Latencies: WedgeTail is not a real-
time system, and it has no implication for the network users
when detecting threats. Comparatively, however, SPHINX
adds overhead to the network and causes delays. Given the
various advantages of WedgeTail compared to SPHINX in
detection and prevention, we consider this a bonus feature
for our system.

Comparison with Related Work: We discuss the rea-
sons as to why WedgeTail is non-comparable to network

troubleshooting solutions in §10. However, to put Wed-
geTail’s performance into perspective we report on the per-
formance metrics of Anteater [28], which takes a snapshot
of forwarding tables and analyze them for errors, and Net-
Plumber [18] that extends HSA into a real-time verification
solution. Anteater has been tested on a 178 router topol-
ogy and takes more than 5 minutes to just check for loops.
NetPlumber may take up to 10 minutes to verify network
correctness after a given rule change. Comparatively, Wed-
geTail investigates for every instance of malicious action and
does more than just evaluating rule sets (e.g. identifying
scanning targets, tracking packets as they traverse the net-
work, maintaining a network replica to remove trust from
forwarding devices, etc.) with a reasonably added overhead.

10. THE GOOD, THE BAD AND THE UGLY

10.1 Why WedgeTail and SPHINX?
At this point, we would like to draw a clear line between

network troubleshooting solutions and our work. Solutions
such as [18, 20, 34], mainly, focus on the elimination of con-
figuration conflicts, the avoidance of routing loops and black
holes, the detection of policy inconsistency, and etc. How-
ever, even with a correct configuration, the forwarding de-
vices may fail in execution due to bugs in switch software,
conflicts, limited memory space. A simple failure to exe-
cution is itself worrisome but a malicious forwarding device
is a serious threat to the network operators and associated
hosts. Recently, threat from state actors and insiders are
on the rise. With such strong adversaries, it is feasible to
expect the attackers to exploit forwarding device vulnera-
bilities in the core of the networks to achieve their goals
(e.g. surveillance, etc.). There are even simpler, and po-
tentially more dangerous scenarios, when compromised for-
warding devices are purposefully placed by insiders in such
networks. Hence, we strongly believe networks require to
have solutions built against such adversaries. One should
note that these solutions should not be, mainly, measured
regarding the detection time rather successful detection of
all threats within a reasonable time. In summary, we re-
gard WedgeTail as complementary to solutions provided for
network troubleshooting and for this reason WedgeTail is
built on top of the most robust proposals in the network
troubleshooting domain including HSA [19].

10.2 Why WedgeTail?
Related works including [11], mainly, rely on administrator-

defined policies for attack detection, are built against weaker
adversarial settings and fail to detect certain types of at-
tacks (see §9.2). Moreover, they do not discuss localization
of malicious forwarding devices, imposes some overhead to
network performance, cannot distinguish between malicious
actions such as packet drop or delay and do not prioritize
the inspection of forwarding devices.

10.3 Limitations and What’s Next?
We evaluated WedgeTail over various network setups, con-

figurations, and sizes equipped with different SDN controllers
to prove its practicality under simulated environments closely
matching real-world networks. Specifically, WedgeTail’s high
accuracy and performance over Sprint Setup with a large
number of forwarding devices, rules, and trajectories forms
a solid ground motivating further development and evalua-
tion of our proposed solution. Furthermore, we remind that

858

0 10 20 30 40 50

42

44

46

48

50

52

Attack number

D
et
ec
ti
o
n
ti
m
e
(s
ec
o
n
d
)

Figure 5: Attack detection in AARNet
Setup (50 attacks).

0 10 20 30 40 50

650

700

750

800

Attack number

D
et
ec
ti
o
n
ti
m
e
(s
ec
o
n
d
)

Figure 6: Attack detection in Zib54 Setup
(50 attacks).

0 10 20 30 40 50

4500

5000

5500

6000

6500

Attack number

P
ro
ce
ss
in
g
ti
m
e
(s
ec
o
n
d
)

Figure 7: Attack detection in Sprint Setup
(50 attacks).

0 20000 40000 60000 80000

0

100

200

300

400

Number of switches

P
ro
ce
ss
in
g
ti
m
e
(s
ec
o
n
d
)

Figure 8: Target identification with respect
to the number of forwarding de-
vices.

0 100000 200000 300000 400000 500000 600000
0

100

200

300

400

500

600

700

Number of trajectories

P
ro
ce
ss
in
g
ti
m
e
(s
ec
o
n
d
)

Figure 9: Target identification with respect
to the number of trajectories.

200 400 600 800 1000
0

20

40

60

80

100

120

No.of Policies

T
im
e
(m
s)

Figure 10: Average policy matching times
with increasing policies.

WedgeTail’s core detection and response techniques such as
trajectory-creation, scanning methodology and inspection
algorithms are platform independent and network dynam-
ics do not alter these. Therefore, our next step is to deploy
our solution over a real-world network setup focusing on
scalability.

We also admit that we would need exploring WedgeTail’s
accuracy under more attack scenarios and use-cases (e.g.
virtualization, VM migrations, and etc.). However, given
our current evaluations results we do not expect any major
hindrance for our steps forward.

Another issue to point out is that our system analyzes
snapshots and the stability of snapshots may be challenging
[41] – as with all other similar offline systems proposed. Fi-
nally, WedgeTail’s compatibility with distributed SDN con-
trollers such as ONOS requires further investigation – al-
though we regard such platforms to be an enabler rather
than a barrier. We aim to address these limitations in the
near future.

11. CONCLUSION
In the era of cyber-war, cyber-terrorism and with insider

threats reportedly on the rise, it is to expect for attackers to
exploit the vulnerabilities of the network core infrastructure
to launch attacks against networks. Currently, Software De-
fined Networks (SDN) is regarded as the networks of the
future. The SDN control plane security has been an ongo-
ing topic of research. However, malicious forwarding devices
could potentially be a more worrying threat as these are the
actual enforcement point of decisions made at the control
plane. Accordingly, SPHINX [11] was the first attempt in
the literature to detect a broad class of attacks in SDNs with
a threat model not requiring trusted switches or hosts. With
the same set of goals, we proposed an alternative solution,
which we call WedgeTail. Our solution is designed against
stronger adversarial settings and outperforms prior solutions

in various aspects including accuracy, performance, and au-
tonomy.

Acknowledgments
The authors would like to express their gratitude and appre-
ciation to all the anonymous reviewers for their comments
on the paper. Specifically, we are grateful to our Shepherd
Dr. Cong Wang for his valuable feedback and assistance in
improving the quality of this work. The first author also ac-
knowledges the technical suggestions and recommendations
of his former colleagues at Information Security Research
Group of University College London (UCL).

12. REFERENCES
[1] Mausezahn. http://www.perihel.at/sec/mz/.
[2] Open Networking Foundation (ONF).

https://www.opennetworking.org/.
[3] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha. A survey

of securing networks using software defined networking.
IEEE transactions on reliability, 64(3):1086–1097, 2015.

[4] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni, and
D. Pedreschi. A visual analytics toolkit for cluster-based
classification of mobility data. In International Symposium
on Spatial and Temporal Databases, pages 432–435.
Springer, 2009.

[5] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni,
D. Pedreschi, and F. Giannotti. Interactive visual clustering
of large collections of trajectories. In Visual Analytics
Science and Technology, 2009. VAST 2009. IEEE
Symposium on, pages 3–10. IEEE, 2009.

[6] K. Benton, L. J. Camp, and C. Small. Openflow
vulnerability assessment. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined
networking, pages 151–152. ACM, 2013.

[7] Cbench. https:// goo.gl/ 10TLJk .
[8] T.-W. Chao, Y.-M. Ke, B.-H. Chen, J.-L. Chen, C. J.

Hsieh, S.-C. Lee, and H.-C. Hsiao. Securing data planes in
software-defined networks. In 2016 IEEE NetSoft

859

http://www.perihel.at/sec/mz/
https://www. opennetworking.org/
https://goo.gl/10TLJk

Conference and Workshops (NetSoft), pages 465–470.
IEEE, 2016.

[9] CRATE datasets. ftp:// download.iwlab.foi.se/ dataset .
[10] Data Set for IMC 2010 Data Center Measurement.

http:// pages.cs.wisc.edu/ ˜tbenson/ IMC10 Data.html .
[11] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann.

Sphinx: Detecting security attacks in software-defined
networks. In NDSS, 2015.

[12] N. G. Duffield and M. Grossglauser. Trajectory sampling
for direct traffic observation. In ACM SIGCOMM
Computer Communication Review, volume 30, pages
271–282. ACM, 2000.

[13] R. Ghannam and A. Chung. Handling malicious switches in
software defined networks. In NOMS 2016-2016
IEEE/IFIP Network Operations and Management
Symposium, pages 1245–1248. IEEE, 2016.

[14] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi.
Trajectory pattern mining. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 330–339. ACM, 2007.

[15] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and
N. McKeown. I know what your packet did last hop: Using
packet histories to troubleshoot networks. In 11th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 71–85, 2014.

[16] P. Hunter. Pakistan youtube block exposes fundamental
internet security weakness: Concern that pakistani action
affected youtube access elsewhere in world. Computer
Fraud & Security, 2008(4):10–11, 2008.

[17] A. Kamisiński and C. Fung. Flowmon: Detecting malicious
switches in software-defined networks. In Proceedings of the
2015 Workshop on Automated Decision Making for Active
Cyber Defense, pages 39–45. ACM, 2015.

[18] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network policy
checking using header space analysis. In Presented as part
of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages 99–111,
2013.

[19] P. Kazemian, G. Varghese, and N. McKeown. Header space
analysis: Static checking for networks. In Presented as part
of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12), pages 113–126,
2012.

[20] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. Veriflow: Verifying network-wide invariants in real
time. In Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
13), pages 15–27, 2013.

[21] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and
A. Perrig. Lightweight source authentication and path
validation. In ACM SIGCOMM Computer Communication
Review, volume 44, pages 271–282. ACM, 2014.

[22] R. Klöti, V. Kotronis, and P. Smith. Openflow: A security
analysis. In 21st IEEE International Conference on
Network Protocols (ICNP), pages 1–6. IEEE, 2013.

[23] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and
M. Roughan. The internet topology zoo. IEEE Journal on
Selected Areas in Communications, 29(9):1765–1775, 2011.

[24] D. Kreutz, F. Ramos, and P. Verissimo. Towards secure
and dependable software-defined networks. In Proceedings
of the second ACM SIGCOMM workshop on Hot topics in
software defined networking, pages 55–60. ACM, 2013.

[25] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E.
Rothenberg, S. Azodolmolky, and S. Uhlig.
Software-defined networking: A comprehensive survey.
Proceedings of the IEEE, 103(1):14–76, 2015.

[26] LBNL/ICSI Enterprise Tracing Project.
http:// www.icir.org/ enterprise-tracing/ .

[27] J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection:
A partition-and-detect framework. In 2008 IEEE 24th
International Conference on Data Engineering, pages
140–149. IEEE, 2008.

[28] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey,
and S. T. King. Debugging the data plane with anteater. In
ACM SIGCOMM Computer Communication Review,
volume 41, pages 290–301. ACM, 2011.

[29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
Openflow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[30] S. Meloni, J. Gómez-Gardenes, V. Latora, and Y. Moreno.
Scaling breakdown in flow fluctuations on complex
networks. Physical review letters, 100(20):208701, 2008.

[31] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage.
Fatih: Detecting and isolating malicious routers. In 2005
International Conference on Dependable Systems and
Networks (DSN’05), pages 538–547. IEEE, 2005.

[32] A. T. Mizrak, S. Savage, and K. Marzullo. Detecting
malicious packet losses. IEEE Transactions on Parallel and
distributed systems, 20(2):191–206, 2009.

[33] Open Networking Foundation (ONF). Sdn architecture, onf
tr-502. opennetworking.org/ images/ stories/ downloads/
sdn-resources/ technical-reports/ TR SDN ARCH 1.0
06062014.pdf .

[34] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski.
Sndlib 1.0–survivable network design library. Networks,
55(3):276–286, 2010.

[35] N. Pelekis, I. Kopanakis, C. Panagiotakis, and
Y. Theodoridis. Unsupervised trajectory sampling. In
Machine learning and knowledge discovery in databases,
pages 17–33. Springer, 2010.

[36] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter,
K. Agarwal, J. Carter, and R. Fonseca. Planck:
Millisecond-scale monitoring and control for commodity
networks. ACM SIGCOMM Computer Communication
Review, 44(4):407–418, 2015.

[37] Route Views. http:// www.routeviews.org.
[38] S. Scott-Hayward, S. Natarajan, and S. Sezer. A survey of

security in software defined networks. IEEE
Communications Surveys & Tutorials, 18(1):623–654, 2015.

[39] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson.
Measuring isp topologies with rocketfuel. IEEE/ACM
Transactions on networking, 12(1):2–16, 2004.

[40] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter.
Opensample: A low-latency, sampling-based measurement
platform for commodity sdn. In Distributed Computing
Systems (ICDCS), 2014 IEEE 34th International
Conference on, pages 228–237. IEEE, 2014.

[41] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu,
N. McKeown, and A. Vahdat. Libra: Divide and conquer to
verify forwarding tables in huge networks. In 11th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 87–99, 2014.

[42] X. Zhang, C. Lan, and A. Perrig. Secure and scalable fault
localization under dynamic traffic patterns. In Security and
Privacy (SP), 2012 IEEE Symposium on, pages 317–331.
IEEE, 2012.

[43] X. Zhang, Z. Zhou, H.-C. Hsiao, T. H.-J. Kim, A. Perrig,
and P. Tague. Shortmac: Efficient data-plane fault
localization. In NDSS, 2012.

[44] Y. J. Zhu and L. Jacob. On making tcp robust against
spurious retransmissions. Computer communications,
28(1):25–36, 2005.

860

ftp://download.iwlab.foi.se/dataset
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://www.icir.org/enterprise-tracing/
opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
http://www.routeviews.org

APPENDIX
A. NETWORK TOPOLOGIES

For the sake of completeness, we include a representation of
network topologies used in our evaluations in Figure 11. Fig-
ure 14a shows the topology used in AARNet Setup. The Image
and topology for this are extracted from the Internet Topology
Zoo [23]. Figure 14b illustrates the topology used in Zib54 Setup.
The image as well as topology are extracted from SNDlib [34].
Figure 14c shows the network topology used in Sprint Setup. In
this setup, each node of the figure is constituted of multiple inter-
connected forwarding devices. Image and topology are extracted
from [39].

a: AARNet network topology simulated in AARNet Setup. b: Zib54 network topology simulated in Zib54 Setup.

c: Backbone topology of Sprint simulated in Sprint Setup.

Figure 11: Network Topologies used in WedgeTail Evaluations

861

	Introduction
	Background
	Header Space Analysis (HSA)
	NetSight

	Threat Model
	WedgeTail
	Overview

	Target Identification
	Trajectory Creation
	Scanning Zones

	Attack Detection
	Malicious Localization
	Practical Considerations

	The Response Engine
	Implementation
	Evaluation
	Experimental Setup
	Attack Scenarios
	Attack Implantations
	Accuracy & Detection Time
	Performance Analysis

	The Good, the Bad and the Ugly
	Why WedgeTail and SPHINX?
	Why WedgeTail?
	Limitations and What's Next?

	Conclusion
	References
	Network Topologies

