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ABSTRACT
A variant of public key encryption that promises efficiency
gains due to batch processing is multi-recipient public key
encryption (MR-PKE). Precisely, in MR-PKE, a dedicated
encryption routine takes a vector of messages and a vector
of public keys and outputs a vector of ciphertexts, where the
latter can be decrypted individually, as in regular PKE.

In this paper we revisit the established security notions of
MR-PKE and the related primitive MR-KEM. We identify
a subtle flaw in a security model by Bellare, Boldyreva, and
Staddon, that also appears in later publications by differ-
ent authors. We further observe that these security models
rely on the knowledge-of-secret-key (KOSK) assumption—
a requirement that is rarely met in practice. We resolve
this situation by proposing strengthened security notions for
MR-PKE and MR-KEMs, together with correspondingly se-
cure yet highly efficient schemes. Importantly, our models
abstain from restricting the set of considered adversaries in
the way prior models did, and in particular do not require
the KOSK setting. We prove our constructions secure as-
suming hardness of the static Diffie-Hellman problem, in the
random oracle model.

1. INTRODUCTION
Standard public key encryption is concerned with two

communicating parties, a sender and a receiver, and en-
ables the sender to encrypt a confidential message for the
receiver using the latter’s public key. Should a sender want
to encrypt the same or different messages for two or more re-
ceivers, the use of a standard public key encryption scheme
would require the sender to encrypt the messages under the
intended receivers’ public keys independently of each other.

In contrast to this, a multi-recipient multi-message public
key encryption scheme (MR-MM-PKE) enables a sender to
simultaneously encrypt many messages for many receivers
in a single operation. More specifically, an MR-MM-PKE
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scheme provides an encryption algorithm which, given a
vector (pk1, . . . , pkn) consisting of the public keys of n re-
ceivers and a corresponding vector (m1, . . . ,mn) of n mes-
sages, returns a vector (c1, . . . , cn) of n ciphertexts. It is
required that these ciphertexts can be decrypted individu-
ally, i.e., each receiver i (holding the public/private key pair
(pki, ski)) be able to decrypt ci without knowledge of the
public keys of the other recipients or the remaining cipher-
texts cj , j 6= i. Hence, syntactically, decryption is identical
to that of an ordinary public key encryption scheme.

By simultaneously processing messages for multiple re-
ceivers, MR-MM-PKE schemes allow computational and, in
some settings, bandwidth savings compared to the paral-
lel use of standard public key encryption. This property
is highly attractive in applications where batch processing
of encryptions naturally occurs. For example, consider an
online banking system which, following a regular schedule,
sends encrypted bank account statements to all customers
who have provided the bank with a corresponding public
key. By employing an MR-MM-PKE scheme as opposed to
an ordinary public key encryption scheme, the bank could
considerably reduce the computational workload for provid-
ing this service.

1.1 The evolution of MR-MM-PKE
A promising approach towards the construction of effi-

cient MR-MM-PKE schemes is to use an ordinary encryp-
tion scheme to encrypt the messages for their respective re-
ceivers, but to use the same randomness for all encryptions
[13, 5, 4]. Depending on the structure of the encryption
scheme, this can potentially provide a significant reduction
in the computational requirements for the encryption pro-
cess, but at the same time requires that the used encryption
scheme remain secure under randomness re-use.

In [13], Kurosawa shows that both ElGamal encryption [11]
and (a version of) Cramer-Shoup encryption [8] are secure
in this setting. Furthermore, it is highlighted that the MR-
MM-PKE schemes obtained by employing randomness re-
use in combination with these encryption schemes provide
a reduction of almost 50% in terms of computational cost,
compared to individually encrypting the messages. How-
ever, the MR-MM-PKE security model used in [13] does not
take into account malicious receivers: all public keys used
in the (multi-recipient) encryption producing the challenge
ciphertext need to be honestly generated, and the corre-
sponding private keys need to remain unknown to the ad-
versary. Hence, the security guarantees provided in practice
are rather weak.
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This issue was identified and addressed by Bellare, Boldy-
reva, and Staddon [5] who introduced a strengthened vari-
ant of Kurosawa’s security definition. The updated model
explicitly considers insiders, i.e., malicious receivers, by al-
lowing the adversary to provide some of the public keys used
in the encryption generating the challenge ciphertext. How-
ever, for these keys the adversary also has to reveal the cor-
responding secret keys—a requirement generally known as
the knowledge-of-secret-key (KOSK) assumption.

Commonly seen justifications for this quite strong assump-
tion argue that in all practical systems, in order to be consid-
ered valid, public keys are registered with a Certificate Au-
thority (CA), and that this CA will require zero-knowledge
proofs of knowledge of the corresponding private keys. This,
however, is rarely done in practice. In fact, we are not aware
of any CA on the Internet which requires a user to provide
a full proof of knowledge of her private key. It is important
to note here that KOSK-based security arguments generally
do not translate to more realistic settings. Indeed, as we
discuss in Section 3.2, multi-recipient ElGamal encryption
in the plain (i.e., non-KOSK) setting is trivially breakable,
in strong contrast with the (KOSK-based) results from [5].

Besides the strengthened security model, Bellare et al.
also introduce the notion of reproducibility for an encryption
scheme and obtain the powerful result that all schemes ful-
filling this additional requirement are amenable to a generic
conversion to an MR-MM-PKE via randomness re-use. In
particular, it is shown that ElGamal and Cramer-Shoup en-
cryption are reproducible, and hence give rise to secure MR-
MM-PKE in a generic way. Note that this re-establishes the
results by Kurosawa, but in a stronger security model.

1.2 Our Contributions
We first revisit the (already strengthened) security notion

for MR-MM-PKE as defined by Bellare et al. [5] and observe
that it contains a subtle technical flaw. Specifically, we note
that when the challenge ciphertext is produced, the used
public keys are always prefixed by honest ones. This feature
makes it possible to define an (admittedly artificial) MR-
MM-PKE scheme which can be shown secure in the model
of [5], but which is obviously insecure in any practical set-
ting where the adversary can influence the order in which
the encryption algorithm receives its public keys. Further-
more, we note that the security model of [5] does not allow
repetition of (honest) public keys. Hence, security is not
guaranteed should the sender encrypt more than one mes-
sage for a given receiver. See Section 3.2 for a more detailed
discussion of these issues.

We fix these issues by further strengthening the model
of [5]. In the same step we also drop the KOSK assumption,
i.e., the adversary is from now on allowed to introduce ma-
liciously generated public keys for which he does not know
the decryption keys. We argue that, to ensure security in
practice, MR-MM-PKE schemes should achieve the level of
security captured by this new model.

As discussed above, the schemes proposed in [5] might be-
come insecure in the new setting, and some definitively do.
Unfortunately, this seems to generally hold for all schemes
obtained via the reproducibility-based transformation, as
the latter inherently requires the KOSK assumption. Hence,
in order to find stronger instantiations of MR-MM-PKE, we
need to follow a different approach.

As a first step towards an MR-MM-PKE scheme that
is secure in our new security model, we introduce the no-
tion of multi-recipient multi-key key encapsulation mecha-
nism (MR-MK-KEM). Following the well-known hybrid ap-
proach, by combining this KEM with an appropriate data
encapsulation mechanism (DEM) we obtain an MR-MM-
PKE scheme.

We then show that the ‘hashed ElGamal’ technique from [1]
combined with randomness re-use gives rise to a secure MR-
MK-KEM and, by consequence, to a secure MR-MM-PKE
scheme. The latter is efficient and provides compact cipher-
texts: when compared to the parallel use of the original
hashed ElGamal scheme, the reduction in the ciphertext size
and in the computational cost associated with encryption is
approximately 50%. In addition, although providing much
stronger security guarantees and not limiting the sender to
encrypt the same message for all receivers, our scheme is
as efficient as the best known MR-PKE scheme for single
messages (see related work).

1.3 Related Work
Research on multi-recipient encryption was initiated by

Kurosawa [13] who defined the first security model for MR-
MM-PKE schemes and proposed randomness re-using con-
structions based on ElGamal and Cramer-Shoup encryption.
The primary goal of [13] was to shorten ciphertexts, and
computational advantages of the new primitive were consid-
ered only of subordinate importance. As pointed out above,
Bellare et al. [5] improved upon this work by introducing a
stronger security model and describing a general transforma-
tion from reproducible encryption schemes to MR-MM-PKE
schemes.

The concept of multi-recipient key encapsulation (MR-
KEM) was introduced by Smart in [15]. Intuitively, this
primitive is closely related to MR-PKE due to the hybrid
approach for obtaining public key encryption by generically
combining key encapsulation (KEM) with data encapsula-
tion (DEM). It is important to note, however, that Smart
only considers single-key MR-KEMs, i.e., MR-KEMs that
establish for all recipients the same session key. In combi-
nation with a DEM, such KEMs are helpful to construct
multi-recipient single-message public key encryption (MR-
SM-PKE) schemes which are restricted to applications where
the same message is encrypted for all receivers. This is an
often considered subclass of the more general MR-MM-PKE
primitive. Note that the work of Smart does not consider in-
sider attacks; indeed, it seems that in the single-key setting
such a notion is inapplicable.

The work of Barbosa and Farshim [3] lifts the MR-KEM
results by Smart to the identity-based setting, by corre-
spondingly adapting the definitions from [15] and carefully
taking into account the arising subtleties. By consequence,
the paper restricts attention to the single-key setting and
does not consider insider attacks.

In apparently independent work, Baek, Safavi-Naini, and
Susilo [2] construct a single-key MR-KEM in the identity-
based setting that computes the ciphertexts for an arbitrary
number of recipients using a single pairing computation in
total. While this is highly attractive from an efficiency-
centric point of view, unfortunately the scheme is proven
secure only in a ‘selective-id’ model.

Chatterjee and Sarkar [7] complement the results from [3,
2] by constructing two multi-recipient single-key identity-
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based KEMs that do not require the random oracle heuris-
tic. Their constructions require a hierarchical IBE scheme
(HIBE) with constant-size ciphertexts as a building block
and are hence interesting more from a theoretical perspec-
tive.

Broadcast encryption [12, 14, 6] is closely related to MR-
SM-PKE. More specifically, a broadcast encryption scheme
allows a sender to encrypt a message for any subset of re-
cipients belonging to a pre-defined universe of users. The
latter is typically fixed at the time the scheme is initial-
ized, but specific constructions, denoted dynamic broadcast
encryption [10], allow users to be added as prospective recip-
ients after scheme initialization. In contrast, MR-SM-PKE
allows addressing any set of users on an ad-hoc basis, re-
gardless of when their public/private keys were generated.
Independently of that, broadcast encryption requires a cen-
tral authority to generate a public key for the universe of
users as well as a private decryption key for each individual.
These private keys would then have to be delivered to the
users through a confidential and authenticated channel. In
contrast, MR-SM-PKE allows users to independently gener-
ate their own public/private keys and can hence be used in
settings where a trusted third party is not available. Lastly,
note that the more general MR-MM-PKE is not comparable
to broadcast encryption as it supports encrypting different
messages to the recipients.

2. PRELIMINARIES

2.1 Notation
We write [n] for {1, . . . , n} and use arrow notation for vec-

tors (e.g., ~a = (a1, . . . , an) if n = |~a|). If A is a finite set,
we write a ←R A for sampling a uniformly from A. If A is
an algorithm, we write a ←R AO(x) for assigning to a the
outcome of an execution of A on input x with uniformly
picked random coins and oracle access to O. In experi-
ments and algorithms we write “Require X” as a shortcut
for “Return ⊥ unless X”.

2.2 Static Diffie-Hellman Assumption
We recall the cyclic group setting and the static Diffie-

Hellman assumption.

Definition 1 (Group generator). A group genera-
tor G is an efficient algorithm which, on input security pa-
rameter 1λ, returns the description of an efficient prime-
order group G. We assume that the group order p and a
distinguished generating element g ∈ G are part of this de-
scription. We will use the notation (G, p, g) ←R G(1λ) ac-
cordingly.

Definition 2 (SDH assumption). Let G be a group
generator. The advantage of an algorithm A in solving the
static Diffie-Hellman problem with respect to G is defined as

AdvSDH
G,A(λ) =

Pr
[
(G, p, g)←R G(1λ); u←R Zp; v ←R Zp;

Z ←R AOu,Ov (G, p, g, gu, gv) : Z = guv
]
,

where Ou(·, ·) and Ov(·, ·) are decisional oracles which on
input X,Y ∈ G return 1 if and only if Xu = Y , and if and
only if Xv = Y , respectively. The probability is taken over

the random coins used to sample u and v and those con-
sumed by G and A. The static Diffie-Hellman assumption
holds with respect to G if for all efficient algorithms A the
advantage function AdvSDH

G,A(λ) is negligible in λ.

2.3 Data Encapsulation Mechanisms
The concept of hybrid encryption and the related notion

of data encapsulation was first introduced in [9]. We recall
the definition and one of the possible security definitions.

Definition 3 (Data encapsulation mechanism). A
data encapsulation mechanism (DEM) D = (K,DEM,DEM−1)

consists of a keyspace K = {0, 1}l(λ), for a polynomial l in
the security parameter, and two efficient algorithms as fol-
lows:

• DEM(K,m). On input a key K ∈ K and a message
m ∈ {0, 1}∗, this algorithm returns a ciphertext c.

• DEM−1(K, c). On input a key K ∈ K and a ciphertext
c, this algorithm returns either a message m or the
error symbol ⊥.

A DEM is correct if for all K ∈ K and all m ∈ {0, 1}∗ we
have DEM−1(K,DEM(K,m)) = m.

Definition 4 (One-time CCA security). A DEM
D = (K,DEM,DEM−1) is said to be indistinguishable against
a one-time chosen ciphertext attack (IND-OT-CCA) if for all
efficient adversaries A = (A1,A2) interacting in the exper-

iments ExptIND-OT-CCA,b
D,A from Figure 1 the following advan-

tage function is negligible in λ,

AdvIND-OT-CCA
D,A (λ) =

∣∣∣∣Pr
[
ExptIND-OT-CCA,1

D,A (1λ) = 1
]
−

Pr
[
ExptIND-OT-CCA,0

D,A (1λ) = 1
]∣∣∣∣ ,

where the probabilities are taken over the random coins used
in the experiment (including those consumed by A).

ExptIND-OT-CCA,b
D,A (1λ):

(a) K ←R K
(b) (m0,m1, st)← A1(1λ)

(c) Require |m0| = |m1|
(d) c∗ ← DEM(K,mb)

(e) d← AD2 (c∗, st)

(f) Return d

Oracle D(c):

(a) Require c 6= c∗

(b) m← DEM−1(K, c)

(c) Return m

Figure 1: IND-OT-CCA experiment for DEMs
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3. MULTI-RECIPIENT PKE
In this section we expose the most important concepts of

multi-recipient encryption. After motivating its purpose and
specifying the syntax, we critically review the security mod-
els that appear so far in corresponding publications. Indeed,
concerning the latter we identify a couple of shortcomings
and show how to resolve them. We defer the construction
of a multi-recipient encryption scheme that is secure in the
new model to Sections 4.2 and 5.

3.1 Syntax of MR-MM-PKE
We recall the notion of multi-recipient encryption from [5].

In contrast to plain public key encryption this primitive al-
lows batch processing, i.e., the execution of many encryption
operations in one shot. The work of [5] restricts attention
to the multi-message setting where for each specified recip-
ient key an individual message is encrypted. An important
property of multi-recipient encryption is that the decryption
operation is oblivious of the other keys used for creating a
given ciphertext. The main advantage of this primitive is
the potential efficiency gain due to cost amortization in the
encryption process where some computations might be used
for the creation of several ciphertexts.

Definition 5 (MR-MM-PKE). A multi-recipient multi-
message public key encryption scheme (MR-MM-PKE) E =
(PGen,KGen,Enc,Dec) consists of four efficient algorithms
as follows:

• PGen(1λ). On input security parameter 1λ, this algo-
rithm outputs public parameters pp.

We will assume implicitly that the following algorithms
are defined in respect to a single distinguished instance
of pp.

• KGen( ). This probabilistic algorithm outputs a key pair
(sk, pk).

• Enc( ~pk, ~m). On input vectors ~pk = (pk1, . . . , pkn) of
public keys and ~m = (m1, . . . ,mn) of messages, this
probabilistic algorithm outputs a vector ~c = (c1, . . . , cn)
of ciphertexts.

• Dec(sk, c). On input a secret key sk and a ciphertext c,
this algorithm outputs either a message or the error
symbol ⊥.

For fixed parameters pp and any n ∈ N let
(
skj , pkj

)
←R

KGen( ) and mj ∈ {0, 1}∗ for all j ∈ [n]. The MR-MM-PKE
is correct if for all encryptions

(c1, . . . , cn)←R Enc
(
(pk1, . . . , pkn), (m1, . . . ,mn)

)
we have Dec

(
skj , cj

)
= mj for all j ∈ [n].

Note that we obtain regular public key encryption as a spe-
cial case of MR-MM-PKE by restricting the Enc algorithm

to accept only single-element vectors ~pk and ~m. More-
over, a canonic (but rather uninteresting) way to construct
MR-MM-PKE from regular public key encryption is to cre-
ate all ciphertexts independently of each other by invoking
cj ←R Enc

(
pkj ,mj

)
once for each j ∈ [n].

3.2 Security of MR-MM-PKE
To model the security of MR-MM-PKE schemes, [5] pro-

poses a generalization of the standard indistinguishability
notion for public key encryption (in fact, the authors pro-
pose two notions: one corresponding to CPA security, the
other to CCA security; here we focus on the CCA variant
only). Briefly, in their game-based definition, the adversary
is required to tell apart an encryption of one set of messages
from an encryption of another set. However, after closely
studying the formalizations from [5], we came to the con-
clusion that a couple of technical artifacts severely weaken
the security guarantees provided by the model in practice.
Before we elaborate on our findings and fix the model ac-
cordingly, let us first recall the definitions from [5] in more
detail.

3.2.1 The security model by Bellare, Boldyreva, and
Staddon [5]

In Figure 2 we reproduce details of the CCA security ex-
periment from [5] (slightly adapting the notation towards
our needs). The experiment simulates to the adversary an
environment with k honest users by providing her, in line (c),

with the corresponding public keys ~pk = (pk1, . . . , pkk) and
decryption oracles. Among others, the adversary outputs
two vectors of messages, ~m0 and ~m1, where either the one

or the other shall be encrypted for the keys in ~pk in chal-
lenge ciphertext ~c. Also encrypted, but for the adversarially-

generated keys in ~pk
∗
, shall be the messages in vector ~m∗.

Finally, in ~sk
∗

the adversary is required to reveal the decryp-

tion keys corresponding to ~pk
∗

(see discussion below). The
consistency of adversary’s output is checked in lines (d)–(f).
Challenge ciphertext ~c is created in line (g); observe here
that in the recipient list the honest public keys come first,
followed by the corrupt ones. The remaining part of the ex-
periment is as expected, with the natural restrictions on the
second-phase decryption oracle. According to [5], an MR-
MM-PKE scheme E is secure if the return value d of the
experiment is computationally independent of parameter b,
for all efficient adversaries A = (A1,A2).

3.2.2 Shortcomings in the model from [5]
We next discuss a couple of properties of the experiment

from Figure 2 that indicate that schemes proved secure in
respect to the model might, in practice, not offer the intu-
itively expected level of security.

The first problem stems from the fact that in line (g) the
vector of encryption keys is always prefixed by honestly cho-
sen ones. To see that this is problematic, fix an arbitrary
MR-MM-PKE scheme E that is secure in the model from [5]
and, without loss of generality, assume that each ciphertext
of E starts with prefix "0". Execute the KGen algorithm of E
to create a distinguished key pair (sk×, pk×). Consider now
the scheme E′ obtained from E by modifying the encryption

algorithm such that, on input ~pk = (pk1, . . . , pkn) and ~m =
(m1, . . . ,mn), ciphertext vector ~c is computed as usual if
pk1 6= pk×, but is set to

(
"1"‖m1, . . . , "1"‖mn

)
otherwise.

Assume in addition that the decryption routine is adapted
such that ciphertexts of the latter form are ‘decrypted’ cor-
rectly. It is not difficult to see that scheme E′ is secure in the
sense of [5]; indeed, as case pk1 = pk× occurs only with neg-
ligible probability in experiment ExptMR-PKE-IND-BBS, security
of E implies security of E′. However, intuitively, scheme E′
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ExptMR-PKE-IND-BBS,b
E,A,k,n (1λ):

(a) pp←R PGen(1λ)

(b) ( ~sk, ~pk)
k←R KGen( )

(c) (~m0, ~m1, ~m∗, ~pk
∗
, ~sk
∗
, st)←R AD1

1 (pp, ~pk)

(d) Require |~m0| = |~m1| = k ∧
∀i ∈ [k] : |m0

i | = |m1
i |

(e) Require |~m∗| = | ~pk
∗
| = | ~sk

∗
| = n− k

(f) Require ∀j ∈ [n− k] : pk∗j matches sk∗j

(g) ~c←R Enc( ~pk‖ ~pk
∗
, ~mb ‖ ~m∗)

(h) d←R AD2
2

(
~c, st

)
(i) Return d

Oracle D1 (i, c):

(a) Require i ∈ [k]

(b) m← Dec (ski, c)

(c) Return m

Oracle D2 (i, c):

(a) Require i ∈ [k]

(b) Require c 6= ci

(c) m← Dec (ski, c)

(d) Return m

Figure 2: Security experiment for MR-MM-PKE
from [5]

is weak: by claiming (sk×, pk×) as her own key pair and by
arranging pk× to appear first in the input to an encryption
operation, the confidentiality of all other ciphertext compo-
nents is trivially broken.

As an independent (and possibly less far-fetched) prob-

lem we identify the fact that experiment ExptMR-PKE-IND-BBS,b
E,A,k,n

does not allow the adversary to make the same honest pub-
lic key appear multiple times on the input to the encryption
routine. For instance, intuitively, an MR-MM-PKE scheme
where the encryption routine consistently transforms inputs

of the form ~pk = (pk, pk) and ~m = (m,m) into ciphertext
pairs of the form ~c = (c, c) is weak: if messagesm,m0,m1 are
chosen such that m = m0 6= m1, encryptions of (m,m0) and
(m,m1) for (pk, pk) can trivially be distinguished from each
other, since in exactly one of the cases the ciphertext vector
has the form (c, c). However, in principle such a scheme can
be secure in respect to the experiment from Figure 2, sim-
ply because the logic of the game will effectively prevent the

special ~pk = (pk, pk) situation to occur (observe that if one

of the copies of pk is part of ~pk
∗
, then A will not be able to

reveal the corresponding decryption key sk∗).

3.2.3 A criticism of the KOSK assumption
Recall that in line (c) of ExptMR-PKE-IND-BBS,b

E,A,k,n the adversary

is expected to reveal the decryption keys ~sk
∗

corresponding

to the potentially maliciously-chosen encryption keys ~pk
∗
.

This represents what is commonly known as the knowledge-
of-secret-key (KOSK) assumption and shall provide some

indication of well-formedness of the keys in ~pk
∗
. We ob-

serve, however, that it is generally unclear how to verify

that the adversary’s outputs ~pk
∗

and ~sk
∗

are indeed con-
sistent, i.e., how to accurately implement the corresponding
test in line (f). Indeed, in a follow-up work by the authors
of [5], this situation is formally clarified by restricting the
adversary even further than it is in Figure 2: in [4], the ad-

versary does not have to output ~pk
∗

and ~sk
∗

any more, but
instead the random coins used to create them with KGen.

Generally speaking, security models assuming KOSK are
obviously so strong that one might question their practical
relevance. Authors typically argue in support of the KOSK
assumption by claiming that in any practical setting pub-
lic keys are certified by trusted authorities (CAs) anyway,
and in the certification process the latter could require zero-
knowledge proofs of knowledge of secret keys (or random
coins). However, we are not aware of any CA on the Inter-
net or elsewhere that would require such a proof (or would
at least have corresponding infrastructure available).

The following simple example illustrates that the approach
to obtain MR-MM-PKE from ElGamal encryption [11] by
re-using the ephemeral randomness does not lead to a se-
cure scheme. We stress that this holds even though the very
same scheme was proved secure in [5] (under the KOSK as-
sumption). In detail, in the DL setting, the scheme encrypts
messages m1,m2 ∈ G for public keys X1, X2 ∈ G by pick-
ing a random exponent r ∈ Zp and computing ciphertexts
c1 = (gr, Xr

1 ·m1) and c2 = (gr, Xr
2 ·m2). Now, if X1 is an

honestly generated key and the adversary claims X2 = Xt
1 as

hers, for arbitrary t ∈ Zp, then from any (multi-)encryption

(c1, c2) =
(

(gr, Xr
1 ·m1), (gr, Xtr

1 ·m2)
)

of secret message m1 and known message m2 under keys
(X1, X2), message m1 can readily be recovered via m1 =

(Xr
1 ·m1)/((Xtr

1 ·m2)/m2)t
−1

.
This clearly illustrates the danger of adopting MR-MM-

PKE schemes shown secure under the KOSK assumption in
practical systems where proofs of knowledge of private keys
are not required. However, as we show in Sections 4 and 5,
simultaneously efficient and secure MR-MM-PKE schemes
can be achieved without requiring the KOSK assumption or
any third-party certification of public keys.

3.2.4 Our strengthened security model for
MR-MM-PKE

We proceed with the exposition of our new security model
for multi-recipient encryption that tackles the issues dis-
cussed above. We particularly highlight that in the new
model the adversary is allowed to specify arbitrary vectors
of encryption keys to be challenged on (i.e., it may arrange
the public keys in any order, and also repetitions are al-
lowed); additionally, the KOSK assumption is not required
any more. It is easy to see that our model is (strictly)
stronger than the one from [5] as our experiment encom-
passes the one from Figure 2 as a special case.

Definition 6. (Indistinguishability of MR-MM-PKE)

An MR-MM-PKE scheme E = (PGen,KGen,Enc,Dec) is
indistinguishable (MR-PKE-IND-secure) if for all k and n
polynomially dependent on the security parameter and all ef-
ficient adversaries A = (A1,A2) interacting in experiments
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ExptMR-PKE-IND
E,A,k,n from Figure 3 the following advantage func-

tion is negligible in λ, where the probabilities are taken over
the random coins of the experiment (including over A’s ran-
domness):

AdvMR-PKE-IND
E,A,k,n (λ) =

∣∣∣∣Pr
[
ExptMR-PKE-IND,1

E,A,k,n (1λ) = 1
]
−

Pr
[
ExptMR-PKE-IND,0

E,A,k,n (1λ) = 1
]∣∣∣∣ .

ExptMR-PKE-IND
E,A,k,n (1λ):

(a) pp←R PGen(1λ)

(b) ( ~sk, ~pk)
k←R KGen( )

(c) (~m0, ~m1, ~pk
∗
, st)←R AD1

1 (pp, ~pk)

(d) Require |~m0| = |~m1| = | ~pk
∗
| = n

(e) Require ∀j ∈ [n] : pk∗j ∈ ~pk ⇒ |m0
j | = |m1

j |

(f) Require ∀j ∈ [n] : pk∗j /∈ ~pk ⇒ m0
j = m1

j

(g) ~c←R Enc( ~pk
∗
, ~mb)

(h) d←R AD2
2

(
~c, st

)
(i) Return d

Oracle D1 (i, c):

(a) Require i ∈ [k]

(b) m← Dec (ski, c)

(c) Return m

Oracle D2 (i, c):

(a) Require i ∈ [k]

(b) Require @j ∈ [n] : pk∗j = pki ∧ cj = c

(c) m← Dec (ski, c)

(d) Return m

Figure 3: Our strengthened security experiment for
MR-MM-PKE

In experiment ExptMR-PKE-IND
E,A,k,n the adversary first receives

the public keys of k honest users and has access to corre-
sponding decryption oracles. She then outputs two vectors
of messages, ~m0 and ~m1, on which she wants to be chal-

lenged. She also outputs a vector ~pk
∗

of public keys which
may contain honest and malicious keys in any configuration.

The only (and natural) condition on ~m0, ~m1, ~pk
∗

is that the
messages in ~m0 and ~m1 have the same length when targeting
honest public keys, and that the messages are equal when
targeting malicious keys (see lines (e) and (f), respectively).
Note that the rules for the second-phase decryption oracle
are also as liberal as they can possibly be.

4. MULTI-RECIPIENT MULTI-KEY
KEY ENCAPSULATION

A natural building block for the construction of a multi-
recipient encryption scheme seems to be a multi-recipient
multi-key key encapsulation mechanism (MR-MK-KEM). In

this section we formalize this primitive and specify its secu-
rity properties. In addition, by showing that MR-MK-KEMs
can be combined with appropriate DEMs to obtain secure
MR-MM-PKE we provide evidence that our formalizations
are indeed helpful and accurate.

4.1 Syntax and security of MR-MK-KEM
In an MR-MK-KEM, the encapsulation algorithm takes

a number of public keys and creates vectors of ciphertexts
and corresponding (symmetric) keys. Using the decapsula-
tion algorithm, each such key can individually be recovered
from the corresponding ciphertext component. Similarly to
the MR-MM-PKE case, the functionality of multi-recipient
KEMs is readily emulated by running appropriately-many
instantiations of a regular KEM in parallel. Correspond-
ingly, regular KEMs are obtained from MR-MK-KEMs by
restricting the input of the encapsulation algorithm to a sin-
gle element. We formalize the primitive as follows:

Definition 7 (MR-MK-KEM). A multi-recipient multi-
key key encapsulation mechanism (MR-MK-KEM) M =
(PGen,KGen,Encap,Decap) consists of four algorithms as
follows:

• PGen(1λ). On input security parameter 1λ, this algo-
rithm outputs public parameters pp and the description
of a keyspace K.

We will assume implicitly that the following algorithms
are defined in respect to a single distinguished copy
of (pp,K).

• KGen( ). This probabilistic algorithm outputs a key pair
(sk, pk).

• Encap( ~pk). On input a vector ~pk = (pk1, . . . , pkn) of
public keys, this probabilistic algorithm outputs vectors
~c = (c1, . . . , cn) of ciphertexts and ~K = (K1, . . . ,Kn)
of keys from keyspace K.

• Decap(sk, c). On input a secret key sk and a cipher-
text c, this algorithm outputs either a key in K or ⊥.

For fixed parameters pp and any n ∈ N let
(
skj , pkj

)
←R

KGen( ) for all j ∈ [n]. The MR-MK-KEM is correct if for
all encapsulations(

(c1, . . . , cn) , (K1, . . . ,Kn)
)
←R Encap (pk1, . . . , pkn)

we have Decap
(
skj , cj

)
= Kj for all j ∈ [n].

We proceed with our security definition for MR-MK-KEMs.
Similarly to Section 3 we assume particularly strong adver-
saries: the availability of decapsulation oracles ensures CCA
security, arbitrary configurations are allowed for the chal-
lenge public key vector, and, importantly, we do not require
the premises of the KOSK assumption.

Definition 8. (Indistinguishability of MR-MK-KEM)
An MR-MK-KEM scheme M = (PGen,KGen,Encap,Decap)
is indistinguishable (MR-KEM-IND-secure) if for all k and n
polynomially dependent on the security parameter and all ef-
ficient adversaries A = (A1,A2) interacting in experiments

ExptMR-KEM-IND,b
M,A,k,n from Figure 4 the following advantage func-

tion is negligible in λ, where the probabilities are taken over
the random coins of the experiment (including over A’s ran-
domness):
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AdvMR-KEM-IND
M,A,k,n (λ) =

∣∣∣∣Pr
[
ExptMR-KEM-IND,1

M,A,k,n (1λ) = 1
]
−

Pr
[
ExptMR-KEM-IND,0

M,A,k,n (1λ) = 1
]∣∣∣∣ .

ExptMR-KEM-IND,b
M,A,k,n (1λ):

(a) (pp,K)←R PGen(1λ)

(b) ( ~sk, ~pk)
k←R KGen( )

(c) ( ~pk
∗
, st)←R AD1

1 (pp,K, ~pk)

(d) Require | ~pk
∗
| = n

(e) (~c, ~K1)←R Encap( ~pk
∗
)

(f) ∀j ∈ [n] :

- if pk∗j ∈ ~pk then K0
j ←R K

- if pk∗j /∈ ~pk then K0
j ← K1

j

(g) d←R AD2
2 (~c, ~Kb, st)

(h) Return d

Oracle D1 (i, c):

(a) Require i ∈ [k]

(b) K ← Decap (ski, c)

(c) Return K

Oracle D2 (i, c):

(a) Require i ∈ [k]

(b) Require @j ∈ [n] : pk∗j = pki ∧ cj = c

(c) K ← Decap (ski, c)

(d) Return K

Figure 4: Our security experiment for MR-MK-
KEMs

4.2 Constructing MR-MM-PKE from
MR-MK-KEMs

We formally verify that the composition of an MR-MK-
KEM and a DEM yields a secure MR-MM-PKE scheme.

Construction 1. (MR-MM-PKE from MR-MK-KEM)
Let M = (PGen,KGen,Encap,Decap) be an MR-MK-KEM
and D = (K,DEM,DEM−1) be a DEM such that the KEM’s
and DEM’s keyspaces coincide. We build an MR-MM-PKE
E = (PGen,KGen,Enc,Dec) by implementing its algorithms
in the following way:

• E.PGen(1λ) = M.PGen(1λ)

• E.KGen( ) = M.KGen( )

• E.Enc( ~pk, ~m). Run (~c1, ~K)←R M.Encap( ~pk) and ∀j ∈
[n] : c2j ←R D.DEM

(
Kj ,mj

)
. Return ((c1j , c

2
j ))j∈[n].

• E.Dec (sk, c). Parse (c1, c2) ← c and compute K ←R

M.Decap(sk, c1). Return ⊥ if K = ⊥; otherwise, re-
turn D.DEM−1(K, c2).

Theorem 1. If M is an MR-KEM-IND-secure MR-MK-
KEM and D is an IND-OT-CCA-secure DEM, then E de-
fined according to Construction 1 is an MR-PKE-IND-secure
MR-MM-PKE. Specifically, given k, n ∈ N and any efficient
adversary A against E, we can build efficient adversaries B
and C against M and D, respectively, such that

AdvMR-PKE-IND
E,A,k,n (λ) ≤ 2 ·AdvMR-KEM-IND

M,B,k,n (λ) +

n ·AdvIND-OT-CCA
D,C (λ) .

We leave the proof for the appendix.

Remark 1. While Theorem 1 establishes that the secu-
rity notions from Definitions 4 and 8 are sufficiently strong
to obtain MR-PKE-IND-secure MR-MM-PKE schemes, con-
ceivably also other combinations of KEM/DEM security no-
tions will imply a secure hybrid. Indeed, if the requirements
in Definition 8 are relaxed such that (some of) the keys K
established for different occurrences of the same public key
in an Encap invocation may coincide, security of the hybrid
scheme is still provided if the requirements on the DEM are
simultaneously strengthened from IND-OT-CCA to IND-CCA
[9] (observe how, in this setting, the stronger DEM thwarts
the second attack described in Section 3.2.2).

5. CONSTRUCTING MULTI-RECIPIENT
MULTI-KEY KEY ENCAPSULATION

Taking into account the results from Section 4.2, the miss-
ing building block on our way towards MR-MM-PKE is an
MR-MK-KEM. We propose a construction that is indistin-
guishable in the sense of Definition 8 and in particular does
not rely on the KOSK assumption.

Construction 2 (Hashed ElGamal KEM). Let G
be a group generator as in Definition 1 and let l be a polyno-
mial. The algorithms of our MR-MK-KEM HEK are speci-
fied as follows:

• PGen(1λ). Let (G, p, g) ←R G(1λ). Fix keyspace K =

{0, 1}l(λ) and choose a hash function H : G×G×N→
K. Return public parameters pp = (G, p, g,H).

• KGen( ). Sample x←R Zp and return (sk, pk) = (x, gx).

• Encap( ~pk). Let ~pk = (pk1, . . . , pkn). Sample r ←R Zp
and compute ĉ ← gr. For all j ∈ [n] let cj ← (ĉ, j)

and Kj ← H
(
(pkj)

r, pkj , j
)
. Return (~c, ~K).

• Decap
(
sk, (ĉ, j)

)
. Return K = H(ĉsk, pk, j), where

pk = gsk.

Theorem 2. Our MR-MK-KEM HEK from Construc-
tion 2 is MR-KEM-IND-secure under the static Diffie-Hellman
assumption, in the random oracle model. Specifically, given
k, n ∈ N and any efficient adversary A against HEK, we can
build an efficient adversary B solving the SDH problem in G
such that

AdvMR-KEM-IND
HEK,A,k,n (λ) ≤ AdvSDH

G,B (λ) +
qd1
p

+
qh1
p

,

where qd1 and qh1 represent the number of queries A1 issues
to the decapsulation and the hash oracles, respectively.
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BOu,Ov (G, p, g, U, V ):

(a) HL← [ ], DL← [ ]

(b) Bad1 ← 0, Bad2 ← 0

(c) Fix keyspace K = {0, 1}l(λ)

(d) pp← (G, p, g)

(e) ∀i ∈ [k]: wi ←R Zp
(f) ∀i ∈ [k]: pki ← V wi

(g) ( ~pk
∗
, st)←R AD1,H

1 (pp,K, ~pk)

(h) Require | ~pk
∗
| = n

(i) ∀j ∈ [n]

- cj ← (U, j)

- K∗j ←R K
- if ∃i ∈ [k] : pk∗j = pki:

DL[i, U, j]← K∗j

(j) d←R AD2,H
2 (~c, ~K∗, st)

(k) Halt with output ⊥

Simulation of Dphase(i, ĉ, j) oracle:

(a) Require i ∈ [k]

(b) if phase = 1 ∧ ĉ = U :
Bad1 ← 1

(c) if phase = 2:
Require pk∗j 6= pki ∨ ĉ 6= U

(d) if ∃Z ∈ G, t ∈ K :
HL[Z, pki, j] = t∧
Ov(ĉwi , Z) = 1:

Return t

(e) if DL[i, ĉ, j] 6= ε:
Return DL[i, ĉ, j]

(f) t←R K
(g) DL[i, ĉ, j]← t

(h) Return t

Simulation of H(Z,W, j) oracle:

(a) if ∃i ∈ [k] : W = pki∧
Ov(Uwi , Z) = 1:

Halt with output Z1/wi

(b) if phase = 1 ∧ Ou(W,Z) = 1
Bad2 ← 1

(c) if phase = 2 ∧ j ∈ [n]∧
W = pk∗j ∧Ou(W,Z) = 1:

Return K∗j

(d) if ∃i ∈ [k], ĉ ∈ G, t ∈ K :
W = pki ∧DL[i, ĉ, j] = t∧
Ov(ĉwi , Z) = 1:

Return t

(e) if HL[Z,W, j] 6= ε:
Return HL[Z,W, j]

(f) t←R K
(g) HL[Z,W, j]← t

(h) Return t

Figure 5: The code for adversary B, trying to break the SDH assumption

Proof. Throughout the proof we will denote by DH the
function G × G → G that maps pairs (gx, gy) to gxy for all
x, y ∈ Zp. The proof is in the random oracle model, i.e.,
hash function H is implemented as a random function.

Given fixed k, n and an MR-KEM-IND adversary A for
these parameters, we build an SDH adversary B that re-
ceives a challenge (G, p, g, U = gu, V = gv) and has access
to oracles Ou(·, ·) and Ov(·, ·), as defined in Definition 2,
and aims at computing DH (U, V ), by the help of A. The
description of B is given in Figure 5.

We argue that the environment that adversary B pro-
vides to A is (almost) indistinguishable from experiments
ExptMR-KEM-IND,b, b ∈ {0, 1}. Indeed, it is readily verified

that the vector ~pk of public keys that A1 receives follows
the right (uniform) distribution (cf. lines (e) and (f) of B).

In addition, the vector ~K∗ of keys given in line (j) to A2 as a
result of the challenge encapsulation is completely random,
which is, due to the random oracle model, in agreement
with both experiments ExptMR-KEM-IND,b, assuming specific
hash queries are not submitted.

To ensure consistency, decapsulation and hash queries are
taken care of by accurately designed oracles: precisely, line (c)
of the H oracle ensures consistency between the hash func-
tion and the components of ~K∗; observe that a correspond-
ing condition in the D oracle is not required as challenge
ciphertexts may not be queried for decapsulation. Lines (d)
of D and (d) of H ensure consistency between the oracles for
queries not related to the challenge. Line (b) in the D oracle
and line (b) in the H oracle mark A1-queries related to the
(yet unknown) challenge ciphertext as bad; we show that
this happens only with negligible probability. Lines (e)–(h)
of D and (e)–(h) of H are standard for implementing con-
sistent random oracles. Note that line (c) of D is just a
rewriting of condition (b) in the D2 oracle of Figure 4.

Hash function queries related to challenge encapsulations
for honest keys are handled in line (a) of H. These queries
are of the form (DH(U, pki), pki, j). As mentioned above, if
no such hash query is submitted by A, its views in exper-

iments ExptMR-KEM-IND,0 and ExptMR-KEM-IND,1 are identical.
On the other hand, if A does make such a query, an event
we denote E, this allows the extraction of the SDH solution
guv by B, as implemented in line (a).

We continue with the analysis of B’s advantage, starting
with bounding the probabilities that flags Bad1 and Bad2 are
set, and that event E occurs. Observe that the two flags can
be set only in the first phase of B’s simulation, and that the
corresponding conditions depend on A1 guessing the right
value of U before obtaining any information about it. Since
U is uniformly distributed, the probability that in any query
A1 finds the right value is 1/|G|. That is, the probabilities
of these flags being set are bounded by

Pr[Bad1] ≤ qd1
p

and Pr[Bad2] ≤ qh1
p

.

As highlighted above, if the event E occurs, B solves the
SDH problem, i.e., Pr[E] = AdvSDH

G,B .
Observe that B provides a perfect simulation of the ex-

periments ExptMR-KEM-IND,b
HEK,A,k,n , b ∈ {0, 1}, if the events Bad1,

Bad2, and E do not occur. Denote by Sb the event that A2

outputs 1 at the end of ExptMR-KEM-IND,b
HEK,A,k,n . The above allows

us to conclude

Pr[S0 | ¬E,¬Bad1,¬Bad2] = Pr[S1 | ¬E,¬Bad1,¬Bad2] ,

which implies

AdvMR-KEM-IND
HEK,A,k,n (λ) = |Pr[S0]− Pr[S1]|

≤ Pr[E] + Pr[Bad1] + Pr[Bad2] .

Combining this with the above established bounds on Pr[E],
Pr[Bad1], and Pr[Bad2], we have

AdvMR-KEM-IND
HEK,A,k,n (λ) ≤ AdvSDH

G,B (λ) +
qd1
p

+
qh1
p
.

Remark 2. It is instructive to trace how the various com-
ponents of Construction 2 contribute to its security: Firstly,
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we exploit the power of the static Diffie-Hellman assumption,
as opposed to standard CDH, for getting rid of the KOSK re-
striction required in [5]; more precisely, in the proof of The-
orem 2 it is exactly the oracle from Definition 2 that allows
a consistent simulation of the challenge encryption and the
random oracle—even in the presence of maliciously chosen
public keys. Secondly, by incorporating the counter i into the
input of hash function H in the Encap routine we prevent the
second attack described in Section 3.2.2 from working: intu-

itively, if the same public key appears more than once in ~pk,
the different values of i will ensure that all occurrences are
treated independently of each other.

Conclusion
We revisit the security notion for multi-recipient encryption
introduced in [5] and point out a number of subtle yet se-
rious technical flaws. We propose a strengthened security
model that fixes the identified issues and also avoids the un-
realistic knowledge-of-secret-key assumption. We proceed
by lifting the hybrid KEM/DEM construction methodology
for achieving public key encryption to the multi-recipient
setting and formally prove the soundness of this approach.
Finally, we propose a new multi-recipient KEM (and, hence,
a multi-recipient PKE scheme) that we prove secure under
the static Diffie-Hellman assumption, in the random ora-
cle model. We leave the construction of a standard model
multi-recipient PKE scheme that achieves the level of secu-
rity implied by our definitions for future work.
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APPENDIX
Proof of Theorem 1

Proof. Fix k, n ∈ N and an efficient adversary A against
E. The proof proceeds by a series of game hops. Let

G0 = ExptMR-PKE-IND,0
E,A,k,n (1λ) G1 = ExptMR-PKE-IND,1

E,A,k,n (1λ)

(see Figure 3).
Next, define two other games, H0 and H1. For b ∈ {0, 1},

game Hb is equal to game Gb with the following exceptions:
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• in games Gb, the challenge ciphertext is created by

(~c1, ~K1)←R M.Encap
(
~pk
∗)

;

~c2 ←R D.DEM( ~K1, ~mb);

~c← ((c1j , c
2
j ))j∈[n].

while in games Hb the challenge ciphertext is created
by

(~c1, ~K1)←R M.Encap( ~pk
∗
);

~c2 ←R D.DEM( ~K0, ~mb);

~c← ((c1j , c
2
j ))j∈[n],

where the components of ~K0 are defined like this{
K0
j ←R K, pk∗j ∈ ~pk

K0
j ← K1

j , pk∗j 6∈ ~pk

for j ∈ [n].

• when handling decryption queries in games Gb, a DEM
key is computed from the first component of the sub-
mitted ciphertext, and then used to decrypt the second
component according to the scheme’s specifications; in
games Hb, the key vector ~K0 will be used in decryp-

tion queries involving the challenge encapsulations ~c1.
That is, when the decryption oracle receives a query
(i, (ĉ1, ĉ2)) for which ∃j : pk∗j = pki ∧ ĉ1 = c1j , decryp-

tion of ĉ2 will be done using K0
j . In all the other cases,

it proceeds normally, first decapsulating ĉ1 to obtain a
DEM key, and then decrypting ĉ2 with it.

We can write

AdvMR-PKE-IND
E,A,k,n (λ) =

∣∣∣Pr[G1 = 1]− Pr[G0 = 1]
∣∣∣ ≤∣∣∣Pr[G1 = 1]− Pr[H1 = 1]
∣∣∣+∣∣∣Pr[H1 = 1]− Pr[H0 = 1]
∣∣∣+∣∣∣Pr[H0 = 1]− Pr[G0 = 1]
∣∣∣ .

Note that the difference between games G0 and H0, and the
difference between games G1 and H1, correspond to the dif-
ference between the KEM experiments ExptMR-KEM-IND,b

E,A,k,n (1λ),

b ∈ {0, 1}. Hence, there exist KEM adversary B0 and B1

such that∣∣∣Pr[Gl = 1]− Pr[Hl = 1]
∣∣∣ ≤ AdvMR-KEM-IND

M,Bl,k,n

for l ∈ {0, 1}.
Furthermore, the only difference in games H0 and H1 is

in the challenge encryption: H0 always encrypts ~m0 and
H1 always encrypts ~m1. To analyze the distance between
these games, we proceed by a hybrid argument. Define a
game Ej for 0 ≤ j ≤ n such that E0 = H1 and En = H0:
if ~m is the vector that is encrypted, then mk = m0

k for all
1 ≤ k ≤ j and mk = m1

k for all j < k ≤ n. That is, in two
consecutive games, Ej−1 and Ej , the only difference is in
the component c2j of the challenge ciphertext: in Ej−1 it is

the encryption of an element in ~m1 whereas in Ej it is the
encryption of an element in ~m0 of the same length.

It easily follows that there exist adversaries Cj for 1 ≤
j ≤ n, such that Cj interpolates between the games Ej−1

and Ej , and

AdvIND-OT-CCA
D,Cj (λ) =

∣∣∣Pr[Ej−1 = 1]− Pr[Ej = 1]
∣∣∣ .

Thus, ∣∣∣∣Pr
[
H1 = 1

]
− Pr

[
H0 = 1

]∣∣∣∣
=

n∑
j=1

∣∣∣Pr[Ej−1 = 1]− Pr[Ej = 1]
∣∣∣

=

n∑
j=1

AdvIND-OT-CCA
D,Cj (λ)

Hence, there exist adversaries B and C such that1

AdvMR-PKE-IND
E,A,k,n (λ) ≤ 2 ·AdvMR-KEM-IND

M,B,k,n (λ) +

n ·AdvIND-OT-CCA
D,C (λ) .

1B and C can be constructed by randomly picking and run-
ning an adversary from {Bb}b∈{0,1} and {Cj}j∈[n], respec-
tively, which will yield an advantage for B and C correspond-
ing to the average advantage of their underlying adversaries.
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