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ABSTRACT
We present a type system for checking secrecy of messages han-
dled by protocols that use the Backes-Pfitzmann-Waidner library
for cryptographic operations. A secure realization of this library
exists, therefore we obtain for the first time a cryptographically
sound analysis for a full language for expressing protocols, par-
ticularly handling symmetric encryption and unbounded number of
sessions. The language is similar to the spi-calculus, but has a com-
pletely deterministic semantics. The type system is similar to the
Abadi-Blanchet type system for asymmetric communication.

Categories and Subject Descriptors: C.2.2 [Network protocols]:
Protocol verification; D.3.3 [Language Constructs and Features]:
Concurrent programming structures, Coroutines

General Terms: Security, Verification.

Keywords: Simulatability, type systems.

1. INTRODUCTION
We consider the problem of analyzing the security of crypto-

graphic protocols. An ideal methodology for protocol analysis is
preferably amenable to automation, and its outcome should also be
easily verifiable by a third party.

Over the years, two fruitful approaches have evolved to model
the behavior of the protocols. One of them is the Dolev-Yao model
[22] where the cryptographic messages are interpreted as terms in a
certain free algebra; the possible operations on these messages are
defined by term rewriting. For such kinds of semantics a rich body
of work on automatic protocol analysis exists, see [39] for a survey.
The other kind of semantics is based on computational complexity
theory. There the messages are modeled as bit-strings and the at-
tacker is allowed to perform arbitrary operations on them, as long
as its consumption of resources, particularly the running time re-
mains reasonable (polynomial in the length of secrets); Yao [47]
was one of the first to explore this direction. It is closer to the real-
world execution of the protocol and a proof in that model is a better
guarantee for security than a proof in the Dolev-Yao model. Un-
fortunately, the proofs of protocol properties in the computational
model tend to be more complex and there has not been much work
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on automating these proofs. Recently, the situation has begun to
improve, though.

In this paper we define a language for cryptographic protocols,
similar to the spi-calculus [4] and give it a semantics using the com-
putational model. We then propose a type system for our language
and show that if a protocol types then it preserves the secrecy of
messages given to it by its users. Our semantics relies on the simu-
latable cryptographic library [12, 11, 9] by Backes, Pfitzmann and
Waidner. The library comes with two semantics, one of them re-
sembles, although is not quite the same as the Dolev-Yao model.
The other semantics — the “real implementation” of its function-
ality” — is in the computational model. A theorem states that any
security property satisfied by the formal semantics is also satisfied
by the computational one. Hence the proofs may use the Dolev-
Yao-like semantics. As far as we know, this type system is the first
case where an analysis method amenable to automation is used to
analyse the BPW library.

The expressiveness of our calculus is similar to the spi-calculus;
it contains nonce and key generations, symmetric and asymmet-
ric encryptions and decryptions, equality checks, communication
primitives, unbounded parallelism. Communication occurs between
protocol participants and also between a participant and its user.
Here the participant denotes a Turing machine that executes the
functionality directly related to the protocol. A protocol user is a
Turing machine or a set of Turing machines that uses the proto-
col functionality, most often through API calls, to achieve its own
ends. In existing protocol analyses, where some process calculus is
involved, there are usually no specific methods for communicating
with the user. Instead, it is stated that some variables have been
assigned values before the protocol is started, and giving received
values back to the user is not handled at all. We have chosen to not
adopt this convention here (although it would have been possible).
It would not have fit well into the simulatability framework — we
would not have obtained the full benefit from composability.

The semantics of our calculus is entirely deterministic, as pre-
scribed by the simulatability framework. In contrast with the spi-
calculus, the scheduling of threads of participants is explicit, and
it uniquely determines the thread that handles each incoming mes-
sages. See Sec. 4 for details. Our type system is inspired by the
type system of Abadi and Blanchet [2] (they work in the Dolev-
Yao model). In this type system, the type of a variable reflects its
intended use. Values with a ‘public’ type may be passed to the at-
tacker. Encryption keys have a ‘key’ type parameterized by the type
of plaintexts that may be encrypted. Communication channels sim-
ilarly have types parameterized by the type of their messages. The
type system can also indicate that two variables cannot be equal,
when they have nonintersecting types.
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In this paper we first review the related work in Sec. 2 and give
an overview of the BPW library in Sec. 3. As next we present our
process calculus and give its semantics and a definition for confi-
dentiality of inputs in Sec. 4. The security definition is not new,
it has been proposed by Backes and Pfitzmann [10]. In Sec. 5 we
present the type system and in Sec. 6 give a sketch of the correct-
ness proof. The subject reduction theorem that we employ may be
of independent interest.

The full paper [34] gives extra details for the material presented
in Sections 4–6.

2. RELATED WORK
Reconciling the two main approaches for modeling and analyz-

ing cryptographic protocols has received quite a lot of attention
recently. This work can be characterized as more ambitious than
mere provably correct analysis of cryptographic protocols in the
computational model. Instead, one aims to show that the proper-
ties (from some large and interesting enough class) of the protocol
in the Dolev-Yao model carry directly over to the computational
model, at least if the protocol satisfies some extra constraints.

This line of work started with the relating of formal and com-
putational symmetric encryption by Abadi and Rogaway [6]; their
work considered only passive adversaries. The relationship of for-
mal and computational encryption under attacks from passive ad-
versaries was further investigated by Abadi and Jürjens [5] and by
Micciancio and Warinschi [41]. Micciancio and Panjwani [40] con-
sidered the case where the adversary adaptively chose the formal
messages to be computationally interpreted, the necessary security
of the encryption scheme still corresponded to security against pas-
sive adversaries. In contrast, we have given a static program anal-
ysis [32] and a type system [35] that work directly in the computa-
tional model, handling programs containing symmetric encryption.

Reconciliation approaches taking into account also active ad-
versaries have mostly considered asymmetric primitives and/or in-
tegrity properties (i.e. properties of execution traces). Guttman et
al. [28] were one of the first to consider authentication in the pres-
ence of active adversaries in two models. Their approach was dif-
ferent from the later ones in that the security definitions in the com-
putational model were not complexity-theoretical, but information-
theoretical, so the obtained security guarantee was stronger than
usual. The cost for this added strength was the length of the shared
secrets. They also pioneered the technique of translating a protocol
run in the computational model, after it had finished, to a run in
the formal model and showing that if that run would not have been
possible in the formal model then something which should happen
only with a negligible probability must have happened in the run
in the computational model. The approach was developed further
by Micciancio and Warinschi [42] who related the formal and com-
putational traces for protocols using symmetric encryption. Cortier
and Warinschi [21] show that there exist automatic analyses for the
formal model that carry directly over to the computational model.
Janvier et al. [30] extend [42] by allowing secret keys to be trans-
ferred (in a limited way) and in [31] by considering more crypto-
graphic primitives.

Translating confidentiality properties (i.e. equivalences over ex-
ecution traces) between formal and computational models has re-
ceived seemingly less attention. Secrecy in the computational model
is usually defined as a confidentiality property while in the formal
model it may also be a confidentiality property (process equiva-
lence [4, 15]), but more commonly is an integrity property (the
adversary is unable to output the message that we want to pro-
tect). Herzog et al. [29] show that if the asymmetric encryption is
plaintext-aware [14] then the computational adversary cannot con-

struct the interpretation of any formal message that the formal ad-
versary cannot construct. Note that here the property in the com-
putational model is still an integrity property so the adversary may
learn partial information about the secret messages. Cortier and
Warinschi [21] show that a certain integrity property in the formal
model implies the secrecy of nonces generated by protocol parties
in the computational model; this result is also applicable to [30,
31]. The confidentiality property is similar to the find-then-guess
secrecy property [24, 13] but seems to be weaker in that the adver-
sary can choose less parameters. Also, it only applies to nonces
generated during the protocol run. A yet different approach, capa-
ble of verifying the independence of secret payloads but limited to
a bounded number of protocol runs, is ours [33] where a protocol is
transformed in an automated way, such that the view of the adver-
sary does not change distinguishably. The transformation is based
on the security definitions of the cryptographic primitives which
demand the indistinguishability of certain two oracles — parts of
the protocol that behave as the “real” oracle may be replaced by the
“ideal” oracle. If one can transform out all syntactic accesses to
the secret payloads then the payloads are secure — the view of the
adversary is independent of them.

We already mentioned a different approach in the Introduction
— the faithful abstraction of cryptographic primitives (in the com-
putational model) — and the simulatable library [12, 11, 9]. The re-
alizations of some protocols have been proved correct with the help
of that library [8, 7], these hand-crafted proofs argue in terms of the
model presented by the library. Another line of work in the faithful
abstraction is the work on universal composability by Canetti [16].
Faithful abstractions are given for several cryptographic primitives
in this model [17, 19, 20], including asymmetric encryption and
digital signatures. This time they are not parts of a monolithic li-
brary, but each primitive is abstracted by a different machine; such
design should be considered superior. The price of the better design
are the increased capabilities of the adversary for attacking these
abstractions, compared to the BPW library. Still, Canetti and Her-
zog [18] have defined the abstract functionality for certified public
key encryption which allows them to relate the integrity properties
satisfied by protocols (with bounded number of runs) using only
asymmetric encryption in formal and computational models.

Yet another approach is that of Lincoln, Mitchell et al. [36, 37];
they have given a “computational” semantics for a variant of π-
calculus where probabilistic choice replaces non-determinism ev-
erywhere. The definitions of confidentiality and integrity proper-
ties from the computational model easily carry over to this setting.
They have also devised a formal proof system [46] for this calculus,
but it does not seem to be amenable for automatic deduction. Some-
what related is the result by Zunino and Degano [48]. They have
given the Dolev-Yao adversary the ability to break the encryption
(find the key from a ciphertext), but only with negligible probabil-
ity. They show that this ability does not strengthen the adversary.

Let us also mention some of the work in the area of type systems
for cryptographic protocol analysis. The first type system of this
kind was proposed by Abadi [1], it could be used for verifying the
secrecy of payloads or nonces in the protocols using only symmet-
ric encryption. This type system, as well as all the others that we
describe work in the Dolev-Yao model. The type system was ex-
tended to cope with asymmetric encryption by Abadi and Blanchet
[2]; this type system is the closest to the type system presented in
current paper. Abadi and Blanchet [3] further generalized this type
system to handle generic cryptographic primitives. The type sys-
tem of Abadi has also been extended by Gordon and Jeffrey [25,
26, 27] to check for integrity properties.
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3. OVERVIEW OF THE CRYPTOGRAPHIC
LIBRARY

Let us give an overview of the simulatable cryptographic library
[12], as well as simulatability [44] itself. A system is a set of struc-
tures. A structure Str is a collection of probabilistic interactive
Turing machines. These machines have named input and output
ports; an input and output port with the same name make up a chan-
nel between corresponding machines. These channels are secure;
authentic or insecure channels can be modeled by two secure chan-
nels with the adversary having a port on one or both of them. Some
of the ports of the structure have no complementary ports in the
structure; a certain subset S of them are called the free ports, these
ports are used to access the functionality of the structure. The rest
of unconnected ports are meant for the adversary, they model the
necessary imperfections of the system. A configuration consists of
a structure, a machine H connecting only to the free ports of the
structure and modeling the intended user of the system, and an ad-
versarial machine A that must connect to all remaining unconnected
ports. There may also be connections between H and A. The view
of the user H is the distribution of the sequence of messages on the
ports of H.

Let Str and Str ′ be two structures with the same set of free
ports S. We say that Str is at least as secure as Str ′ (denoted
Str ≥ Str ′; that relation is called simulatability) if for each possi-
ble H and A there exists an adversary S, such that the view of H in
the configuration with Str and A is computationally indistinguish-
able [23] from its view in the configuration with Str ′ and S. In
other words, anything that can happen to H using the functionality
provided by Str can also happen to it if it uses the functionality of
Str ′. A system Sys is at least as secure as a system Sys ′ if each
structure of Sys is at least as secure as some structure of Sys ′.

Often we call Sys the real system and Sys ′ the ideal system. In
this case the structures in Sys ′ have to consist of a single, deter-
ministic Turing machine that specifies the intended functionality.
The structures in Sys must have a Turing machine for each possi-
ble location (if the functionality is for n parties then there must be n
machines, one for each party) and they should use mostly insecure
channels for communication (the secure or authentic channels may
be used for initial exchange of secrets). A particular ideal system
is the simulatable cryptographic library. It contains a structure for
each possible number n of honest parties, this structure is made up
of a single machine THn that has ports inui

? and outui
! for com-

municating with the i-th party and ports ina? and outa! for commu-
nicating with the adversary. The i-th party sends API calls to THn

on the channel inui
and receives answers on outui

. Also, when a
message is sent to the i-th party through THn then it also reaches
the party through the channel outui

. In a corresponding real struc-
ture, there is a machine Mi for each party, these machines use real
cryptographic primitives [24, 45] for securing the messages.

The main component of THn is the database of terms. The
database records for each term its subterms and the parties that
“know” that term. The parties and the adversary access the terms
through handles that by itself are just consecutive integers; hence
they contain no information about the contents of the database. The
sending of messages from one party to another therefore has to be
done with the help of THn in translating the handles. The machine
THn offers to the honest parties and the adversary the functionality
to store (command store) “raw data” (i.e. arbitrary bit-strings) in-
side THn and to retrieve (command retrieve) them (by its handle);
to build up lists of terms (command list) and to take components
of lists (command list proj); to construct new nonces (gen nonce),
public encryption and private decryption keys (gen enc keypair),

and symmetric encryption/decryption keys (gen symenc key); to
encrypt (encrypt and sym encrypt) lists and to decrypt (decrypt

and sym decrypt) the resulting ciphertexts; to find either the type
(get type) or the length (get len) of a term. Two terms may be
compared for equality, this is done by comparing their handles. A
party can also send a term, which must be a list, to another party ei-
ther over a secure, authentic or insecure channel. A term sent over
authentic channel is also sent to the adversary; a term sent over in-
secure channel is sent only to the adversary. The adversary can send
messages to honest parties over insecure channels. The adversary
can also insert “garbage” terms (command adv garbage) to the
database. As a departure from the Dolev-Yao model, one can de-
termine the public key from an asymmetric ciphertext (pk of enc)
or the identity of the key (not the key itself) from a symmetric ci-
phertext, so the encryption, as modeled by THn, is key-revealing
(type-3 in terms of [6]). Also, the adversary may create invalid ci-
phertexts (both symmetric (adv unknown symenc) and asymmet-
ric (adv invalid ciph)). For the symmetric encryption, the adver-
sary may later also fix (adv fix symenc content) the encryption
key and the plaintext, as long as it has a handle to both of them.

The cryptographic library also contains digital signatures and
symmetric authenticators, but as we are not going to handle them
in the current paper (although the necessary extensions should not
be difficult), we will not describe them here.

Let us also describe the scheduling of machines. Only one ma-
chine runs at a time, and it processes a single input from a single
input port. Besides input and output ports the channels also have
clock ports, denoted c/! for a channel c. The messages currently
on a channel c are stored in a buffer, messages written to c! are
appended to this buffer. When a machine M runs, it may write an
integer to exactly one of the clock ports it has. If it does so (writes
i to c/!) and the buffer of c has at least i messages waiting then the
i-th message is removed from the buffer and passed to the machine
M ′ having the port c?, the machine M ′ will run next. Otherwise
the adversary will run next. The machine THn has clock ports for
channels outui

and outa. Whenever it writes something to these
channels, it follows it by 1 on the corresponding clock port. The
parties are supposed to have the ports inui

/!, this allows THn to be
used as a subroutine when operating with terms. Note, however,
that when a party commands THn to send a message to someone
then the control is not returned to that party.

There is a caveat related to the simulatability of THn by the real
structure (M1, . . . ,Mn) — the user H may not be completely ar-
bitrary. For the simulatability to hold, a condition regarding the
usage of symmetric keys must be true. In [9] the condition, called
NoComm, states that H must ensure that a symmetric key k either
becomes known to the adversary before it is used, or that whenever
a term containing k is sent over a channel that the adversary can
read, the subterm containing k must be encrypted by some other
key k′ for which the adversary does not know the decryption key.
Moreover, to enable the use of hybrid argument [23, Chap. 3] in the
simulatability proof, it must be known statically which symmetric
key encrypts which one. In [9] this is formalized by ordering the
keys by their first use as encryption keys and requiring that a key
may only be encrypted under keys whose first use was earlier. We
formalize this by fixing the “order” — a positive integer — of a
symmetric key when it is created and require that a key may only
be encrypted by keys of higher order. The order is fixed by giv-
ing it as an argument to the command gen symmetric key of THn.
The machine THn is supposed to just discard that argument, but
its presence in the view of THn is necessary for the simulatability
proof. More precisely, the order given to symmetric keys allows us
to give an order to each term in the database — the order of lists is
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the maximum order of their components, and the order of terms that
are neither symmetric keys nor lists is 0. We then require the order
of the symmetric key to be higher than the order of the plaintext.

4. THE PROCESS CALCULUS
The functionality of the protocol is provided to the users of the

protocol in the form of a structure Cn (for n users). The struc-
ture C consists of the machines Mi (1 ≤ i ≤ n) realizing the
cryptographic primitives for the i-th party, and of the machines Pi

that execute the instructions (of the i-th party) that make up the
actual protocol. The process calculus is used to program the par-
ticipants Pi of the protocol. The machine Pi must have the ports
inui

!, outui
? and inui

/! to communicate with the machine Mi. We
let the communication with the i-th user to go over the channels
pinui

and poutui
in the form of API calls, i.e. these channels are

secure. The machine Pi has the ports pinui
?, poutui

! and poutui

/!,
all messages from Pi to the user are scheduled immediately.

The simulatability result for the cryptographic library [12, 9]
states that Cn is at least as secure as the structure C ′n consisting
of THn and P1, . . . ,Pn. Hence we analyse the structure C ′n in the
rest of the paper.

The process calculus is designed to be quite similar to the spi-
calculus [4]. As mentioned in the introduction, we make explicit
the selection of a thread for each incoming message. In some ap-
proaches where complexity-theoretic security definitions are used
and therefore nondeterminism cannot be employed, the adversary
is allowed to choose which thread handles the received message.
We think that this is not the right design decision because the infor-
mation that is available to the honest party, but not to the adversary,
should be able to influence which thread handles the incoming mes-
sage. I.e. the decision should be made by the honest party itself.
As a minimal addition supporting that decision-making we add the
“invalid input” command II to the calculus. When a thread ex-
ecutes the command II, its computations since the last input are
discarded and the received message is passed to the next thread.

The task of the semantics of the process calculus is to describe
how the state of C ′n evolves in response to the inputs it may receive
from the users (over the ports pinui

?) and from the adversary (over
the port ina?). A state C of C ′n consists of the following elements:

• The contents O of the database of THn.

• The states Si of the machines Pi.

• The multisets of messages L
i→j
c on secure and authentic

channels that have not yet been delivered to their recipients
(the adversary schedules these channels as well). Here 1 ≤
i, j ≤ n and c ∈ {s, a}.

The possible actions are various inputs from the adversary and the
users (external actions), and the internal actions. The state of each
Pi contains a bit showing whether Pi is currently active or not; at
most one Pi can be active at any time. If there is an active Pi then
the next executed action is internal, otherwise it is external. Of
course, we have to make sure that the semantics, as we define it, is
actually executable by C ′n.

In the following we define the expressions and the processes and
explain how an expression is evaluated and how a process evolves.
Afterwards we explain how the states Si, which consists mainly of
a list of processes, and the state C evolve. The omitted details can
be found in [34].

Let Var be the set of variables; it is a countable set. The values
of the variables will be integers, they may be interpreted either as
bit-strings (i.e. the “raw data” exchanged with the protocol user)
or term handles (the database of THn maps them to terms). In the

v ::= n | ⊥

e ::= n | keypair | store(e)
| x | pubkey(e) | pubenc(ek, et)
| ⊥ | gen symenc key(i) | pubdec(ek, et)

| retrieve(e) | list(e1, . . . , ek)
| privenc(ek, et) | list proj(e, i)
| privdec(ek, et) | gen nonce

Figure 1: Values and arithmetic expressions

keypair ≡ π1(gen enc keypair())

pubkey(e) ≡ e + 1

pubenc(ek, et) ≡ encrypt(ek, list(et))

pubdec(ek, et) ≡ list proj(decrypt(ek, et), 1)

privenc(ek, et) ≡ sym encrypt(ek, list(et))

privdec(ek, et) ≡ list proj(sym decrypt(ek, et), 1)

Figure 2: Derived expressions

SIP ::= receivec(xp, x)
IP ::= SIP | !SIP

I ::= IP .P

I∗ ::= 0 | I | I∗

P ::= I∗ | II | sendc(ep, e).I∗

| let x := e in P else P ′

| if e = e′ then P else P ′

Figure 3: The process calculus

following we denote the elements of Var by x (with subscripts).
The values v, expressions e, processes P (corresponding to active
threads) and input processes I (corresponding to inactive threads)
are defined in Fig. 1 and Fig. 3. Here n and i are integers. The
expressions that are not underlined directly correspond to the com-
mands of THn of the same name. The other expressions correspond
to certain sequences of commands, given in Fig. 2. The reason for
their introduction is to hide that THn only allows lists to be plain-
texts, and that gen enc keypair returns handles for both the secret
and the public key. Hence keypair actually returns the secret key.

The participant Pi evaluates a closed (i.e. without free variables)
expression e inductively over the expression structure, by sending
the respective commands to THn and getting back their values. If
the evaluation of any subexpression fails (i.e. returns ⊥; denoted ↓
in [12]) then the value of the whole expression is ⊥, too. In the full
paper we give a precise definition of the relation e O⇓i

O′ v meaning
that e, if evaluated by Pi with the contents O of the database of
THn, results in v and the contents of the database becomes O

′.
As next, let us describe the execution of a process P by an active

Pi. Both I∗ and II denote deactivated processes, but they are han-
dled differently by Pi. Let Chan ⊆ N be the set of abstract chan-
nels. An abstract channel is used to group messages sent between
protocol participants, as well as between the protocol user and par-
ticipant (although the abstract channel does not alone determine the
sender and the receiver of a message). The set Chan is partitioned
into four parts, denoted Chanc, where c ∈ {s, a, i, u}. If a mes-
sage is sent on an abstract channel from Chans [resp. Chana,
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Chani] then it means that the message travels between protocol
participants over a secure (resp. authentic, insecure) channel. If a
message is sent on an abstract channel from Chanu then it travels
between the protocol user and the protocol participant (i.e. over one
of the channels pinui

or poutui
). Let us assume that |Chanu| = 1,

because the type system has to handle all inputs from the user iden-
tically anyway. The process sendc(ep, e).I∗ evaluates e as v and
ep as vp. If neither of them is ⊥ then it sends v to the partic-
ipant vp “over the abstract channel c” (unless c ∈ Chanu, in
this case v is simply handed over to the user). This means that
list(store(c), v) is sent to vp over the secure / authentic / insecure
channel, depending on c. The process then becomes I∗. The pro-
cess let x := e in P else P ′ evaluates e as v. If v 6= ⊥ then
it becomes Px←v otherwise it becomes P ′. I.e. here x is bound
in P but not in P ′. The process if e = e′ then P else P ′ eval-
uates both e and e′, compares them and becomes either P or P ′,
depending on the result.

The state Si of Pi can be inactive or active. An inactive Si is
just a list of closed input processes. It is activated by a message
arriving at the port outui

? or pinui
?. An active Si contains that

message; let cv be the abstract channel over which it arrived, u its
(apparent) sender, and m its contents. If the message read from
outui

? is not of the shape created by a send-command then Si is
immediately deactivated again. An active state also contains the list
of input processes I∗pre that have already processed the message and
have rejected it, the currently running process (may be missing) and
the list of input processes I∗post that have not yet been run. Upon
activation, I∗pre is empty and I∗post equals the inactive state. If the
currently running process is missing then the step of Si consists of
taking the first input process (!)receivec(xp, x).P of I∗post (if it is
empty then Si is deactivated with I∗pre as its state) and comparing c

to cv . If c = cv then Px←m,xp←u becomes the currently running
process, otherwise this input process is moved to the end of I∗pre. If
the currently running process P is present and active then a step of
Si is just a step of P . If P is II then it is discarded and the first
input process in I∗post is moved to the end of I∗pre. If P is I∗ then Si

is deactivated and its new state is the concatenation of (1) I∗pre, (2)
I∗, (3) if head(I∗post) is replicated then I∗post else tail(I∗post).

The state C of C ′n may evolve in the following ways. If the state
Si of a Pi is active then a step of C is just a step of Si. If Si is deac-
tivated then the sent message is delivered to the adversary (if it was
on an authentic or insecure channel), put to the right buffer L

i→j
c

(if it was on a secure or authentic channel) or sent to the user (if it
was on an abstract channel from Chanu). If the states of all Pi are
inactive then C ′n is expecting a message from outside, there are two
kinds of such messages. First are the basic or local adversary com-
mands [12] executed by the adversary, these cause the contents O

of the database of THn to be changed and a handle and the control
to be returned to the adversary; no participant is activated. Second
are the incoming messages to protocol participants, initiated either
by the adversary (who also schedules secure and authentic chan-
nels [12]) or the users. This causes one of the participants Pi to
be activated with the incoming message, and the message removed
from the right buffer L

i→j
c (if it arrived over a secure or authentic

channel).
The precise definition of the evolution of the states of C ′n is given

in the full paper [34]. There we define a relation O i
−→O

′

for pro-
cesses and for participant states, meaning that a process [participant
state] at the left hand side, when executed by Pi with the contents of
the database of THn as O, becomes the process [participant state]
at the right hand side and the contents of the database of THn be-
comes O

′. We also define a relation → for the states of C ′n.

Security
We now define our notion of secrecy. We consider as secret all
data that the protocol user(s) pass to the protocol over the channels
pinui

. The actual secrecy definition has to be stated for the real
system, i.e. we cannot refer to the internal state of TH in that
definition.

We use the definition of payload secrecy given by Backes and
Pfitzmann [10]. To state that definition we first rename the ports
pinui

?, poutui
! and poutui

/! of the machine Pi; let the renamed
ports be pinui

?, poutui
! and poutui

/!. Let the machines R and

F both have ports pinui
?, poutui

!, poutui

/!, pinui
!, pinui

/! and
poutui

? for all i ∈ {1, . . . , n}, i.e. either R or F can be placed
between the user(s) H of the protocol and the machines Pi (with
renamed ports). The machine F operates by just forwarding ev-
ery message it receives on pinui

? [resp. poutui
?] to pinui

! [resp.
poutui

!] and clocking the output channel. Hence the operation of
the original system (with unrenamed ports of Pi) is identical to the
operation of the modified system (with renamed ports of Pi) when
F is placed between the user(s) and the machines Pi. The machine
R also forwards the messages between the user(s) and the machines
Pi, but it additionally scrambles them. It keeps a dictionary T —
an initially empty set of pairs of bit-strings — for that reason. On
input x on pinui

?, the machine R checks whether (x, y) ∈ T for
some y. If not, then it generates a random y of the same length as
x and not yet occurring as the second component of the pairs in T ;
the pair (x, y) is then added to T . The bit-string y is then output
on pinui

!. On input y on poutui
?, the machine R checks whether

(x, y) ∈ T for some x. If yes, x is output on poutui
!, otherwise y

is output.
Backes and Pfitzmann [10] define the payload to be secure if

for all possible adversaries the view of the user, where R is placed
between the user and the machines Pi, is computationally indistin-
guishable from its view, where F is placed between the user and
the machines Pi. I.e. the user and the adversary jointly are unable
to determine whether the communication between the user and the
machines Pi is scrambled or not. It is also shown that payload
security is preserved under simulatability.

Backes and Pfitzmann [10] have shown that the following condi-
tions suffice for payload secrecy for the configuration C ′n.

(I) the bit-strings that the machines Pi receive from the ports
pinui

? do not affect the control flow of Pi, i.e. this data is
not used in the if -statements;

(II) the machines Pi may pass the bit-strings received from the
user to the cryptographic library only in store-commands;

(III) the terms resulting from these store-commands will not be-
come available to the adversary, i.e. the adversary does not
get handles for these terms.

So our type system must ensure these three properties. As we men-
tioned before, it must also ensure that

(IV) symmetric keys of order i only encrypt terms of order less
than i (note that symmetric keys created by the adversary
have no order and are thereby not restricted by this condi-
tion);

(V) if a symmetric key unknown to the adversary (i.e. the adver-
sary does not have a handle to it) is used for encryption then
this key will never become known to the adversary.

Example
We revisit the example of Needham-Schroeder-Lowe public-key
protocol by Abadi and Blanchet [2]. In informal syntax, the proto-
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col is the following:

A −→ B : {sA, A}kB

B −→ A : {sA, sB , B}kA

A −→ B : {sB}kB
.

Here kA and kB are the public keys of A and B; and sA and sB

are fresh nonces that become shared secrets as the result of the
protocol. To demonstrate that sB does not become known to the
adversary, we add the fourth message B −→ A : {s}sB

where B

sends to A a secret message s (received from the user of the proto-
col) symmetrically encrypted with sB and let A return the received
message to the user.

The protocol starts by A and B generating new asymmetric key
pairs and sending the public part to each other over an authen-
tic channel. The attack found by Lowe [38] against the original
Needham-Schroeder protocol [43] is a man-in-the-middle attack
where A is first tricked to execute the protocol with adversarially
controlled C who then impersonates A in a run with B. To model
that A can execute the protocol not only with B we let A also re-
ceive public keys other than kB . As these keys come from the
adversary they arrive over insecure channels but we do not let A

differentiate between kB and other keys.
Let c1, c2 ∈ Chana, ci ∈ Chani and cu ∈ Chanu. We

use the channel c1 to communicate the public key of A to B and
the channel c2 to communicate the public key of B to A. The
need for two authentic channels is caused by our type-system’s
need to distinguish between these two keys. The processes for
A and B are given in Fig. 4. Here we let let

P ′

e in P denote
the process let e in P else P ′ and let if

P ′

b then P denote
if b then P else P ′.

In Fig. 4, A starts by generating a new asymmetric key pair and
sending the public part to B. It then expects public keys of other
parties to be sent to it over authentic (the key of B) or insecure
channels. The process A′ handles all sessions with a fixed other
party X . First it expects the public key of X as the sign to start
a new session with it. The rest of A′ should be clear. At the end
of the protocol run, A′ returns the received message s to the user.
The process B starts by receiving the secret message s from the
user and storing it in the database of THn. It then generates a new
asymmetric key pair, sends the public part to A and gets the public
key of A. Afterwards it can participate in any number of protocol
sessions. The process B assumes that its partner in these sessions
is A as it encrypts the outgoing messages with kA.

All public keys are sent to A in a similar way — both new pub-
lic keys (of principals that A did not know before; these keys are
received outside of the process A′) and the public keys of parties
with whom to start a new protocol run (received inside A′). The
order of considering threads and inserting new threads to the list
of threads in the state of PA ensures that the first time when A re-
ceives a public key this is interpreted as the public key of a new
party (and a new process A′ is spawned) and when the same public
key is received again then A attempts to start a new protocol run
with this party.

5. THE TYPE SYSTEM
A typing Γ assigns types to the free variables of the processes and

to the abstract channels used by the protocol. The types of channels
reflect the types of messages passed over them. In the following
we define the set of types and also state, when a process (or input
process) types with respect to a typing. We say that a protocol types
if there exists a typing such that all the input processes in the initial
states of the machines Pi type with respect to it.

A′(X, kX) is

!receiveci
[fc1 ](mc).if II mc = kX then

let
0 sA := gen nonce in

sendci
(X, pubenc(kX , list(sA, kA))).

receiveci
(yX2, m2).let

II l2 := pubdec(k−1
A , m2) in

let
II sA2 := list proj(l2, 1) in let

II k′AX := list proj(l2, 2) in

let
II kX2 := list proj(l2, 3) in if

II kX = kX2 then

if
II sA2 = sA then sendci

(X, pubenc(kX2, k
′

AX)).
receiveci

(yX4, m4).let
II s′ := privdec(k′AX , m4) in

sendcu
( , retrieve(s′)).0

A is

let
0 k−1

A := keypair in sendc1(“B”, pubkey(k−1
A )).

(

receivec2(yB , kB).
if

II yB = “B” then A′(yB , kB) |
!receiveci

[yX1](kX).A′(yX1, kX)
)

B is

receivecu
(fc2 , sI).let

0 s := store(sI) in

let
0 k−1

B := keypair in let
0 kB := pubkey(k−1

B ) in

sendc2(“A”, kB).
receivec1(yA, kA).ifII yA = “A” then

!receiveci
[y1](m1).let

II l1 := pubdec(k−1
B , m1) in

let
II s′A := list proj(l1, 1) in let

II kA2 := list proj(l1, 2) in

if
II kA = kA2 then let

0 kAB := gen symenc key(1) in

sendci
(“A”, pubenc(kA, list(s′A, kAB , kB))).

receiveci
(y3, m3).let

II kAB2 := pubdec(k−1
B , m3) in

if
II kAB = kAB2 then sendci

(“A”, privenc(kAB2, s)).0

Figure 4: Example protocol

T ::= T (I) | T (H)

T (I) ::= PubRD | SecRD | AllRD

T (H) ::= T (A) | DK(T (A))

T (A) ::= Public | PubData
| SNonce | SecData

| EK(T (A)) | SKi(T (A))

| List(T
(A)
1 , . . . , T

(A)
n ) | T

(A)
1 + T

(A)
2

Figure 5: The types for variables and channels

The types T are defined in Fig. 5. The type system contains two
main kinds of types — the types T (I) are intended for “raw data”,
i.e. the data received from the protocol users, as well as for the
identities of participants. The types T (H) are intended for the terms
in the database of THn (both for variables containing handles, and
for abstract channels). The subtyping and sameness relations are
given in Fig. 6. If two types are subtypes of each other then we
count them as being the same.

The meaning of types T (I) should be clear — the data received
from the user of the protocol gets the type SecRD and the data rep-
resenting names of the parties gets the type PubRD. As terms in
the database these have types SecData and PubData, respectively.
The types DK(T ), EK(T ) and SKi(T ) are respectively for asym-
metric decryption, asymmetric encryption and symmetric keys (of
order i) where T is the type of plaintexts. The types DK(T ) are
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PubRD ≤ AllRD SecRD ≤ AllRD

T ≤ T PubData ≤ Public EK(T ) ≤ Public

(

∀i : Ti ≤ Public
)

⇒ List(T1, . . . , Tn) ≤ Public

Ti ≤ T1 + T2 (T1 ≤ T ∧ T2 ≤ T ) ⇒ T1 + T2 ≤ T

(

∀i : Ti ≤ T
′

i

)

⇒ List(T1, . . . , Tn) ≤ List(T ′1, . . . , T
′

n)

T1+(T2+T3) ≡ (T1+T2)+T3 T1+T2 ≡ T2+T1 T +T ≡ T

List(T1, . . . , Ti + T
′

i , . . . , Tn) ≡ List(T1, . . . , Ti, . . . , Tn)+
List(T1, . . . , T

′

i , . . . , Tn)

Figure 6: Subtyping

kept separate because the library THn restricts the use of these keys
purely to the decryption of ciphertexts. Finally, a variable of type
T1 + T2 contains a handle to a term with either type T1 or T2;
subsequent parsing may make the typing more precise. We say
that a type is public if it is a subtype of Public. The type Public
has another special meaning — a variable of type Public (and not
some subtype of it) may point to a tainted term — a term that is
constructed by the adversary.

Not all types SKi(T ) are valid types — the orders of keys have
to be respected. Let us define the order for all types T (A). The
order of all public types, as well as SecData and SNonce is 0. The
order of SKi(T ) is i. The order of lists and sums is the maximum
order of their components. A type SKi(T ) is valid if the order of
T is strictly less than i.

Note that our type system does not allow making a symmetric
encryption key available to the adversary. The property NoComm
[9] does not exclude revealing a symmetric key, but this must be
done before the key is used for encryption. We do not believe that
real protocols generate symmetric keys only to make them imme-
diately available to the attacker, so we simplify the type system by
excluding this case. This immediately takes care of the property
(V).

As we said before, Γ maps the free variables of a process to
types, i.e. if we say that a process P types according to Γ (denoted
Γ ` P ) then dom(Γ) must at least include all free variables of
P . The typing Γ also has to map channels between principals to
types (of the messages passed on these channels). The abstract
channels have been introduced for this purpose. There are even
two types for each abstract channel — one for sent and one for
received messages. These two types can by safely taken as equal if
both ends of a channel connect to protocol participants, but this is
not the case for channels between the participant and the user. The
typing Γ must define two types, Γ(c, s) and Γ(c, r) for each abstract
channel c occurring in the protocol. These may not be completely
arbitrary — if c ∈ Chana then Γ(c, s) and Γ(c, r) must be public
types. Also, if c ∈ Chani then both Γ(c, s) and Γ(c, r) must be
equal to Public. For abstract channels c in Chans, Chana and
Chani the inequality Γ(c, s) ≤ Γ(c, r) must hold. If c ∈ Chanu

then Γ(c, r) = SecRD and Γ(c, s) = AllRD — the inputs from
the user have to be treated as secret, whereas anything can be sent
back to him.

Compared to the type system of Abadi and Blanchet [2] a cate-
gory of types is absent — the public encryption keys that the ad-

versary is not allowed to know. The reason for this omission is the
operation of the cryptographic library THn — it tags each asym-
metric encryption with the public encryption key used to produce
it.

Let T ⊥ T ′ denote that T and T ′ have no common subtypes.
Let TA (resp. TH) be the set of all types T (A) (resp. T (H)) in
Fig. 5. The typing judgments Γ ` e : T for expressions e are given
in Fig. 7. Here Γ must give types to all variables occurring in e.
Beside e : T we may be able to derive NF(e) or AF(e), meaning
that the computation of the value of the expression e either never
fails (i.e. results in ⊥) or always fails. This knowledge is useful
when typing the processes of form let x := e in P else Q where
it allows to leave either P or Q untyped (see rules (LetP, LetF)
in Fig. 9). The rules for inferring the failure of expressions are
given in Fig. 8. Note that never failing only makes sense if the
expression has a type. Most of the typing rules for expressions
should be obvious. The computation that is done with public inputs
may always produce public outputs (PNce, PEU, SEU, List, StoP,
SDU, PrT, Const, RetP). The meaning of the types EK(T ) and
SKi(T ) is reflected in the rules (PET, SET) — the encryption with
these keys is enough to turn data of type T to public data. Also, if
the decryption of public data succeeds with the symmetric key of
type SKi(T ) then the plaintext must have been of type T (SDT).
If the decryption succeeds with the asymmetric decryption key of
type DK(T ), then the plaintext may also be of type T , but it may
also have been generated by the adversary (who may have learned
the encryption key). Hence the type of decryption is either T or
Public (PD).

The typing rules for the processes are given in Fig. 9. We see
that a message received from a channel gets the type of this channel
(Recv) while the sender of that message is known to the adversary.
The handles may be compared only if it is certain that the corre-
sponding terms are not created by store-commands storing mes-
sages received from the user (IfH). Sometimes we can deduce that
the compared terms cannot be equal (if their types are necessar-
ily different), then we do not have to worry about (i.e. type) the
then-branch (IfH).

Example
There exists a typing Γ with dom(Γ) = {c1, c2, ci, cu} × {s, r},
such that both processes A and B in Fig. 4 type with respect to
it. Let us denote T1 = List(SNonce,SK1(SecData),EK(T2))
and T2 = List(SNonce, Public) + SK1(SecData). If we take
Γ(ci, s) = Γ(ci, r) = Public, Γ(cu, r) = SecRD, Γ(cu, s) =
AllRD, Γ(c1, s) = Γ(c1, r) = EK(T1) and Γ(c2, s) = Γ(c2, r) =
EK(T2), then this satisfies the constraints put on the values of Γ(c)
for channels c in Chana, Chani or Chanu. To show that Γ `
A and Γ ` B, let us mention the types that some variables get
when typing A and B; the rest of the types should be easy to figure
out. We mostly mention the type when the variable points to newly
generated data.

In process A, variable k−1
A gets the type DK(T1). The process

A′ is included in A twice (first time for kX = kB and second
time for possibly tainted kX -s), the types of variables are somewhat
different there. The variable sA gets the type SNonce in the first
case and Public in the second. We need to give the type Public to
pubenc(kX , list(sA, kA)), this is done with help of the rule (PET)
in the first case and (PEU) in the second. The value l2 gets a sum
type, at this point we use the rule (Sum), giving us two subcases
for both cases. The comparison if sA2 = sA effectively rules out
l1 : Public in the first case and l1 : T1 in the second case because
of incompatible types (we find that the else-part is definitely taken).
In the remaining subcases pubenc(kX2, k

′

AX) has the type Public
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Γ ` e : T T ≤ T ′

Γ ` e : T ′
(Sub)

Γ ` n : PubRD
(Const)

Γ ` x : Γ(x)
(Var)

∀i : Γ ` ei : Ti ∀i : Ti ∈ TA

Γ ` list(e1, . . . , ek) : List(T1, . . . , Tk)
(List)

Γ ` e : PubRD
Γ ` store(e) : PubData

(StoP)
Γ ` e : SecRD

Γ ` store(e) : SecData
(StoS)

Γ ` gen symenc key(i) : SKi(T )
(SK)

Γ ` keypair : DK(T )
(KP)

Γ ` gen nonce : SNonce
(SNce)

Γ ` gen nonce : Public
(PNce)

Γ ` ek : Public Γ ` et : Public

Γ ` pubenc(ek, et) : Public
(PEU)

Γ ` ek : EK(T ) Γ ` et : T

Γ ` pubenc(ek, et) : Public
(PET)

Γ ` ek : Public Γ ` et : Public

Γ ` privenc(ek, et) : Public
(SEU)

Γ ` ek : SKi(T ) Γ ` et : T

Γ ` privenc(ek, et) : Public
(SET)

Γ ` e : Public
Γ ` list proj(e, i) : Public

(PrT)
Γ ` e : List(T1, . . . , Tk)

Γ ` list proj(e, i) : Ti

(PrL)

Γ ` ek : Public Γ ` et : Public

Γ ` privdec(ek, et) : Public
(SDU)

Γ ` ek : SKi(T ) Γ ` et : Public

Γ ` privdec(ek, et) : T
(SDT)

Γ ` ek : DK(T ) Γ ` et : T

Γ ` pubdec(ek, et) : T + Public
(PD)

Γ ` e : DK(T )

Γ ` pubkey(e) : EK(T )
(PK)

Γ ` e : Public
Γ ` retrieve(e) : PubRD

(RetP)
Γ ` e : T T 6⊥ SecData

Γ ` retrieve(e) : SecRD
(RetS)

Figure 7: Typing expressions

e′ is a subexpression of e Γ ` AF(e′)

Γ ` AF(e)
(fSub)

e ∈ {n, x, gen symenc key(i), keypair, gen nonce}

Γ ` NF(e)
(fNoSub)

Γ ` e : T ∀k ≥ i∀T1, . . . , Tk : T ⊥ List(T1, . . . , Tk)

Γ ` AF(list proj(e, i))
(fPr)

∀i : Γ ` NF(ei)

Γ ` NF(list(e1, . . . , ek))
(fList)

∃i : Γ ` ei : T T 6∈ TA

Γ ` AF(list(e1, . . . , ek))
(fList’)

Γ ` NF(e)

Γ ` NF(store(e))
(fSto)

Γ ` ek : T ∀i, T ′ : T ⊥ SKi(T ′) T ⊥ Public

Γ ` AF(privenc(ek, et))
(fSE)

Γ ` ek : T ∀T ′ : T ⊥ DK(T ′)

Γ ` AF(pubdec(ek, et))
(fPD)

Γ ` e : T ∀T ′ : T ⊥ DK(T ′)

Γ ` AF(pubkey(e))
(fPK)

Γ ` ek : T ∀T ′ : T ⊥ EK(T ′)

Γ ` AF(pubenc(ek, et))
(fPE)

Γ ` e : T T ∈ TA T ⊥ SecData + PubData

Γ ` AF(retrieve(e))
(fRet)

Figure 8: Failing of expressions

Γ ` 0
(Zero)

Γ ` II
(II)

x ∈ FV (P ) Γ[x 7→ T1] ` P Γ[x 7→ T2] ` P

Γ[x 7→ T1 + T2] ` P
(Sum)

∀i : Γ ` Ii

Γ ` I1 | · · · | In | 0
(Par)

Γ ` I∗ Γ ` ep : PubRD Γ ` e : Γ(c, s)

Γ ` sendc(ep, e).I∗
(Send)

Γ[x 7→ Γ(c, r), xp 7→ PubRD] ` P

Γ ` (!)receivec(xp, x).P
(Recv)

Γ ` e : T Γ[x 7→ T ] ` P Γ ` Q

Γ ` let x := e in P else Q
(Let)

Γ ` e : T Γ[x 7→ T ] ` P Γ ` NF(e)

Γ ` let x := e in P else Q
(LetP)

Γ ` Q Γ ` AF(e)

Γ ` let x := e in P else Q
(LetF)

Γ ` e : T Γ ` e′ : T ′ T, T ′ ∈ TA SecData ⊥ T + T ′ if T 6⊥ T ′ then Γ ` P Γ ` Q

Γ ` if e = e′ then P else Q
(IfH)

Γ ` e : PubRD Γ ` e′ : PubRD Γ ` P Γ ` Q

Γ ` if e = e′ then P else Q
(IfR)

Figure 9: Typing processes and input processes
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either by (PET) or (PEU). The types of the rest of the variables are
obvious.

In process B the variable k−1
B gets the type DK(T2). The value

l1 gets a sum type T2. At this point we use the (Sum) rule. The
case where l1 : SK1(SecData) is immediately ruled out by the
following list proj-operation. The variable kAB obviously gets the
type SK1(SecData). The variable kAB2 also gets the sum type T2.
We use the (Sum) rule and the case kAB2 : List(. . .) is ruled out
by the following comparison if kAB = kAB2. It is straightforward
to verify that all send- and if - statements type in both A and B.

6. CORRECTNESS OF THE TYPE SYSTEM
The type system is correct in the following sense.

THEOREM 1 (PRESERVATION OF SECRECY). Let ChanP be
the set of abstract channels used by all processes in the initial states
of all the machines Pi. If there exists a typing Γ with dom(Γ) =
ChanP ×{s, r}, such that Γ satisfies the constraints put on Γ(c, s)
and Γ(c, r), as stated in Sec. 5, and Γ ` I for all input processes I

in the initial states of the machines Pi executing the protocols then
the execution of the configurations of the structure C ′n satisfies the
properties (I)–(V).

From this result and from the preservation of secrecy of mes-
sages under simulatability we immediately get

COROLLARY 2. If the conditions of Theorem 1 are met then the
structure Cn preserves the secrecy of messages that it receives over
the channels pinui

.

Let us give a sketch of the correctness proof; full details can be
found in [34]. The main tool in showing the correctness of the type
system is a result similar to subject reduction. For this we have to
keep track of the secrets given to participants of the protocol by
the users, as well as the orders of symmetric keys. We extend the
definition of values (Fig. 1) by v ::= · · · | ntrk and of expressions
by e ::= · · · | ntrk, where n ∈ N; we call such values tracked. If
the participant Pi has received a message n from the i-th user then
this message is saved in the state of Pi as ntrk. We must ensure
that the conditions (I)–(III) hold for these values. We also change
the workings of some commands of THn, such that the “raw data”
that has been stored in the database of THn can be tracked, too. In
particular the command store of THn must be aware whether its
argument is tracked and store it differently from untracked values
in the database. The trackedness is also preserved in the return val-
ues of the command retrieve. To remain faithful to the observable
behavior of the structure C ′n we define that in an if -statement of
some process, the values n and ntrk are considered equal.

Another slight modification to the operation of THn is neces-
sary; the observable semantics remains unchanged by it. Namely,
when Pi sends the command gen symenc key(i) to THn for gen-
erating a new symmetric key of order i then THn also stores i to-
gether with the newly created term denoting the key.

For defining when a state C types according to Γ we have to
extend Γ to the terms T in the database of THn and to the handles
of terms that the machine THn has returned to the participants. We
denote the type of the handle n ∈ N given to the i-th participant
by Γ(n, i). We also have to extend the typing relation `. The
semantics of processes replaces variables with their values, but the
typing rules in Fig. 7 do not allow an integer to represent a handle
to a term. For each participant identity i we define a relation `i for
expressions and processes. All the rules given in Figures 7–9 are
also defined to hold for `i. Additionally we introduce the axioms
Γ `i ntrk : SecRD, Γ `i n : Γ(n, i), and Γ `i NF(ntrk). We
write Γ ` C if the following holds:

(A) Γ `i P for all (input) processes P in the state Si, for all i. If
some state Si is active and the source of the message in that
state is not some participant then the received message in that
state is a handle to some term T in the database of THn and
Γ(T) ≤ Γ(c, r) where c is the abstract channel name that
is stored in Si. If there is a message that awaits sending (a
process has just executed a send-command) then it is a pair
where the first component indicates the abstract channel c,
the second component is the actual message and the type of
the second component, given by Γ is less or equal to Γ(c, s).
The same condition (the type of message is less or equal to
the type of the abstract channel) holds for the messages in
the buffers L

i→j
c of secure and authentic channels. Addi-

tionally, the abstract channel recorded in the message must
correspond to the security level of the concrete channel.

(B) If n has been given as a handle to the term T to some par-
ticipant i and n is present in the state Si (as part of an ex-
pression in a process, or as a handle to the received message)
then Γ(n, i) = Γ(T).

(C) Let τ be the type of the term T, as recorded by THn. De-
pending on τ , the type Γ(T) must be one of the following:

• τ = data: Γ(T) must be either PubData or SecData.
If the stored data is ntrk then Γ(T) must be SecData.

• τ = list: Γ(T) must be List(Γ(T1), . . . ,Γ(Tk)) where
T1, . . . ,Tk are the immediate subterms of T.

• τ = nonce: Γ(T) must be either SNonce or Public.
• τ = skse: Γ(T) must be either Public (if T was cre-

ated by the adversary) or SKi(T ) for some T , where i

is the order of T (if T was created by an honest party).
• τ = ske: Γ(T) must be either Public or DK(T ) for

some T . If T is generated by a protocol party (i.e. a
protocol party has a handle to it) then Γ(T) 6= Public.

• τ = pke: Let T′ be the term representing the corre-
sponding secret key. If Γ(T′) = Public then Γ(T) =
Public. If Γ(T′) = DK(T ) then Γ(T) = EK(T ).

• for other values of τ , Γ(T) must be Public.

We call a term public if its type, according to Γ, is public.
Otherwise we call a term secret.

(D) If the adversary has handle to a term T then T is public.

(E) If a term T is public and its immediate subterm T′ is secret
(the subterms of a ciphertext are the plaintext and the public
key of type pke or pkse) then the type of T, as recorded by
THn, is enc or symenc, T′ is the corresponding plaintext,
and the decryption key is secret.

(F) If the type of the term T, as recorded by THn, is symenc,
and the type (by Γ) of the corresponding key is SKi(T ) for
some type T , then the type (by Γ) of the plaintext must be a
subtype of List(T ). If the type of T is enc and the type of
the corresponding decryption key is DK(T ) then the type of
the plaintext must be a subtype of List(T ) or a public type.

With the definition of Γ ` C in place, the following lemmas and
theorems are straightforward to prove:

LEMMA 3. Let C be a state of the configuration C, let Γ ` C.
Let e be a closed expression, v be a value and e C.O⇓i

O′ v. Let
C
′ = CO←O′ . Let Γ `i e : T . Then there exists a typing Γ′ of C′

that extends Γ (i.e. dom(Γ′) ⊇ dom(Γ) and Γ′ agrees with Γ on
all arguments from dom(Γ)), such that Γ′ ` C

′, and if T ∈ TH

then v is either ⊥ or contains a handle to a term Tv , such that
Γ′(Tv) ≤ T .

34



LEMMA 4. Let C be a state of the configuration C, let Γ ` C.
Let e be an expression and let v be the result of the i-th participant
computing its value in the state C. If Γ `i NF(e) and e has a type
according to Γ and `i then v 6= ⊥. If Γ `i AF(e) then v = ⊥.

THEOREM 5 (SUBJECT REDUCTION). Let C and C
′ be two

states of the composition C and let Γ be a typing such that Γ ` C

and C → C
′. Then there exists a typing Γ′ extending Γ, such that

Γ′ ` C
′.

7. CONCLUSIONS
We have presented a rather simple type-system for protocols that

use the Backes-Pfitzmann-Waidner (BPW) cryptographic library.
The type system can be used to show that the protocol preserves
the secrecy of input messages. Our result shows that the existing
methods of (semi)automatically checking the security of protocols
(not only type systems, but also model-checking, program analy-
sis, constraint solving, etc.) are applicable to that library. Indeed,
Abadi and Blanchet [3] describe an automatic tool whose operation
is equivalent to the type inference according to their type system;
this tool should be readily modifiable for our type system. We are
also quite confident that the more complex type systems by Gor-
don and Jeffrey [26, 25, 27] for checking integrity properties in
protocols using Dolev-Yao model can be carried over to the BPW
library.
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