
Worry-Free Encryption:
Functional Encryption with Public Keys

Amit Sahai
∗

Department of Computer Science
University of California - Los Angeles

sahai@cs.ucla.edu

Hakan A. Seyalioglu
†

Department of Mathematics
University of California - Los Angeles

hakan@math.ucla.edu

ABSTRACT
In this work, we put forward the notion of Worry-Free En-
cryption. This allows Alice to encrypt confidential informa-
tion under Bob’s public key and send it to him, without
having to worry about whether Bob has the authority to
actually access this information. This is done by encrypting
the message under a hidden access policy that only allows
Bob to decrypt if his credentials satisfy the policy. Our no-
tion can be seen as a functional encryption scheme but in a
public-key setting. As such, we are able to insist that even
if the credential authority is corrupted, it should not be able
to compromise the security of any honest user.

We put forward the notion of Worry-Free Encryption and
show how to achieve it for any polynomial-time computable
policy, under only the assumption that IND-CPA public-
key encryption schemes exist. Furthermore, we construct
CCA-secure Worry-Free Encryption, efficiently in the ran-
dom oracle model, and generally (but inefficiently) using
simulation-sound non-interactive zero-knowledge proofs.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public Key Cryptosystems

General Terms
Security, Algorithms

Keywords
Functional Encryption, Public Key Cryptography

∗Research supported in part from NSF grants 0830803,
0627781, 0716389, 0456717, and 0205594, an equipment
grant from Intel, and an Okawa Foundation Research Grant.
†Research supported in part by a NSF Graduate Research
Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

1. INTRODUCTION
Consider the following scenario: As an employee with ac-

cess to privileged information, you’re caught off-guard by a
co-worker’s request for sensitive data. While he claims to
have sufficient clearance, you don’t want to risk unautho-
rized access. One approach to solve this problem would be
to check the requester’s credentials in a database or with
an authority charged with validating credentials. However,
this raises several problems of its own. Most fundamentally,
it may be that your co-workers level of clearance is sensi-
tive information in itself, and therefore any system utilizing
a database storing users’ credentials would be unacceptable
(e.g. while you may have ‘Top-Secret’ clearance, you may
not have the authority to know whether someone else does).

Your needs would be met (and your worries relieved) if
you had an encryption scheme that guaranteed that your
co-worker could only recover the data if he has the proper
credentials. Then, you could simply encrypt the data with
respect to an access policy appropriate to the data, and be
sure that you did not give unauthorized access.

Defining and constructing a scheme with such a guarantee
is the focus of this work. Informally, we require the following
security guarantees:

• The scheme should be secure against eavesdroppers,
satisfying usual notions of indistinguishability.

• The policy of a ciphertext should remain hidden, even
to a user that can decrypt the ciphertext, except for
the information that the user’s credentials satisfy the
policy. This requirement can be crucial in many set-
tings: For example, if a naval vessel sends out an en-
crypted message with a policy limiting access to “Spe-
cialists in analyzing enemy submarine activity,” then
one could reasonably conclude that an enemy subma-
rine was spotted just by observing the access policy.

In fact, we will consider an even more general form
of encryption where a general function f is encrypted.
The recipient only learns f(x), where x is an encoding
of the credentials of the recipient. Nothing else about
the function is revealed.

• A user’s public key should leak no information about
his credentials.

• Even if the certification authority (that validates cre-
dentials) is corrupted, it should not be able to com-
promise the security of any encryptions prepared for
honest users.

463

We shall call a scheme which provides the above guarantees
of security a Worry-Free Encryption Scheme, since a sender
does not need to worry about whether a recipient is autho-
rized to obtain a message before sending it. Defining and
constructing such a scheme is the focus of this work.

1.1 Related Work
Worry-Free Encryption is most closely related to two no-

tions previously considered in the literature: functional en-
cryption [17] and conditional disclosure of secrets [5, 1].

Functional encryption (with Attribute-Based Encryption
as a special case) seeks to deal with a very similar setting to
ours, but with notable differences that make the notions in-
comparable. Most fundamentally, functional encryption re-
quires a greater degree of trust in a central authority: there
must be a Key Generation Authority, which if corrupted,
can then decrypt messages sent to all users in the system.
Reducing trust in these systems is an area of much inter-
est and current research [6]. Such central trust is avoided
in Worry-Free Encryption, where even if the Certification
Authority is corrupted, it will not be able to compromise
messages encrypted to any honest user. At the same time,
by having the Key Generation Authority, functional encryp-
tion is able to avoid the need for public keys. This feature
allows functional encryption to be applicable to a number of
important settings, such as searching on encrypted data [10]
and secure cloud storage [8, 3] where the identities of recip-
ients may not be known during encryption. We stress that
Worry-Free Encryption is not designed to address these set-
tings; in our setting, encryption is done with respect to a
particular user’s public key.

When we examine some of the most active areas of re-
search in functional encryption, other important differences
emerge. For example, in Attribute Based Encryption [17, 3,
7, 13] a user can only decrypt if his credentials satisfy a pol-
icy associated with the ciphertext1. However, the privacy of
the policy on the ciphertext is not protected. As illustrated
by the submarine example above, this can be problematic
in many contexts. Furthermore, known results generally re-
strict policies to a fairly restrictive class.

For certain forms of functional encryption, (also known
as Predicate Encryption [4, 10, 19, 18, 11, 13]) the privacy
of the policy associated with a given ciphertext is a central
issue. However, the functions that can be encrypted by the
best current work are extremely limited, with the state of
the art being the ability to check if a dot product of two
vectors is zero. In contrast, as detailed below, for Worry-
Free Encryption we will be able to handle all polynomial-
time computable functions.

Our notion is also closely related to the notion of proto-
cols for conditional disclosure of secrets [5, 1], where (for the
two-party setting), a receiver is able to obtain the sender’s
secret if a fixed condition C is satisfied by the receiver’s
input. Such protocols have been typically considered for
specific (usually algebraic) conditions C. In contrast, in our
setting, this condition itself is both chosen by the sender and
must remain secret from the receiver.

1.2 Results
Our work has two main contributions:

1We specifically are defining Ciphertext-Policy ABE, there
is also a notion of Key-Policy ABE where policies are asso-
ciated with attributes are assigned to ciphertexts.

• We introduce the notion of Worry-Free Encryption.

• We provide several constructions:

◦ Our basic construction of Worry-Free Encryption works
for arbitrary polynomial-time functions and is secure
under chosen-plaintext attacks. The scheme requires
only the existence of IND-CPA public-key encryption.
The main ingredient is Yao’s garbled circuits [20].

◦ We build a Worry-Free Encryption scheme that is se-
cure against adaptive chosen-ciphertext attacks in the
random oracle model. Our transformation is quite effi-
cient, and the new scheme requires only one additional
public-key operation over our basic scheme. No addi-
tional assumptions are needed. To achieve this goal,
we give a novel method to prove the well-formedness
of a collection of ciphertexts.

◦ Finally, we show that if non-interactive zero knowl-
edge proofs for NP exist, there exists IND-CCA2 se-
cure Worry-Free Encryption without random oracles.

Additionally, we consider the problem of a dishonest cer-
tification authority that is colluding with a dishonest user
Alice. We stress that the standard definition of Worry-Free
Encryption already guarantees that the security of messages
sent to other parties cannot be compromised. However,
there is another concern. What if (honest) Bob is send-
ing Alice the encryption of some function f , expecting her
to only be able to recover f(x) where x is Alice’s credentials.
With no other security requirements, Alice and the authority
together may be able to recover f completely, and thereby
obtain information the Bob never intended any individual
recipient to gain. To deal with this, we define a strength-
ening of our notion that guarantees that even when Alice
and the authority collude, when Bob encrypts a message to
Alice, nothing beyond f(x′) for some particular input x′ will
be learned by Alice and the authority. We obtain this higher
level of security, under the assumption that a variant of one-
round 1-out-of-2 Oblivious Transfer exists. Our extension is
a natural one which at least one classical OT protocol [15,
1] satisfies.

2. PRELIMINARIES
Throughout the paper, we will use arrowed variables to

denote vectors (e.g. ~C, ~v), x[i] to denote the ith bit of a
string x, b to denote b⊕ 1 for a bit b and [1, k] to denote all
integers between 1 and k inclusive. We also use the notation
x ◦ y to denote the concatenation of the strings x and y and
|g| to denote the size of a circuit g. A function is called neg-
ligible if it grows slower than any inverse polynomial in an
implied parameter (usually λ, the security parameter), and
non-negligible if it is not negligible. A probability will be
said to be overwhelming if it is within a negligible additive

factor of 1. We use x
$←− E to denote that x is chosen uni-

formly from the set E. Mm×n is the set of m by n matrices
with possibly null entries.

We will also make use of an existentially unforgeable sig-
nature scheme S = (KeyGen, Sign, V er) which while not
necessary to satisfy our security definitions, is required un-
less another method to ensure users only encrypt using pub-
lic keys that the certification authority (CA) publishes (such
as a secure database to store public keys). Furthermore,

464

while we only explicitly state it for the Setup algorithm,
we assume all parties have access to the security parameter
λ and are restricted to running in polynomial time in this
parameter.

2.1 Randomized Encodings
Our main construction will use decomposable randomized

encodings heavily. A decomposable randomized encoding of
g : {0, 1}n → {0, 1}k represented as a circuit of size polyno-
mial in the security parameter λ will split g into 2n compo-
nents: ([g]i,b : i ∈ [1, n], b ∈ {0, 1}) such that for a given x,
([g]i,x[i] : i ∈ [1, n]) will suffice to reconstruct g(x) but will
computationally leak no other information about g except
the size of the circuit (this problem can be addressed by
padding). Randomized encodings as used in this paper can
be constructed for any function g which can be represented
as a polynomial size circuit by using garbled circuits [20].

Definition 2.1. [2] A decomposable randomized encod-
ing consists of a pair of algorithms E, the encoder, and D,
the decoder, such that for security parameter λ:

◦Decomposability: For f a circuit from {0, 1}n → {0, 1}k:

E(f, 1λ)→ ([f]i,b ∈ {0, 1}m : i ∈ [1, n], b ∈ {0, 1})

for m a function of n, |f |, k, λ with m = poly(λ) if |f | =
poly(λ).

◦ Correctness: For any string x ∈ {0, 1}n:

D(([f]i,x[i])i∈[1,n]) = f(x)

with overwhelming probability if n = poly(λ).

◦ Privacy: There exists a probabilistic polynomial time sim-
ulator S s.t. for any family of strings {xλ}λ∈N and circuits
{fλ : {0, 1}nλ → {0, 1}kλ}λ∈N with |xλ| = nλ, |fλ| = sλ:

S(1λ, nλ, sλ, fλ(xλ)) ≡c ([fλ]i,xλ[i] : i ∈ [1, nλ]),

where E(f, 1λ) → ([f]i,b : i ∈ [1, n], b ∈ {0, 1}) and Xn ≡c
Yn denotes that for any polynomial size (non-uniform) cir-
cuit family An, |Pr[An(Xn) = 1] − Pr[An(Yn) = 1]| is neg-
ligible in λ if nλ, kλ, sλ = poly(λ).

Such an encoding is possible for circuits with information
theoretic privacy with O(|g|2d) expansion where d is the
depth of the evaluating circuit [9, 12]. With one way func-
tions, it is possible with expansion O(λ|g|) [20, 2] to encode
any polynomial time function against p.p.t. adversaries (by
applying garbled circuits to universal circuits2).

Notice that randomized encodings, by virtue of Privacy,
satisfy a notion of Indistinguishability (by the transitiv-
ity of computational indistinguishability). Informally, this
implies that if f0 and f1 are circuits of the same (polynomi-
ally bounded) size with f0(x) = f1(x), ([fz]i,x[i] : i ∈ [1, |x|])
for z ∈ {0, 1} are indistinguishable to polynomial size dis-
tinguishing circuits.

3. WORRY-FREE ENCRYPTION
We now will define the concept of Worry-Free Encryption

along with the security guarantees placed on it.

2Not that in most implementations it is unnecessary to con-
sider full universal circuits. In the ‘Submarines’ example
given previously it would have been sufficient to instead take
C a circuit which takes policies and attributes as inputs.

Definition 3.1. A Worry-Free Encryption scheme is a
public key encryption scheme with credential authorization.
It consists of six algorithms: Setup, Pre, Auth, CheckAuth,
Enc, Dec with the following functionalities:

• Setup(1λ)→ (PP,MSK) The setup to generate public
parameters and master secret key.

• Pre(x, PP) → (Σ, SK) The preprocessing stage per-
formed by the user with credentials x ∈ {0, 1}n.

• Auth(Σ, x,MSK)→ PKx The authorization stage per-
formed by the CA which takes as input the user’s pre-
processing information Σ and credentials x (which are
verified out of the model) and outputs the public key
PKx (note x is not a part of PKx and will be hidden).

• CheckAuth(PKx,Σ, x, PP) This step will output ⊥ iff
the returned public key PKx is incompatible with the
preprocessing Σ. If the Auth step was performed cor-
rectly, it will always accept.

• Enc(f, PKx, PP) → C Encrypts under PKx, the cir-
cuit f : {0, 1}n → {0, 1}k.

• Dec(Enc(f, PKx, PP), SKx, PP)→ f(x).

For our construction we will assume n is fixed on setup.
Much like usual notions of encryption reveal the length of
the message, across our security definitions we will assume
that for two encryptions to be indistinguishable they must
be encryptions of circuits of the same size with the same
number of output bits. However, by padding, notice that
one can easily make smaller circuits encrypted in a way that
is indistinguishable from larger circuits. For simplicity, we
will also assume for our construction that ‘k′, the output
size, is fixed on setup – but note that this assumption is
only for notational simplicity, and is not needed for security.

3.1 Security Definitions
If at any point in the security games, a functionality re-

turns ⊥, the experiment will terminate and return ⊥. The
first security requirement will be made concerning the func-
tion f . A scheme W is Message Secure if for any p.p.t.
A1, A2, A3, the probability the experiment below outputs 1
is less than 1/2 plus a negligible factor:

MessageSecureA1,A2,A3(1λ) :
W.Setup(1λ)→ (PP,MSK),
A1(1λ, PP)→ (x, σ1),
W.P re(x, PP)→ (Σ, SK),
W.Auth(Σ, x,MSK)→ PKx,
A2(PKx, σ1)→ (f0, f1, σ2),
Return 0 unless |f0| = |f1|,
z

$←− {0, 1} , W.Enc(fz, PKx, PP)→ C,
A3(C, σ2)→ g,
Return 1 iff g = z.

The second requirement is that a receiver with credentials
x can only learn f(x) and |f | from an encryption of f . W
is Function Hiding if for any p.p.t. A1, A2, A3, the prob-
ability the below experiment outputs 1 is less than 1/2 plus
a negligible factor:

465

FunctionHidingA1,A2,A3(1λ) :
W.Setup(1λ)→ (PP,MSK),
A1(1λ, PP)→ (Σ, x, σ1),
W.Auth(Σ, x,MSK)→ PKx,
A2(PKx, σ1)→ (f0, f1, σ2),
Return 0 unless |f0| = |f1| ∧ f0(x) = f1(x),

z
$←− {0, 1},W.Enc(fz, PKx, PP)→ C,

A3(C, σ2)→ g,
Return 1 iff g = z.

We will say a Worry-Free Encryption scheme has hidden cre-
dentials if PKx leaks no information about x. Since the CA
must have access to the user’s credentials, this guarantee can
only hold if the CA is honest. W has Hidden Credentials
if for any p.p.t. A1, A2 the probability the below experiment
outputs 1 is less than 1/2 plus a negligible factor:

HiddenCredentialsA1,A2(1λ) :
W.Setup(1λ)→ (PP,MSK),
AO1 (1λ, PP)→ (x0, x1, σ),
Return 0 unless |x0| = |x1|,
z

$←− {0, 1},W.P re(xz, PP)→ (Σ, SK),
W.Auth(Σ, xz,MSK)→ PKxz ,
AO2 (PKxz , σ)→ g,
Return 1 iff g = z.

where A1, A2 have oracle access to:

O(y) :
W.P re(y, PP)→ (Σy, SKy),
Return (W.Auth(Σy, y,MSK) = PKy).

A major departure from previous schemes is that by assum-
ing the public key infrastructure, we will actually be able
to guarantee full security against the certification author-
ity. W is Malicious Authority Secure if for any p.p.t.
A1, A2, A3, A4 the probability the scheme below outputs 1
is less than 1/2 plus a negligible factor:

MaliciousAuthorityA1,A2,A3,A4(1λ) :
A1(1λ)→ (x, PP, σ1),
W.P re(x, PP)→ (Σ, SK),
A2(Σ, σ1)→ (PK, σ2),
If W.CheckAuth(PK,Σ, x, PP) =⊥

Return 0,
A3(σ2)→ (f0, f1, σ3),
Return 0 unless |f0| = |f1|,
z

$←− {0, 1},W.Enc(fz, PKx, PP)→ C,
A4(C, σ3)→ g,
Return 1 iff g = z.

Note that our security models do make the assumption that
honest users use the public key output by the central author-
ity to encrypt. This will be where the (PP,MSK) pair will
be useful since we will be able to have the central authority
sign all issued public keys using the signing key MSK to be
verified under the verification key PP . Note that this signa-
ture step could be omitted if some other way of assuring the
validity of public keys was present (such as a secure database
that the CA uses to store the public keys). For simplicity

we will assume all functions output by the adversary are in
the function space accepted by the encryption scheme in our
analysis.

3.2 Intuition Behind the Construction
The basic intuition for the construction follows: For each

i ∈ [1, n] the user will generate a public, secret key pair
corresponding to 0 or 1 according to the bit of his cre-
dentials at the index i (in other words, the user generates
PKi,x[i], SKi,x[i] for each i) and sends the corresponding
public keys to the CA who will then fill in the blanks in
the table (PKi,b : i ∈ [1, n], b ∈ {0, 1}) to mask the user’s
credentials in the public key. Then an encrypter will gen-
erate an encoding of the circuit to be sent and encrypt
each component [f]i,b under PKi,b. This will guarantee
that the user can only decrypt at indices which match the
value of his credentials at this index, giving him access to
([f]i,x[i] : i ∈ [1, n]) allowing the user to reconstruct f(x).

However, the above construction has a weakness, assume
that the central authority stored (SKi,x[i] : i ∈ [1, n]) cor-

responding to indices of the public key which the CA gen-
erated. Then, the authority would be able to decrypt a
ciphertext sent to the user in all indices (i, x[i]), allowing
him to recover ([f]i,x[i] : i ∈ [1, n]) and reconstruct f(x).

To fix this, the user will generate an additional key pair,
(PKn+1,0 SKn+1,0) not related to the user’s credentials.
The CA will then fill out the table for all indices up to n.
For example, if n = 3 , the public key3 would be:

PK =

(
PK1,0 PK2,0 PK3,0 PK4,0

PK1,1 PK2,1 PK3,1

)
.

Now, the encrypter will modify its message function f :
{0, 1}n → {0, 1}k slightly. Instead of encoding f , he will
encode f ′ : {0, 1}n+1 → {0, 1}k defined as:

f ′(x ◦ 0) = f(x) , f ′(x ◦ 1) = 0k

and decompose it as ([f ′]i,b : i ∈ [1, n+ 1], b ∈ {0, 1}).
For each index of the public key, the encrypter will now

encrypt [f ′]i,b under PKi,b discarding [f ′]n+1,1 entirely. This
guarantees that only the user has access to a full n+1 tuple.

Since we will use the transformation above frequently,
for a fixed circuit f : {0, 1}n → {0, 1}k we will denote f ′ :
{0, 1}n+1 → {0, 1}k the transformed circuit above and,

Tλ(f)→ ([f ′]i,b : i ∈ [1, n+ 1], b ∈ {0, 1})

the whole transformation. Furthermore, we will assume f
is only used as a black box in constructing f ′ which will
guarantee f ′ is constructed in such a way that only adds a
fixed size to the circuit. Therefore we may assume |f0| =
|f1| ⇒ |f ′0| = |f ′1|.

Define two sets corresponding to all indices of a public
key and the indices the user with credentials x generated:

I = {(i, b) : i ∈ [1, n], b ∈ {0, 1}} ∪ {(n+ 1, 0)},

Jx = {(i, x[i]) : i ∈ [1, n]} ∪ {(n+ 1, 0)}.

3Recall that n does not correlate to any level of security,
only the underlying access structure. An n = 1 is enough to
express an ‘Authorized’ - ‘Not-Authorized’ access structure.

466

3.3 The Construction
We will now give our first Worry-Free Encryption scheme

using an IND-CPA secure public-key encryption scheme E =
(KeyGen,Enc,Dec), an existentially-unforgeable signature
scheme S = (KeyGen, Sign, V er) and a decomposable ran-
domized encoding (E,D). Let L(λ) be a polynomial upper
bound on the credential size and the circuit size to be en-
crypted. If a check fails the functionality will return ⊥.

All functionalities for each of our schemes will expect x ∈
{0, 1}n and f : {0, 1}n → {0, 1}k where n and k are fixed on
setup and return ⊥ if this is not the case for an input. For
notational convenience we will label the indices of a matrix
in Mn×2 as ((i, b) : i ∈ [1, n], b ∈ {0, 1}).

◦ Setup(1λ):

S.KeyGen(1λ)→ (V K, SignK),

Return (PP,MSK) = (V K, SignK).

◦ Pre(x, PP):

For (i, b) ∈ Jx, E .KeyGen(1λ)→ (PKi,b, SKi,b),

Set Σ = (PKi,b : (i, b) ∈ Jx) ∈ Mn+1×2,

Set ~SK = (SKi,b : (i, b) ∈ Jx),

Return (Σ, ~SK).

◦ Auth(Σ = (PKi,b : (i, b) ∈ Jx), x,MSK):

Check only Jx indices in Σ are not null,

For (i, b) ∈ I \ Jx, E .KeyGen(1λ)→ (PKi,b, SKi,b),

Set ~PK = (PKi,b : (i, b) ∈ I),

S.Sign(~PK, SignK)→ σ,

Return (~PK, σ).

◦ CheckAuth((~PK, σ),Σ, x, PP):

Check ~PK ∈ Mn+1×2 with (n+ 1, 1) index null,

Check S.V erVK(σ, ~PK) = True,

For (i, b) ∈ Jx check ~PK’s (i, b) entry is PKi,b from Σ.

◦ Enc(f, (~PK, σ), PP):

Check S.V erVK(σ, ~PK) = True,

Tλ(f)→ ([f ′]i,b : i ∈ [1, n+ 1], b ∈ {0, 1}),
For (i, b) ∈ I, E .EncPKi,b([f

′]i,b)→ Ci,b,

Return (Ci,b : (i, b) ∈ I).

◦ Dec((Ci,b : (i, b) ∈ I), ~SK,PP):

For (i, b) ∈ Jx, E .DecSKi,x[i](Ci,b)→ [f ′]i,b,

Return D([f ′]i,b : (i, b) ∈ Jx) = f(x).

We now begin with the proofs of security. Notice that
Malicious Authority Secure implies Message Secure since the
security requirement is the same, with the only modification
being that the CA may be malicious in the former. There-
fore, we do not prove Message Security separately. It will
be useful to define an ordering on the elements of I (first
by column, then by row), we can then refer to the ‘first j’
ordered pairs without ambiguity.

Theorem 3.2. If E is a IND-CPA public-key encryption
scheme and (E,D) is a secure decomposable randomized en-
coding, W is a CPA secure Worry-Free Encryption Scheme.

Proof of Function Hiding: We define a sequence of
hybridsHj . In the FunctionHiding experiment, recall that

the (i, b) ∈ I index of W.Enc(f, (~PK, σ), PP) is:

Ci,b = E .EncPKi,b([f
′]i,b).

For Hj , instead of generating the first j elements of I \ Jx
as above in the challenge ciphertext, generate them as:

Ci,b = E .EncPKi,b(0
m).

Since for all replaced (i, b) (which are not in Jx), the public
keys were generated by the experiment, by a standard hybrid
argument we can conclude that if (A1, A2, A3) has a non-
negligible advantage in the FunctionHiding game (H0), it
also has a non-negligible advantage in Hn.

However, notice that in the experiment Hn, the challenge
ciphertext depends only on the values {[f ′z]i,b : (i, b) ∈ Jx}
where fz is the challenge function. By the indistinguisha-
bility requirement of the encoding, and that f ′1(x ◦ 0) =
f ′0(x◦0) and |f ′1| = |f ′0|, the probability (A1, A2, A3) outputs
z is no greater than 1/2 plus a negligible function. There-
fore, (A1, A2, A3) can not have a non-negligible advantage in
the experiment Hn if the randomized encoding satisfies in-
distinguishability, contradicting the previous assertion.

Proof of Hidden Credentials: Notice the scheme sat-
isfies the definition of hidden credentials information theo-
retically since if both user and CA are honest (as assumed
in the experiment), all elements of the public key are drawn
from the same distribution, independently of x.

Proof of Malicious Authority Security: As in the
proof of Function Hiding by going through a series of hybrids
(recall for the experiment to not abort the indices in ~PK
corresponding to elements of Jx were generated by the ex-
periment), if (A1, A2, A3, A4) has a non-negligible advantage
in the original experiment, it has a non-negligible advantage
in the modified experiment where for all (i, b) ∈ Jx the (i, b)
component of the challenge ciphertext is instead generated
as (removing dependence on the challenge function):

Ci,b = E .EncPKi,b(0
m).

Therefore, after the output of f0, f1 by A3, the challenge ci-
phertext is publicly computable from: ([f ′z]i,x[i] : i ∈ [1, n]).

But notice this is the first n components of the encoding:

([f ′z]i,x[i] : i ∈ [1, n]) ∪ ([f ′z]n+1,1).

where fz is the challenge function. Since f ′0(x ◦ 1) = f ′1(x ◦
1) = 0k the above distribution is computationally indistin-
guishable for z = 0 or z = 1, contradicting the assumption
that A4 outputs z with non-negligible probability.

4. CHOSEN-CIPHERTEXT SECURITY
In this section, we address the natural problem of pro-

viding a CCA2 Secure Worry-Free Encryption scheme. The
first step is to precisely define what it means for a Worry-
Free Encryption scheme to be CCA2 secure.

Notice that under a chosen ciphertext attack, the obvi-
ous notion of Hidden Credentials becomes unattainable since
the adversary may simply ask for the user’s decryption of

467

an encryption of the identity function (f(x) = x for all x),
which gives the adversary access to the user’s credentials.
For Function Hiding, the attacker (a malicious user) already
has the secret key and a decryption oracle doesn’t add any
functionality. The most natural setting in which to consider
chosen-ciphertext attacks is therefore Malicious Authority
Security (which implies Message Security). Recall that in
the Malicious Authority security game we assume a mali-
cious CA, the guarantee of indistinguishability should hold
as long as the authority assigns a public key that is consis-
tent with the user’s pre-processing information.

Formally, to prove CCA2 security, (A1, A2, A3, A4) are
given access to the oracleO below in the MaliciousAuthor-
ity experiment:

O(C′) :
If queried by A4 and C = C′ return ⊥,
Else return W.Dec(C′, SK, PP).

4.1 CCA2 Security with Random Oracles
We now provide an efficient construction of CCA2 secure

Worry-Free Encryption in the random oracle model.
Intuitively, the scheme will work similarly to our previous

construction, however, due to the discrete components of the
ciphertexts, we must safeguard against the adversary reusing
parts of the challenge ciphertext in decryption queries. It is
with this motivation that we use an additional invocation of
the public-key encryption scheme (the keys of which we will
label PK∗, SK∗) which will allow us to ensure that an ad-
versary that makes a valid decryption query does not reuse
parts of the challenge ciphertext. This can be viewed as a
consistency check through all components of the ciphertext.

The random oracle proof model incorporates a function
H : {0, 1}∗ → {0, 1}l that is modeled as a random function.
The function is treated as an oracle, so any adversary must
query H directly in order to have any information about the
output H(x) for any x ∈ {0, 1}∗.

In our construction we will assume a IND-CPA secure
encryption scheme with what we call, unpredictable cipher-
texts, meaning that for any public key and any message, the
probability that the ciphertext takes a fixed value should
be negligible. We point out that this is satisfied by most
schemes in the literature already and can be trivially ob-
tained by concatenating randomness to the ciphertext not
used during decryption. Let L(λ) be a polynomial bound
on the size of the credentials and the circuit components
(the output of Tλ, which is polynomial in the circuit size).
We use Enc(M ;R) to indicate that we run the encryp-
tion using R as randomness. For this scheme, we will let
H : {0, 1}∗ → {0, 1}l where l is an upper bound on the bits
of randomness E .Enc requires for the encryption of L(λ)+m′

and 2m′ bit messages wherem′ = Θ(λ) (one can takem′ = λ
for simplicity but this can be optimized, we will assume the
encryption scheme can take as input more randomness than
needed).

In this section, we will also assume [f]i,b, an encoding
component will begin with the index (i, b) in plaintext and
we use (i, b) ∈ [f]i,b to denote that [f]i,b has this label. While
this requires the simulator in the privacy guarantee to have x
as input, it does not affect our usage or indistinguishability.
We now define R:

◦ Setup(1λ):

S.KeyGen(1λ)→ (V K, SignK) = (PP,MSK),

Return (PP,MSK).

◦ Pre(x, PP):

For (i, b) ∈ Jx, E .KeyGen(1λ)→ (PKi,b, SKi,b),

E .KeyGen(1λ)→ (PK∗, SK∗),

Set Σ = ((PKi,b : (i, b) ∈ Jx), PK∗),

Set ~SK = ((SKi,b : (i, b) ∈ Jx), SK∗),

Return (Σ, ~SK).

◦ Auth(Σ = ((PKi,b : (i, b) ∈ Jx), PK∗), x, PP)):

For (i, b) ∈ I \ Jx,

E .KeyGen(1λ)→ (PKi,b, SKi,b),

Set4 ~PK = ((PKi,b : (i, b) ∈ I), PK∗),

S.Sign(~PK, SignK)→ σ,

Return (~PK, σ).

◦ CheckAuth((~PK, σ),Σ, x, PP):

Check S.V erVK(σ, ~PK) = True,

For (i, b) ∈ Jx check (i, b) entry of ~PK is PKi,b ∈ Σ.

◦ Enc(f, (~PK, σ), PP):

Check S.V erVK(σ, ~PK) = True,

Tλ(f)→ ([f ′]i,b : i ∈ [1, n+ 1], b ∈ {0, 1}),

For all (i, b) ∈ I: ri,b
$←− {0, 1}m

′
,

Generate r, r∗
$←− {0, 1}m

′
,

For all (i, b) ∈ I:

Ci,b = EncPKi,b([f
′]i,b ◦ ri,b;H([f ′]i,b ◦ ri,b ◦ r)),(†)

Set C∗ = EncPK∗(r ◦ r∗;H({Ci,b}(i,b)∈I ◦ r ◦ r∗)),
Return ((Ci,b : (i, b) ∈ I), C∗).

◦ Dec((Ci,b : (i, b) ∈ I), C∗, ~SK):

For (i, b) ∈ Jx, E .DecSKi,b(Ci,b)→ ([f ′]i,b ◦ ri,b),
Run E .DecSK∗(C∗)→ (r ◦ r∗),
For (i, b) ∈ Jx, check:

Ci,b = EncPKi,b([f
′]i,b ◦ ri,b;H([f ′]i,b ◦ ri,b ◦ r)),

Check C∗ = EncPK∗(r ◦ r∗;H({Ci,b}(i,b)∈I ◦ r ◦ r∗)),
For (i, b) ∈ Jx, check (i, b) ∈ [f ′]i,b,

Return D([f ′]i,b : (i, b) ∈ Jx) = f(x).

Theorem 4.1. If E is a IND-CPA public-key encryption
scheme with unpredictable ciphertexts and (E,D) is a secure
decomposable randomized encoding, then R is an IND-CCA2
secure Worry-Free Encryption Scheme in the RO model.

Proof of Function Hiding. We begin by showing that
the above scheme is a usual Worry-Free Encryption scheme
before addressing CCA2 security. Let (A1, A2, A3) be an
adversary with non-negligible advantage in the Function-
Hiding security game for R where H is modeled as a ran-

4Format ~PK as a matrix in Mn+1×2 with (n + 1, 1) index
null followed by PK∗.

468

dom oracle. We define two intermediary security games, the
modified line in the scheme is marked with (†).

◦ Let Fh1 denote the event FunctionHiding outputs 1
while interacting with (A1, A2, A3).

◦ For all (i, b) ∈ I \ Jx let the (i, b) component of the
challenge ciphertext be generated instead as:

EncPKi,b([f
′]i,b ◦ ri,b;Ri,b)

with Ri,b
$←− {0, 1}l. Call the event this modified experiment

outputs 1 with (A1, A2, A3), Fh2.

◦ For all (i, b) ∈ I \ Jx let the (i, b) component of the
challenge ciphertext be generated instead as:

EncPKi,b(0
m ◦ ri,b;Ri,b)

with Ri,b
$←− {0, 1}l. Call the event this modified experiment

outputs 1 with (A1, A2, A3), Fh3.

Lemma 4.2. Pr(Fh3) ≤ 1/2 + ν(λ) for some ν negligible.

Proof. This follows directly from the computational indis-
tinguishability requirement of decomposable encodings since
the challenge ciphertext only depends on the (i, b) ∈ Jx
components of the encoding of the challenge function and
f0(x) = f1(x), |f0| = |f1| for both challenge functions sub-
mitted by the adversary in FunctionHiding.

Lemma 4.3. |Pr(Fh3)− Pr(Fh2)| is negligible.

Proof. The above follows directly by the IND-CPA secu-
rity of Enc recall that for all indices where the ciphertext
component is modified, the public key was chosen by the
experiment, not the adversary.

Lemma 4.4. |Pr(Fh2)− Pr(Fh1)| is negligible.

Proof. Notice that unless (A1, A2, A3) queries H on in-
put [f ′z]i,b ◦ rzi,b ◦ rz where fz is the challenge function and
rzi,b, r

z are the corresponding randomness generated dur-
ing the challenge ciphertext query for some (i, b) ∈ I \ Jx,
the view of the adversary is identically distributed in both
games. Therefore, we can upper bound this difference by
the probability that (A1, A2, A3) queries H([f ′z]i,b ◦ rzi,b ◦ rz)
in the modified game of Fh2 (since up to the point of the
query, the view is identical, the probability such a query
happens is the same in both experiments).

Assume that (A1, A2, A3) queries H([f ′z]i,b ◦ rzi,b ◦ rz) for
some (i, b) ∈ I with non-negligible probability in the relevant
experiment for Fh2. Consider the experiment where instead
of rzi,b being generated after the challenge index z is chosen,

both r0
i,b and r1

i,b are generated and either [f ′0]i,b ◦ r0
i,b or

[f ′1]i,b ◦ r1
i,b is encrypted based on the challenge index. The

above adversary could then mount a distinguishing attack on
E because the adversary’s view would be independent of rzi,b
and therefore the adversary could only query H([f ′z]i,b◦rzi,b◦
rz) with negligible probability. Therefore, one could guess
the challenge index from this hash query and by embedding
an instance of the IND-CPA security game of E , break the
scheme’s IND-CPA security.

Remark: We have just shown R is Function Hiding.
Notice it also satisfies Hidden Credentials information the-
oretically. It remains only to show it is Malicious Author-
ity Secure under adaptive chosen-ciphertext attacks. In the

same way that Function Hiding was proven, we can also
show that the scheme is Malicious Authority secure against
chosen-plaintext attacks, it remains only to argue that the
scheme is Malicious Authority secure against CCA2 attacks.

Proof of CCA Malicious Authority Security. For
simplicity from now on, we will always assume the users cre-
dentials x are set to 0n. Since the user’s credentials are not
assumed private in this game, this does not effect the proof
and allows the notation to be simplified. We begin by assum-
ing E is an IND-CPA secure public key encryption scheme
with unpredictable ciphertexts. As outlined above, malicious
authority security under CPA queries can be shown simi-
larly to the proof of function hiding. We now show that all
ciphertext decryption queries in the CCA2 game can be sim-
ulated without ever having access to a decryption oracle (if
the simulator controls H), which allows us to use the IND-
CPA security of the scheme to achieve full CCA2 security.

By the property of unpredictable ciphertexts, the prob-
ability that an adversary makes a decryption query on a
ciphertext which passes the decryption check without first
querying H on the corresponding randomness of the cipher-
text is negligible before seeing the challenge. Since the ran-
domness in the ciphertext contains all information needed
to decrypt, no decryption oracle is required to simulate de-
cryption before the challenge ciphertext with overwhelming
probability. However, this argument does not hold after the
challenge ciphertext has been issued since the adversary may
attempt to reuse part of the challenge ciphertext.

We now claim that (A1, A2, A3) cannot, with non-negl.
probability, make a ciphertext query that will pass the de-
cryption check that re-uses either C∗ or Ci,0 for some i ∈
[1, n+ 1] of the challenge ciphertext (we call such a cipher-
text Overlapping. We call a ciphertext Valid if it passes the
check of the decryption step). For any decryption query
C = ((Ci,b : (i, b) ∈ I), C∗), there are two ways C could be
overlapping (we will call the challenge ciphertext C and the
corresponding ciphertext components C∗, Ci,0). For the fol-
lowing claims let rzi,b, r

z, r∗z be the randomness used during
encryption of the challenge query.

Lemma 4.5. Let C be any decryption query after the chal-
lenge phase with C 6= C and C∗ = C∗ such that no string
containing rz has been queried to H by the adversary. Then,
the probability C is valid is negligible.

Proof. Since C 6= C, Ci,b 6= Ci,b for some (i, b) ∈ I. Then,
in order for C to be valid, it is necessary that:

E .EncPK∗(rz ◦ r∗z;H({Ci,b}(i,b)∈I ◦ rz ◦ r∗z)) =

E .EncPK∗(rz ◦ r∗z;H({Ci,b}(i,b)∈I ◦ rz ◦ r∗z)).

However, note that the probability of the above equality is
negligible by the unpredictable ciphertexts requirement of
E because H({Ci,b}(i,b)∈I ◦ rz ◦ r∗z) has not been queried.
Therefore, with overwhelming probability C∗ is not a valid
encryption of the underlying message and C is not valid.

Lemma 4.6. Let C be any decryption query after the chal-
lenge phase with C 6= C, C∗ 6= C∗ such that Cj,0 = Cj,0 for
some j ∈ [1, n + 1]. If no string containing rzj,0 for any
j ∈ [1, n+ 1] or rz has been queried to H by the adversary,
the probability C is valid is negligible.

469

Proof: Since C∗ 6= C∗, if for some s, s∗ ∈ {0, 1}m
′
,

C∗ = E .EncPK∗(s ◦ s∗;H({Ci,b}(i,b)∈I ◦ s ◦ s∗))

then with overwhelming probability we may assume A has
queriedH({Ci,b}(i,b)∈I , s, s∗) by the property of unpredictable
ciphertexts. By our assumption this implies s 6= rz. For this
ciphertext to be valid, it is necessary that:

Cj,0 = E .EncPKj,0([f ′z]j,0, r
z
j,0;H([f ′z]j,0, r

z
j,0, s))

However, since rzj,0 has not been queried as a component
in H, the argument for H has not yet been queried and
therefore the above will hold with only negligible probability
by the guarantee of unpredictable ciphertexts for E .

Notice that if there is no overlapping valid ciphertext we
can simply use the queries to the hash function to decrypt.
Assume Cj,0 6= Cj,0, then, if C is valid, there is some under-
lying [f]j,0, rj,0, r (for the r implicit from the C∗ location):

Cj,0 = E .EncPKj,0([f ′]j,0, rj,0, H([f ′]j,0, rj,0, r))

such that (j, 0) ∈ [f ′]j,0. If the adversary has not queried
the hash argument, and the above was not the encryption
of the (j, 0) index of the challenge ciphertext (since this is
the only index with (j, 0) ∈ [f ′]j,0), the hash function has
not been queried on this argument and the probability the
above equality will hold is negligible. Note that decryption
only relies on Cj,0 for j ∈ [1, n + 1] and therefore reusing
Cj,1 from the challenge ciphertext does not effect our abil-
ity to decrypt. Therefore a simulator can return ⊥ on all
decryption queries for overlapping ciphertexts and be ac-
curate with overwhelming probability. We call the event
in which the adversary queries a string with either rzi,0 for
some i ∈ [1, n + 1], rz or r∗z as a substring to H an ora-
cle failure. We showed above that to query an overlapping
valid ciphertext, with overwhelming probability, the adver-
sary must cause an oracle failure.

Lemma 4.7. If (A1, A2, A3) causes an oracle failure with
non-negligible probability, E is not IND-CPA secure.

Proof: We only address when the an oracle failure by
querying a string containing rzi,0 (the other two cases follow
similarly). Notice that as long as there have been no ora-
cle failures the we can simulate the adversary’s decryption
queries with its queries to the hash function. Therefore,
using (A1, A2, A3) as a subroutine, we can make a second
adversary that creates an oracle failure without ever using
a decryption oracle. Let (A′1, A

′
2, A

′
3) be such a tuple.

Up to the point of creating an oracle failure, the view
of (A′1, A

′
2, A

′
3) is identical if instead of using H to generate

the randomness used during the encryption of the challenge
ciphertext, this randomness is generated uniformly at ran-
dom. Therefore, we may assume (A′1, A

′
2, A

′
3) creates an

oracle failure when the randomness used in the challenge
ciphertext is drawn uniformly at random.

The proof now follows similarly to the case in Function
Hiding, assume both r0

i,b and r1
i,b are created during the chal-

lenge encryption and [f ′z]i,b, r
z
i,b is encrypted with uniform

randomness. If A′ has non-negligible probability of querying
the oracle on some rdi,b this creates a distinguishing attack
against the encryption scheme since its view is independent
of rzi,b where z is the index chosen in the challenge query.

4.2 CCA Security in the Standard Model
In this section we describe the construction of a CCA2 se-

cure Worry-Free Encryption scheme in the standard model
using our IND-CPA scheme. The construction follows heav-
ily Sahai’s construction of IND-CCA2 secure public key en-
cryption from an IND-CPA secure scheme and a simulation
sound NIZK proof system for NP [16].

In Sahai’s original construction, the main observation is
that if the IND-CPA secure scheme is run twice in parallel
and a valid encryption includes a proof that both parallel
encryptions are of the same message, one can transform an
IND-CPA secure scheme to an IND-CCA2 secure public key
encryption scheme. The application to our setting is nearly
immediate, with the proof being that each pair of ciphertext
components with the same index (i, b) are encryptions of the
same message, with only the following caveat. For the NIZK
proof system, it is necessary to have a common reference
string of randomly generated bits. This is not a problem in
Sahai’s construction since the user can randomly generate
the CRS and use it as part of its public key, a malicious user
is not an issue. However, in our setting, in certain security
games, this user may be dishonest and thus we can not trust
that the CRS would be correctly generated if we allowed the
user to generate it independently.

It is for this reason that we must use a coin flipping proto-
col (implemented through a commitment scheme) between
the user and key generation authority in order to settle on
this CRS, which allows the simulator to rewind during the
proof to set the CRS. Since either the user or key genera-
tion authority is assumed honest in all security games for
standard Worry-Free Encryption, the CRS will always be
correctly generated and we will be able to set the CRS in
each security experiment. However, this will be incompat-
ible with the ideas in the following section in constructing
a minimally-vulnerable scheme and we leave the problem of
constructing a CCA2 secure Worry-Free encryption scheme
that is minimally-vulnerable open.

5. MALICIOUS AUTHORITY COLLUSION
One question that arises is the case of a malicious user

Alice and the CA colluding to make her public key. Since
credentials in Worry-Free Encryption are hidden in the pub-
lic keys, an honest Bob can never tell if Alice and the CA
collude to make her a public key with incorrect credentials.
However, in this section we will give a scheme where this is
all they can accomplish. We call such a scheme minimally
vulnerable to collusion.

5.1 Two Round 1-out-of-2 Oblivious Transfer
Oblivious transfer is a well developed concept in crypto-

graphic literature [15, 14] and we will assume some profi-
ciency in this paper. A two round (sometimes called ‘non-
interactive’) 1-out-of-2 oblivious transfer protocol (OT 2

1) is
a two round protocol between a chooser (who sends the first
message) and a sender (who sends the second) such that the
sender starts with two values M0 and M1 and if both parties
are honest, at the end, the chooser will receive Mb for his
choice of b and will gain no additional information about Mb

apart from Mb and the sender gains no information about b.
However, for our purposes, we will need a slight modifi-

cation on this concept. While not implied by the traditional
definition, we conjecture it is satisfied by many known OT 2

1

470

constructions, one of the best known constructions, due to
Naor & Pinkas [15] in particular satisfies this notion.

5.2 Static OT2
1

We will now begin with defining the precise requirements
we will require from the oblivious transfer protocol and la-
bel this new primitive Static OT 2

1 . We formally define this
primitive below.

A Static OT 2
1 protocol is between two parties, with one

party, the sender having two inputs (M0,M1) and the other
party the chooser has input one bit σ. The protocol is two
rounds, with the first from chooser to sender and the second
a response from sender to chooser such that at the end the
chooser learns Mσ with the following guarantees:

Chooser Security: The sender’s view when σ = 0 or
when σ = 1 are computationally indistinguishable.

Sender Security: We use the ideal implementation def-
inition where a trusted third party receives M0 and M1 from
the sender and σ from the chooser and returns Mσ to the
chooser. For any distribution on (M0,M1) and any polyno-
mial time adversarial chooser A in the real implementation,
there exists a simulator A′ that takes the chooser’s role in
the ideal model with the same inputs as A such that the
outputs of A and A′ are indistinguishable given M0, M1.

Static Retrieval: For any first round message from an
adversarial chooser there is a bit β such that any response
by a honest sender reveals no information about Mβ .

5.3 Security Definition
Intuitively, the definition we desire in this situation is

clear. Assume the user and CA collude to make a public
key PK. By the requirement of hidden credentials it should
be impossible for an honest user to determine the set of
credentials associated with PK, if there even is one. Perhaps
this collusion makes it possible to recover more about the
function than evaluation at a point.

The security requirement we would like is that every ma-
liciously generated PK has with it associated some x such
that all that can be recovered from Enc(f, PK,PP) is f(x).
However, there is a slight difficulty in defining this since the
malicious users may not be aware of what this implied cre-
dential x is, if such a credential even exists. Therefore, we
will make use of Ext an exponential time extractor which
recovers such an x. Recall that the guarantees on decompos-
able randomized encodings hold against non-uniform circuit
families; this will be crucial in maintaining security even if
the challenge function is generated after seeing the output
of this exponential time extractor.

We define the relevant experiment for our purposes below.

ExptA1,A2,A3(1λ):
A1(1λ)→ (PK,PP, σ1),
Ext(PK)→ x ∈ {0, 1}n,
A2(PK, x, σ1)→ (f1, f2, σ2),

z
$←− {0, 1}, W.Enc(fz, PK, PP)→ C,

A3(C, σ2)→ g,
Return (g, f0, f1, z).

We will say for the preceding experiment that a scheme is
Minimally Vulnerable to Collusion if there exists a pos-
sibly exponential time deterministic extractor Ext such that:

Pr[g = z ∧ f0(x) = f1(x) ∧ |f0| = |f1|] ≤ 1/2 + ν(λ)

where ν is negligible. Our scheme is below where O is a
Static OT2

1 protocol with rounds O1, O2 with d the state
from O1 that allows reconstruction by the function R. In
other words, the steps of the scheme can be represented as
O1(b)→ (A, d), O2(M0,M1, A)→ C, R(d,C)→Mb.

5.4 A Minimally Vulnerable Construction
We now describe a scheme that is minimally vulnerable

to collusion. At the moment we do not address the usual
Worry-Free Encryption properties, but will achieve a scheme
which satisfies both the usual CPA security notions and
the minimal vulnerability requirement shortly. The Setup
phase will be as before, with the CA publishing a signing
key SignK and storing a verification key V K for S.

The pre-processing phase Pre will have the user run the
first round of the oblivious transfer protocol O1(x[i]) →
(Σi, di) so that the transfer bit on the ith call is x[i]. That
this is a parallel notion to our previous construction should
now be clear, the user will only be granted access to one in-
dex at the ith location. It then outputs Σ = (Σi : i ∈ [1, n])
and stores SK = (di : i ∈ [1, n]).

The Authorization phase Auth will simply consist of the
central authority signing Σ, and the user’s check phase Check-
Auth will consist of checking this signature. Σ and the sig-
nature will be the user’s public key. Note that the CA is not
actually checking that the indices the user is receiving back
in the OT protocol correspond to his credentials.

Encryption begins by checking the signature and mak-
ing sure the public key is formatted as an n-tuple of 1st
round messages from the OT protocol. Then, it returns
Ci = O2([f]i,b : b ∈ [1, 2],Σi) the second round of the
OT protocol on the two components of f at that index for
i ∈ [1, n]. To decrypt run R(di, Ci) → [f]i,x[i] for i ∈ [1, n]
and reconstruct f(x). Call the above scheme M.

Theorem 5.1. If O is a static 1-out-of-2 oblivious trans-
fer scheme and (E,D) is a secure decomposable randomized
encoding, M is minimally vulnerable to collusion.

Proof: For each index i, Σi has a bit associated, bi such
that any response of O2 using Σi as the first message will
hide [f]i,b information theoretically by the static retrieval
guarantee. Let Ext to be the extractor which finds such a
bit for every index and labels the string of corresponding
bits x′, this is the string of bits corresponding to indices
where the transfer leaks no information. Then, Ext out-
puts x = x′. Note the challenge ciphertext can only depend
on [f]i,x[i] for i ∈ [1, n]. The claim follows from the indis-
tinguishability of the randomized encoding (recall privacy
holds against non-uniform circuit families and therefore any
σ2, PK which allows A3 a non-negligible probability to dis-
tinguish the encryptions of the encodings with non-negligible
probably can be hard-wired into the circuit).

A modification for Worry-Free Security. In order to
achieve CPA Worry-Free Encryption guarantees along with
the guarantee of minimal vulnerability, a slight modifica-
tion will be needed. We will use a CPA secure Worry-Free
Encryption scheme W and the above scheme M.

Setup consists of the setup phases of bothW andM run-
ning in parallel, the public parameters and MSK values of
the new scheme will be the pair of corresponding outputs in

471

W and M. Similarly, the Auth and CheckAuth phases will
be the corresponding phases in W and M run on the cor-
responding input component. The only modification from
both schemes running in parallel will be during encryption
and decryption.

Encryption of a Pairwise-Independent Mask. En-
cryption takes as input PKM, PPM, PKW , PPW along with
a function f : {0, 1}n → {0, 1}k. Let Hkn be an efficiently
sampleable family of pairwise independent hash functions
from {0, 1}n → {0, 1}k of the same size skn bounded by some
polynomial in n and k.

Encryption will first sample h
$←− Hkn and generate Enc(f+

h, PKM, PPM), Enc(h, PKW , PPW) and return pair of ci-
phertexts as the ciphertext5. Decrypt by decrypting (f +
h)(x) and h(x) to recover f(x). Call this scheme Z.

Theorem 5.2. If O is a static 1-out-of-2 oblivious trans-
fer scheme, (E,D) is a secure decomposable randomized en-
coding and W is a CPA Worry-Free Encryption Scheme, Z
is a CPA secure Worry-Free Encryption Scheme minimally
vulnerable to collusion.

Proof. Since theM component of the challenge cipher-
text only depends on ([(f + h)]i,x[i] : i ∈ [1, n]) for the x
that Ext outputs (defined identically to Ext for M) and
this is the only dependence of f , the scheme is minimally
vulnerable identically to the proof of M.

We now address function hiding. By the static retrieval
guarantee of O and the indistinguishability property of E,
the probability A3 outputs a particular bit can only depend
on (fz + h)(x′) for one x′ (found by Ext) from the first ci-
phertext component. Similarly, by the function hiding prop-
erty of W, the probability A3 outputs b only depends on
h(x) for x the user’s credentials from the second compo-
nent. If x = x′, the adversary’s probability only depends on
fz(x) = fz̄(x) and otherwise, the two values are distributed
uniformly at random by the pairwise independence of h. In
either case, A3’s response can’t depend on z by more than
a negligible factor by the indistinguishability of (E,D).

Hidden credentials follows from the fact that the retrieved
indices in the first key component are not revealed by the
chooser security of O and not revealed in the second by the
hidden credentials guarantee of W.

Malicious Authority security follows since PKM is gen-
erated completely by the user and the ciphertext compo-
nent corresponding to M is the only one with dependence
on the challenge function. Since both messages are compu-
tationally hidden from eavesdroppers in the OT protocol,
this implies that the adversary can not distinguish the case
where the challenge ciphertext component encrypted under
PKM is replaced by an encryption of a fixed string of the
same length. Since the latter case has no dependence on the
challenge function, this implies the adversary can only have
negligible probability in guessing the challenge index.

6. REFERENCES
[1] William Aiello, Yuval Ishai, and Omer Reingold.

Priced oblivious transfer: How to sell digital goods. In
EUROCRYPT, pages 119–135, 2001.

5Note that we can assume |f + h| = |g + h| if |f | = |g| by
using h as a black box in the circuit construction.

[2] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz.

Cryptography in nc0. SIAM J. Comput.,
36(4):845–888, 2006.

[3] John Bethencourt, Amit Sahai, and Brent Waters.
Ciphertext-policy attribute-based encryption. In IEEE
Symposium on Security and Privacy, pages 321–334,
2007.

[4] Dan Boneh and Brent Waters. Conjunctive, subset,
and range queries on encrypted data. In TCC, pages
535–554, 2007.

[5] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal
Malkin. Protecting data privacy in private information
retrieval schemes. J. Comput. Syst. Sci.,
60(3):592–629, 2000.

[6] Vipul Goyal. Reducing Trust in the PKG in Identity
Based Cryptosystems. In CRYPTO, pages 430–447,
2007.

[7] Vipul Goyal, Abhishek Jain, Omkant Pandey, and
Amit Sahai. Bounded ciphertext policy attribute
based encryption. In ICALP (2), pages 579–591, 2008.

[8] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent
Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In ACM Conference
on Computer and Communications Security, pages
89–98, 2006.

[9] Yuval Ishai and Eyal Kushilevitz. Perfect
constant-round secure computation via perfect
randomizing polynomials. In ICALP, pages 244–256,
2002.

[10] Jonathan Katz, Amit Sahai, and Brent Waters.
Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In
EUROCRYPT, pages 146–162, 2008.

[11] Jonathan Katz and Arkady Yerukhimovich. On
black-box constructions of predicate encryption from
trapdoor permutations. In ASIACRYPT, pages
197–213, 2009.

[12] Joe Kilian. Founding cryptography on oblivious
transfer. In STOC, pages 20–31, 1988.

[13] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and
B. Waters. Fully Secure Functional Encryption:
Attribute-Based Encryption and (Hierarchical) Inner
Product Encryption. In EUROCRYPT 2010, pages
62-91.

[14] Moni Naor and Benny Pinkas. Oblivious transfer with
adaptive queries. In CRYPTO, pages 573–590, 1999.

[15] Moni Naor and Benny Pinkas. Efficient oblivious
transfer protocols. In SODA, pages 448–457, 2001.

[16] Amit Sahai. Non-malleable non-interactive zero
knowledge and adaptive chosen-ciphertext security. In
FOCS, pages 543–553, 1999.

[17] Amit Sahai and Brent Waters. Fuzzy identity-based
encryption. In EUROCRYPT, pages 457–473, 2005.

[18] Emily Shen, Elaine Shi, and Brent Waters. Predicate
privacy in encryption systems. In TCC, pages
457–473, 2009.

[19] Elaine Shi and Brent Waters. Delegating capabilities
in predicate encryption systems. In ICALP (2), pages
560–578, 2008.

[20] A.C. Yao. Theory and application of trapdoor
functions. In FOCS, pages 80–91, 1982.

472

