
Covert Channels through Random Number Generator:
Mechanisms, Capacity Estimation and Mitigations

Dmitry Evtyushkin
SUNY Binghamton
4400 Vestal Pkwy E

Binghamton, NY, USA
devtyushkin@cs.binghamton.edu

Dmitry Ponomarev
SUNY Binghamton
4400 Vestal Pkwy E

Binghamton, NY, USA
dima@cs.binghamton.edu

ABSTRACT
Covert channels present serious security threat because they
allow secret communication between two malicious pro-
cesses even if the system inhibits direct communication.
We describe, implement and quantify a new covert channel
through shared hardware random number generation (RNG)
module that is available on modern processors. We demon-
strate that a reliable, high-capacity and low-error covert
channel can be created through the RNG module that works
across CPU cores and across virtual machines. We quan-
tify the capacity of the RNG channel under different set-
tings and show that transmission rates in the range of 7-200
kbit/s can be achieved depending on a particular system
used for transmission, assumptions, and the load level. Fi-
nally, we describe challenges in mitigating the RNG channel,
and propose several mitigation approaches both in software
and hardware.

CCS Concepts
•Security and privacy → Side-channel analysis and
countermeasures; Security in hardware;

Keywords
Covert channels; Random number generator

1. INTRODUCTION
Modern computer systems are commonly shared among

multiple groups of applications executing in different secu-
rity domains. The security domain determines if an ap-
plication can be granted access to certain data, perform
privileged operations, or communicate with other applica-
tions. Such application isolation is typically implemented
using system software, and the safety of user data critically
depends on this support. The general principle of least priv-
ilege [46], which applies to many systems including the An-
droid OS [15], advocates granting each application only a
minimal set of permissions that are sufficient to support its

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978374

proper functionality. For example, an application managing
local personal data should be restricted from communicating
over the network.

However, a sophisticated attacker or a malicious devel-
oper can use two colluding applications to create an attack
that would send personal data over the network under such
restrictions. The first malicious application has access to
personal data and the second application has the network
access. For consistency with previous works in this area, we
refer to the first application as the trojan and the second
application as the spy. To create an attack, the adversary
first passes sensitive data from the trojan to the spy and
then uses the spy to send the data over the network. How-
ever, since the trojan and the spy reside in two different
security domains, a properly implemented permission sys-
tem prevents them from directly communicating with each
other. To bypass this restriction, the trojan and the spy can
communicate using covert channels created by modulating
the use of shared hardware resources in a microprocessor.
Recent literature demonstrated many types of timing chan-
nels through shared CPU resources and their application to
secret key reconstruction [36, 29], secret communication [17,
44] and bypassing of security mechanisms [13, 16, 25]. These
implicit channels can even be used to compromise security of
systems that provide hardware supported isolated execution
environments [40, 10, 11, 57].

Covert channels are particularly dangerous in virtualized
environments, such as computational clouds. Since virtual-
ization naturally provides logical isolation between processes
executing in different virtual machines, such environment
seemingly provides a safe platform for manipulating secret
data. Monitoring network traffic or direct information flows
would prevent a malicious program from sending sensitive
data to the outside world [6, 4, 42, 45]. Unfortunately, these
safety guarantees can be bypassed if the attackers can com-
municate through covert channels.

In general, covert channels can be categorized into tim-
ing channels and storage channels [31]. Timing channels
are created when the trojan performs manipulations with
a shared resource in a way that interferes with the timing
of some operations performed by the spy. In contrast, a
storage channel is created by explicitly or implicitly writ-
ing a value to a shared resource by the trojan so that this
write can be observed by the spy. Previous works demon-
strated the exploitation of several shared hardware resources
to create covert communication channels. These include the
CPU functional units [53], the on-chip caches [56, 39], the
AES hardware [22], the branch predictor [14, 12, 22] and the

843

memory bus [55]. The temperature of the CPU cores has
also been used as covert channel media and temperature-
based channels have been shown to exist between air-gaped
systems [18]. Researchers also demonstrated the feasibility
of covert channels in GPGPUs [43].

While a number of covert channels inside a modern mi-
croprocessor chip have been demonstrated (as exemplified
above), many of these channels have significant practical
limitations. These include low transmission rate, difficulty
of establishing and maintaining the channel, low resiliency
to system noise and external interference, and fairly simple
solutions to mitigate the channel. More details are presented
in the related work section.

In this paper, we discover, implement and analyze a new
covert channel that exploits hardware random number gen-
eration (RNG) module as the channel media. In most re-
cent Intel processors (based on Skylake microarchitecture),
the hardware RNG module is shared between all processor
cores and is connected to them through the ring intercon-
nect. The RNG module has a fixed number of precomputed
random bits that are stored inside the module and are sup-
plied to instructions that request a random seed. Once the
random bits stored inside the RNG module are used, it takes
a significant amount of time to regenerate them using the
entropy source available in silicon. Consequently, the trojan
can either exhaust the RNG module causing the spy to fail
in its request for a random seed, or avoid using the RNG
and allow the spy to succeed in its requests. Consequently,
the trojan can use these two scenarios to either transmit a
one or a zero to the spy.

Compared to previously demonstrated covert channels,
the RNG channel has many important advantages from the
attacker’s standpoint. The RNG channel is fast, has low
error rate, is easy to establish and maintain, and works re-
liably across CPU cores and virtual machines. The channel
readings are easy to obtain without any system calls, be-
cause software (the spy in this case) is directly informed
by the RNG module when an attempt to acquire a random
seed fails. In this sense, the RNG channel is the storage
channel and thus its maintenance does not require access
to the processor timing infrastructure which often requires
privileged access. The RNG module is rarely used in typi-
cal workloads, therefore the RNG channel is not impacted
by the external interference. Finally, the RNG channel is
difficult to mitigate in a non-virtualized system because the
RNG instructions cannot be disabled by the operating sys-
tem and are used directly from user space without system
calls. In addition, techniques that disable or fuzz [21, 37,
51] with the processor timekeeping facilities will not provide
protection in this case, because the RNG channel does not
rely on timing infrastructure.

The main contributions and the key results of this paper
are:

• We introduce a new covert communication channel
that uses hardware random number generation mod-
ule that is available in modern processors and is shared
among all CPU cores.

• We demonstrate this channel on a recent Intel Skylake
processor and show that the channel reliably works
across CPU cores and virtual machines. Furthermore,
the channel can be established and maintained purely
from the user space without requiring any system calls.

• We quantify the capacity of the RNG channel under
different scenarios. While the capacity of the hardware
channel itself can be as high as 3 Mbit/s in idealistic
scenario, we show that transmission rates between 7
kbit/s and 200 kbit/s can be realized depending on
the system and the load level during transmission.

• We present a simple implementation of the RNG covert
channel transferring bytes of data over the channel
with the support for error correction and synchroniza-
tion. This end-to-end channel supports transmission
rates of up to 7 kbit/s.

• We explore the impact of other system activities (such
as the intense GPU activity) on the channel quality
and show that the impact is minimal, thus making the
RNG channel robust to the internal system noise.

• We discuss the difficulties involved in mitigating the
RNG channel and propose two software and two
hardware-supported mitigation schemes. The soft-
ware schemes involve modifications to the hypervisor
to handle the timing of the rdseed instructions differ-
ently and also running a background thread to create
the RNG noise. Hardware approaches include modi-
fications to the RNG logic to remove the dependency
of the rdseed instruction delays on the instructions
generated by another thread.

2. BACKGROUND
Secure generation of truly random values is essential for

producing encryption keys to support cryptographic opera-
tions. Using weak sources of randomness during key gener-
ation process is a well-known security threat [9, 32, 3, 28].
Random numbers can be generated either in software or in
hardware. Software schemes [19] use various sources of en-
tropy with non-deterministic nature, such as the disk seek
time, the timing between user keystrokes, and the movement
of the mouse. Software techniques are often slow, require
user involvement, and do not have enough true entropy [26].
In contrast, hardware-based random number generators do
not exhibit such limitations. Hardware generators rely on
sources of non-determinism in silicon, such as the thermal
noise [5], providing provable randomness at high speed [50].

To equip programmers with a fast, secure and easy source
of random and pseudo-random numbers, hardware develop-
ers started to embed random number generators (RNG) in-
side the CPU chips. For example, Intel introduced the new
hardware RNG [23] in their Ivy Bridge microarchitecture.
In the initial offering, only pseudo-random number genera-
tor was available via the new rdrand instruction. The later
Broadwell microarchitecture introduced the new rdseed in-
struction to add the capability to read true random numbers
derived directly from the entropy source. AMD also added
support for rdrand instruction and plans to add support for
rdseed instruction in the upcoming microarchitecture. IBM
POWER7+ also has hardware-based true random number
generator [35].

Without loss of generality, the demonstration of the RNG
covert channel in this paper is performed on Intel’s CPU
based on Skylake microarchitecture. Figure 1 depicts a high-
level overview of the RNG mechanism in Skylake processor.
The Entropy Source derives the entropy bits from thermal
noise within the silicon at the rate of around 3 Gbit/s. The

844

Entropy Source Health Tests Conditioner

Conditioner Buffer

Deterministic
RNG

seed

Core 0 Core 1 Core 2 Core 3

rdrand

rseed

Figure 1: Organization of RNG Module in Intel Processors

quality of randomness is then verified by performing sev-
eral health tests. Bits that passed the health tests form a
pair of 256-bit numbers that are fed into the Conditioner.
This circuitry distills the entropy into more concentrated
single 256-bit sample. The 256 bits are stored as four 64-bit
random values in Conditioner Buffer (CB), thus allowing to
serve up to four rdseed instructions requiring 64-bit seeds.
The outputs of the conditioner are then used directly by
the rdseed instruction logic. In addition, the output bits of
the conditioner are used to seed the deterministic random
number generator. This generator uses CTR DRBG pseudo
random number generator and is accessed by the rdrand

instruction.
While both of the above instructions are used to obtain

random bits, there are significant differences between them.
The rdrand instruction produces deterministic random num-
bers that depend on the instruction’s previous outputs. Con-
sequently, the rdrand instruction should not be used for se-
curity critical tasks requiring true randomness, such as the
key generation. In contrast, the rdseed instruction outputs
true random numbers. However, the rdseed instruction has
a much lower throughput.

Based on our observations, while the throughput of the
rdrand instruction is almost always sufficient to service
all hardware threads constantly requesting pseudo-random
bits, the resources of the rdseed instruction are easily ex-
haustible. This temporal exhaustion of resources needed by
the rdseed instruction is the key observation exploited in
creating the RNG-based covert channel.

Both rdrand and rdseed instructions explicitly inform the
software on about successful completion by setting the carry
flag. The rdseed instruction does not have any fairness
mechanism built into it, therefore the availability of the
random bits at the time of high demand has probabilistic
nature.

Modern processors, such as the Intel’s Skylake, are de-
signed as complex System-on-Chip (SoC) with many com-
ponents placed on the CPU die and interconnected to-
gether. These components include multiple cores, banks of
the shared last-level cache, graphics processing unit (GPU),
memory and PCI-express controllers and other peripheral
hardware units. Recent Intel processors utilize the ring-
based interconnect topology [27] in which all on-chip com-
ponents are connected in a closed loop. The RNG module
is organized as an independently clocked device built-in into
the processor chip and connected via the ring. While pub-
licly available documentation does not specify how exactly
the RNG module is placed on this network, it is reasonable
to assume that the connection is similar to any other device;
this assumption is supported by the results of our experi-

ments. Since the interconnection network is shared among
all components, the activity of other devices can affect the
timing of rdseed requests and result deliveries.

3. THREAT MODEL AND ASSUMPTIONS
We assume that the attacker controls two malicious ap-

plications in the system - the trojan and the spy. The tro-
jan is a more privileged process that has access to sensitive
data that it attempts to transmit to the spy process. No
other communication channels (through the network, shared
memory, file system, etc.) exist between the trojan and the
spy, therefore these two processes can only communicate by
means of covert channels. We also assume that both the
trojan and the spy have access to shared hardware RNG
module.

The system software is assumed to be secure, so that it
properly enforces the access control and preserves legitimate
information flows. The two processes only require normal
user-level privileges. The RNG channel does not require
access to performance counters, and therefore would work
even if these counters are disabled as is commonly done on
cloud systems [58]. Creating the channel also does not re-
quire access to processor timekeeping resources, therefore we
assume that any protection that fuzz the resolution of the
CPU timers can be in place.

4. COVERT CHANNEL THROUGH INTEL
RNG HARDWARE

In this section we demonstrate how the RNG hardware
can be utilized to construct a fast and reliable inter-core
covert channel. We begin by demonstrating our ideas to
implement covert communication within a single process,
and then build up to practically usable channels.

4.1 RNG Channel in a Single-Process
The fundamental principle of data transmission through

RNG is to control the contention for random values accu-
mulated in the Conditioner Buffer (CB) by modulating the
number of rdseed instructions executed at a given time in-
terval. To transmit secret information, the trojan process
either creates the high contention or the low contention for
the use of CB resources. The high contention is created
when the CB is exhausted and the new rdseed requests fail.
In contrast, the low-contention condition is created when
there are available entries in the CB. We assume that the
high contention is associated with the trojan sending a value
of ”1” and the low contention is associated with the trojan
sending a value of ”0”.

To estimate the theoretical maximum capacity of the
RNG channel, we first describe its idealized implementa-
tion. The conditions required for this idealized scenario are,
of course, impossible to support in a real-world environment.
Our goal here is to estimate the upper bound on the trans-
mission rate through the RNG channel. A CPU core can
produce rdseed requests at a faster rate than the rate of
refreshing the RNG hardware. Therefore, it is possible for
the trojan process (or a group of processes) to create and
sustain a situation where the CB has just enough bits to
support a single rdseed instruction. At the same time, the
spy process constantly executes one rdseed instruction and
checks its status at the same rate as the rate of replenishing
the CB. In such a setup, the trojan can send ”1” by execut-

845

ing a single rdseed instruction and it can send ”0” by not
executing it. Hence, in order to estimate the time required
to transmit a single bit from the trojan to the spy, we need
to know the latency of the rdseed instruction and the rate
at which the CB is replenished. This communication proto-
col’s algorithm is demonstrated in the pseudo-code form in
Listing 1.

To empirically determine the latency of the rdseed in-
struction, we developed a benchmark that executes and mea-
sures the latency of 2 000 rdseed instructions. To allow the
RNG to refill the CB during each iteration, we executed 1
million nop instructions before executing the rdseed instruc-
tions. Executing this benchmark, we observed that the av-
erage latency of rdseed instructions was not identical when
they were issued from different CPU cores. The results of
this experiment are presented in Figure 2 with data collected
on each core shown in a different color. As seen from the
figure, the number of cycles taken by the rdseed instruction
is lowest on core 0 (average of 402 cycles), and it is the high-
est on core 3 (417 cycles). The Simultaneous Multithreaded
(SMT) virtual cores (cores 4, 5, 6 and 7) have similar la-
tencies. Such variation in instruction latencies can be at-
tributed to the specifics of the communication between the
computing cores and the peripheral RNG module through
the ring interconnect. For the CPU with 4 Ghz frequency,
each rdseed instruction takes about 0.1 microsecond on the
average.

The CB update rate was determined using the following
experiment. We executed a stream of rdseed instructions
on a core, checked their success status and counted the num-
ber of successful instructions. Since the core issues requests
for random seeds at much higher frequency than the RNG
hardware can produce, our experiment estimates the max-
imum throughput of the RNG and thus the refill rate of
the CB. We observed that rdseed instructions can be suc-
cessfully executed each 0.32 microseconds. Therefore, the
CB is updated at a rate that is about three times slower
than the rate at which the rdseed instructions can execute.
Consequently, the CB update becomes the bottleneck in our
idealized covert channel scenario, thus determining the max-
imum theoretical capacity of such idealized channel. Assum-
ing that one bit can be transferred in 0.32 microseconds, the
resulting bit rate (and thus the channel capacity) is 3.125
Mbit/s. This number represents the upper bound on the ca-
pacity of a channel that can be obtained through the RNG
hardware.

4.2 Creating a Robust Channel in Single-
Process Setting

A successful implementation of a covert channel requires
solving two orthogonal problems. The first problem is how
to transfer data through the shared media efficiently and
with low error rate. The second problem is how to synchro-
nize the spy and the trojan processes. Since our main goal
is to study the methodology for using the RNG hardware as
a covert channel and to estimate its capacity, we primarily
focus on the first problem. We address the synchronization
problem in Section 4.6. In addition, synchronization pro-
tocols presented in prior works [22, 48, 55] can be used to
fine-tune the timings of communication phases.

The assumptions used in the previous subsection for es-
timating the maximum channel bit rate cannot be met in
practice due to several reasons.

• The RNG hardware itself does not impose time lim-
its in which the CB must be refilled. Although the
hardware derives random bits at a constant rate, the
built-in health checks can create some disparity and
thus the CB can be replenished at arbitrary time.

• Other system-level activity such as context switches
and accesses to shared caches by other processes can
distort the perfect synchronization of the trojan and
the spy.

• The RNG hardware is integrated into the processor
chip as one of the peripheral devices sitting on a shared
interconnect network. Therefore, the activity in this
network can interfere with the fine-grain timing re-
quired for the idealized covert channel.

One option to bypass these limitations is to adapt the
protocols used by the trojan and the spy by using slower bit
rate or by using error-correcting codes [20]. However, such
optimizations would significantly reduce the effective capac-
ity of the channel, we describe the use of error-correcting
codes later.

We now examine the interference problem due to the ac-
tivity of other resources connected to the ring interconnect
in more detail. Through experimentation, we observed that
the Graphics Processing Unit (GPU) has the highest effect
on the rdseed latency compared to other components con-
nected to the ring interconnect. This can be an artifact
of the RNG module placement on the ring, and high in-
terference between the GPU-generated traffic and the RNG
requests.

To assess the impact of such GPU interference, we mea-
sured the rdseed instruction latencies under two conditions:
1) the Graphical User Interface (GUI) is disabled and there
is no GPU activity in the system; and 2) the system per-
forms active 3D animation. Both parts of the experiment
were conducted on the same core. The results are presented
in Figure 3. As seen from the figure, the GPU activity in-
troduces periodic, but significant delay into the RNG oper-
ation. The average values of the rdseed latency are 912 and
400 cycles with and without the GPU activity respectively.
The slowdown is only observed during the phases of active
animation. For example, GUI is enabled but the image is
not moving, the results are similar to the case without GUI.
Similar levels of interference were observed when the GPU
was performing 2D animation (for example, a video play-
back) or computations on the GPU were performed when
running OpenCL [49] code. On the other hand, our experi-
ments showed that CPU-intensive activity does not increase
the rdseed instruction latency.

Interference from the GPU makes it impossible for the
trojan process to perform high-accuracy manipulations re-
quired to create the idealized channel described earlier. In
particular, the variability of rdseed instruction timing intro-
duces uncertainty in terms of when the request for random
bits will be delivered to the RGN module. Thus, the tro-
jan process can no longer keep the exhausted state of the
CB, therefore making it difficult to construct a channel that
exploits the fine-grained capabilities of the RNG.

As an alternative to fine-grain approach to channel cre-
ation, the trojan and the spy can use a more coarse-grained
approach of treating the entire CB as a single unit and en-
coding transmission bits by altering high and low contention

846

Protocol 1 Fine-grained communication protocol

DSend[N], DRecv[N] : N bits to transmit and receive; NPrime : Number of rdseed instructions to empty the CB
Trdseed : Time needed to execute rdseed instruction; TRefill : Time needed for RNG to refill one CB entry
TPrime : Time needed to execute NPrime rdseed instructions
wait(T): Wait for time T ; rdseed(): Execute rdseed, returns False if failed
Trojan’s operation:

for i← 0 to NPrime − 1 do
rdseed()

for j ← 0 to N − 1 do
if DSend[i] = 0 then

wait(TRefill)
else
rdseed()
wait(TRefill − Trdseed)

Spy’s operation:

wait(TPrime)

for j ← 0 to N − 1 do
wait(Trdseed)
status← rdseed()
if status = True then
DRecv[i]← 0

else
DRecv[i]← 1

Description:

Trojan prepares the CB by
removing all of its entries

Each cycle a single CB entry is
generated. Trojan transfers 1 by
consuming this entry, and 0 by
allowing the spy to consume it

Listing 1: A fine-grained communication protocol (Protocol 1)

Figure 2: Latency of rdseed instruction on different CPU
cores

phases for the entire unit. To this end, we now describe a
protocol that creates the RNG channel that is resilient to
interference from the GPU and other hardware components
connected to the ring. The noise resiliency comes with a
slightly lowered channel capacity.

The pseudo-code of the coarse-grain RNG covert channel
is presented in Listing 2. Transmission of a single bit of
information through this channel consists of two stages. In
stage 1, the trojan creates a desired contention state of the
CB. If the trojan wishes to transmit a ”0”, it performs a
busy wait. The waiting time (TRefill) is the time needed
for the CB to be refilled, as determined by the CB refill
rate. If the trojan wishes to send a ”1”, it executes NPrime

rdseed instructions. To equalize the time needed to send
both values prior to priming the CB, the trojan performs a
short wait 1 . The spy process remains inactive during stage
1 and waits for this stage to finish. During stage 2, the spy
probes the CB to determine the CB’s state by executing
NProbe rdseed instructions and checking their status. If
any of these rdseed instructions fails, then the spy detects

Figure 3: Latency of rdseed instruction with and without
GPU interference

the exhausted state of the CB, treating this event as the
reception of ”1”. It is important to execute not one, but
several rdseed instructions in order to mitigate possible CB
refill during the probing process, as the exact timing of such
refill is impossible to predict. The trojan remains inactive
during stage 2.

The bit rate of this channel depends on the number of rd-
seed instructions required to exhaust the CB and to detect
such exhaustion, and the number of cycles required for the
CB to be fully refilled. Therefore, to estimate the channel
bit rate, it is necessary to determine the values of NPrime,
NProbe and TRefill.

The best values for NPrime and NProbe depend on the
capacity of the CB. Although the buffer itself is only 256-
bit long, it is constantly updated. Therefore, the practi-
cal capacity (the number of bits the CPU can receive from
the RNG without a failure) is higher than its size. We de-
termined such capacity by conducting the following experi-
ment. For each instruction sequence of size N , we performed
several steps. First, we execute a large number (1 million) of

847

Protocol 2 Coarse-grained communication protocol

DSend[N], DRecv[N] : N bits to transmit and receive
NPrime : Number of rdseed instructions to prime CB; NProbe : Number of rdseed instructions to probe CB
TPrime : Time for trojan to prime CB; TProbe : Time for spy to probe CB; TRefill : Time for a full CB refill
wait(T): Wait for time T ; rdseed(): Execute rdseed, returns False if failed
Trojan’s operation:

for i← 0 to N − 1 do

if DSend[i] = 0 then
wait(TRefill)

else
1 wait()(TRefill − TPrime)

for j ← 0 to NPrime − 1 do
rdseed()

wait(TProbe)

Spy’s operation:

for i← 0 to N − 1 do

wait(TRefill)

fail← False
for j ← 0 to NProbe − 1 do
status← rdseed()
if status = False then
fail← True

if fail = True then
DRecv[i]← 1

else
DRecv[i]← 0

Description:

Stage 1. Depending on the value
to be sent, the trojan either
removes all entries from the CB
(primes it) or waits for the CB to
refill

Stage 2. The spy probes the
CB by executing a sequence of
rdseed instructions and checking
their status

Listing 2: A coarse-grained communication protocol (Protocol 2)

nop instructions allowing the CB to refill. The nop instruc-
tions serve the purpose of busy wait. Since no other pro-
cesses are using the RNG hardware at this point, the buffer
is guaranteed to be full by the end of this step. Following
that, we executed the sequence of N rdseed instructions
and checked for their status. If one of these instructions
failed, we recorded a failure. If no failures were observed,
we recorded a successful sequence.

We collected 1 million measurements for each sequence
size and calculated average values. The results are pre-
sented in Figure 4. As seen from the figure, a process can
always successfully execute a sequence of 5 rdseed instruc-
tions without any failures (failure rate 0%). Since each in-
struction fetches 64 bits, the practical capacity of the CB
is 320 bits, which is 64 bits more than CB’s physical size.
A sequence of 6 rdseed instructions also has a low failure
rate of 1.23%. As the number of instructions in the sequence
continues to increase, the probability of success drops fur-
ther since it is less likely for the RNG to refill the CB by
the time the request arrives. The failure rates of sequences
of size 7 and 8 are 2.86% and 15.98% respectively. Starting
from sequence size of 9, the failure rate approaches 100%,
with only a small number of successful sequences out of one
million attempts.

The results of the above experiment can be used to detect
the appropriate values for NPrime and NProbe. Selecting the
value of NPrime greater or equal to 5 ensures that the CB
is exhausted during the prime stage. The value of NProbe

needs to be selected to allow the detection of missing CB en-
tries with high probability, but with minimal false-positives.
Choosing the value of NProbe equal to 5 provides the maxi-
mum sequence with zero failure rate.

To select the optimal value of TRefill, we performed an-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of RDSEED instructions in sequence

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pe
rc

en
t o

f s
eq

ue
nc

es
 e

nc
ou

nt
er

ed
 a

 fa
il

Figure 4: Failure rate of rdseed instruction groups executed
on core 0

other experiment. First, we primed the CB with a large
number of requests for seed values, thus draining all ran-
dom bits from it. Second, we allowed the RNG module
to stay idle by executing a parameterizable number of nop

instructions. Third, we repeatedly executed five rdseed in-
structions and checked the failure status of this sequence.
For each value of the waiting period, we repeated the ex-
periment one million times and calculated the average fail-
ure rate. The results are presented in Figure 5. As seen
from the figure, any waiting period shorter than 3 000 cycles
does not allow the CB enough time to be fully refilled to
service five successive rdseed instructions. As the waiting
time grows, the failure rate decreases. When the number

848

of cycles spent in waiting stage approaches 7 000, the fail-
ure rate becomes very low. Since the probabilistic nature of
CB refill frequency makes it impossible to precisely compute
the perfect value of TRefill, one can experimentally select a
value that results in a low waiting period and a low failure
rate. We conservatively chose the waiting period value of
7 800 cycles for subsequent channel capacity estimation as it
demonstrates a very low error rate.

2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of cycles spent in the waiting stage

0%

20%

40%

60%

80%

100%

A
v
e
ra

g
e
 f

a
ilu

re
 r

a
te

Figure 5: Percentage of failed 5-long rdseed instruction se-
quences after the CB is allowed to rest for a given number
of cycles

Equipped with these parameters, we can now estimate the
RNG channel bit rate under this setting. The bit rate can
be calculated as 1/

(
Max(TPrime, TRefill) + TProbe

)
. In the

Prime stage (stage 1), the trojan either executes five rd-

seed instructions (to transfer ”1”) or busy-waits (to transfer
”0”) for the length of TRefill. Since each rdseed instruction
takes about 400 cycles, the total time to execute five such
instructions is 2 000 cycles. Therefore, the duration of the
prime stage is determined by the larger value of busy-wait
time and is 7 800 cycles. Note that when the trojan commu-
nicates a ”1”, it can first busy-wait for 5 800 cycles and then
perform five rdseed instructions to match the time required
to transmit a ”0”. Alternatively, the trojan can execute rd-

seed instruction for the whole duration of the 7 800 cycles
prime period. The duration of the probe stage (stage 2) is
2,000 cycles, because only five rdseed instructions need to
be executed by the spy. Therefore, 9 800 cycles are required
to transmit a single bit of information (2 000 + 7 800). Since
our experimental processor is clocked at 4GHz, this trans-
lates into the bit rate of 408 kbit/s. Note that the chan-
nel bit rate is mostly dictated by the characteristics of the
RNG module itself and is almost independent of the CPU
speed. For example, in processors with lower frequency, the
latency of rdseed instructions and the number of CPU cy-
cles required to refill the CB will also decrease. Therefore,
the channel bit rate is likely to stay at a similar level.

4.2.1 Channel Capacity Estimation in Noisy Envi-
ronments

The RNG covert channel that we described above features
high bit rate with a low error rate. However, several sources
of interference exist that can increase the channel’s error
rate. An abstract scheme showing the channel operation un-
der noise is shown in Figure 6. As we described previously,

the GPU activity has a notable effect on the time needed by
the CPU to service an rdseed instruction. When the GPU
is performing active animation, the rdseed instructions are
significantly slowed down, thus interfering with the data en-
coding mechanism described in Protocol 2. In particular,
slowed down delivery of seed requests allows the RNG mod-
ule to have more time to re-generate random bits and refill
the CB. This distorts the correct channel functionality dur-
ing the transmission of ”1”, because the correctness hinges
on the predictable exhaustion of the CB. Based on our ob-
servations, the GPU activity can result in situations when
even a CB that was fully exhausted during the priming stage
will successfully provide five random seeds without a single
failure. In such a case, the spy will incorrectly decode a ”0”.
Erroneous switching from ”0” to ”1” is also possible. Such
errors happen when the CB is not given a sufficient amount
of time to re-generate the random bits, which results in a
failure. It appears that the number of such errors does not
depend on external interference from the GPU and has a
probabilistic nature. Therefore, a longer wait time (TRefill)
results in less errors of this type, but the channel bit rate is
reduced.

Using the parameters selected earlier, we constructed a
benchmark to evaluate the error rate of the channel and cal-
culate its capacity. We assume that our channel is mem-
oryless, i.e. the output probability only depends on the
current input, and not on previous channel states. To cor-
rectly compute the error rate under this assumption, we base
our computations on transmitting random bits through the
channel. Specifically, we generated 100 million random bits,
transferred them through the RNG channel, and computed
the error rate separately for transmitting zeroes and ones.
We observed that the error rate was different when sending
ones and when sending zeroes. Therefore, the channel can
be characterized as a binary asymmetric channel with noise.
The capacity of such channel can be calculated using the
equation below [41].

C =
ε0

1− ε0 − ε1
Hb(ε1)− 1− ε1

1− ε0 − ε1
Hb(ε0)

+ log2

(
1 + 2

Hb(ε0)−Hb(ε1)

1−ε0−ε1

) (1)

where ε0 is the probability of the trojan sending ”0” and
spy receiving ”1” and ε1 is the probability of a bit flip when
the trojan sends ”1”. Such transitions are demonstrated in
Figure 6. Hb(p) is the binary entropy function of probability
p which is defined as:

Hb(p) = −p log2 p− (1− p) log2(1− p) (2)

Trojan Spy

0

1

0

1

1−ϵ0

1−ϵ1

ϵ0

ϵ1

Figure 6: Binary asymmetric channel with noise between the
trojan and the spy. Values ε0 and ε1 represent probabilities
of errors when the trojan sends ”0” and ”1” respectively.

849

We evaluated the RNG channel based on Protocol 2 under
the following settings.

• No GUI: System’s GUI was disabled.

• Static GUI: The GUI was enabled, but no active an-
imation was performed.

• 2D: The GUI was enabled and a window was moved
on the desktop while performing the benchmark.

• 3D: A 3D benchmark was executed during the covert
channel operation, creating a high GPU load.

The results of these experiments are presented in Table 1.
As seen from the results, the GPU activity, even 3D anima-
tion, impacts the channel capacity only slightly, still allowing
the attackers to maintain the bit rate of about 390 kbit/s.

No GUI Static GUI 2D 3D
ε0 0.00066 0.19719 0.20122 0.19959
ε1 2.982e-05 0.00029 0.60933 0.84875

Bits per
Channel Use

0.99578 0.98784 0.96276 0.95437

Channel
Capacity
(bit/s)

406 443 403 198 392 965 389 540

Table 1: Channel Characteristics Under Noisy Conditions

4.3 Detecting the Trojan and the Spy
Up until now we described the RNG channel in the frame-

work of one process. The focus of previous discussions was
on the hardware vulnerability itself and the quantification of
a possible threat. If we now consider covert communication
through the RNG module by two different processes, then a
problem that is common to all covert channels arises: how
to synchronize the trojan and the spy. To properly synchro-
nize the transmission, both the trojan and the spy have to
be made aware of the other’s presence, so that the trans-
mission and reception only occur when the two processes
are running simultaneously. In addition, a mechanism for
acknowledging the reception of data has to be incorporated.
In this section, we design the synchronized communication
protocol that utilizes the RNG hardware for sending both
data and acknowledgments.

In realistic system operation, a process context switch (or
a VM switch in virtualized systems) is the most significant
obstacle to synchronized data transmission. For example,
when the trojan process is scheduled by the OS, it has no in-
formation on whether the spy process is running on another
core or not. The temporal inactivity of the spy process leads
to the loss of large amount of bits — this is known as burst
erasure [34]. In a similar spirit, it is difficult for the spy
to distinguish the absence of the signal (when the trojan is
switched out) from a sequence of zeroes sent by the trojan.
While it is possible to adopt error correcting codes [30] that
can correct burst erasures [34], this significantly complicates
the design and lowers the channel capacity. In any case, the
ability to detect the presence of the other party needs to be
added to both the trojan and the spy. We now demonstrate
how this can be accomplished using the same RNG hardware
module that is used as the communication medium.

4.3.1 Detecting the Spy
As shown in the code of Protocol 2, the spy process mea-

sures the CB contention by executing five rdseed instruc-
tions at the probing stage of each communication cycle.
Note that this activity by itself creates contention for the
CB. Even if the CB was full prior to the probing stage, the
five rdseed instructions executed by the spy will empty the
CB. The next communication cycle begins right after the
probing stage of the spy completes, with the trojan either
waiting or priming the CB with new rdssed instructions. If
the bit to be communicated by the trojan is ”1”, the trojan
has the ability to not only execute the five priming instruc-
tions, but also check for their status. If the instruction se-
quence fails, the trojan can detect the presence of the spy
since the CB was accessed right before the trojan began
the priming stage. Such capability of the trojan to perform
the CB priming and probing at the same time enables the
detection of the spy’s presence without incurring the loss
of channel capacity. Therefore, the trojan can check for the
spy’s presence every time it primes the CB. When the trojan
cannot detect the spy, it can temporary interrupt the trans-
mission and continue probing the CB until the spy process
is switched back in.

4.3.2 Detecting the Trojan
Detecting the trojan process is more tricky. The Näıve im-

plementation of communication protocol relies on the Non-
Return-to-Zero (NRZ) line code. In this code, ”one” (the
presence of contention) is encoded by a high voltage level,
and ”zero” (the absence of contention) is encoded by a low
voltage level. The problem is that it is impossible for the spy
to distinguish the absence of the trojan process from the tro-
jan that sends a sequence of zeroes. We address this problem
by adopting the Manchester coding. In Manchester coding,
ones and zeroes are encoded as state transitions, rather than
the states themselves. Therefore, during each communica-
tion cycle, even when the trojan sends ”0”, there will be the
high and the low contention levels. This allows the spy to
detect the absence of the trojan when it does not see high
contention levels. While this approach lowers the bit rate of
the channel, it allows for a clear and easy way for the spy
to detect the absence of the trojan. Similar mechanism was
used in [55] to synchronize their covert channel.

Combining the techniques for detecting the presence of
spy and trojan processes, the RNG channel becomes self-
synchronized. Occasional communication errors can be de-
tected and corrected with proper error correcting codes.

4.4 Supporting Error Correction in Multi-
Process Setting

In previous subsections, we estimated the capacity of the
RNG covert channel in several different ways by modeling
the behavior of the spy and the trojan in a single process
scenario. This estimation quantifies the potential threat of
exploiting the RNG hardware as a covert channel. In this
section, we demonstrate the implementation of the RNG
channel under realistic multi-process scenario where the spy
and the trojan are two different processes running on the
same machine. The implementation is based on the trans-
mission principles described in the earlier sections, and we
also take into account errors that can inevitably occur dur-
ing the transmission.

As we described earlier, whether the rdseed instruction

850

succeeds or fails is a probabilistic function even in cases when
high demand for random seeds is created. Therefore, it is
impossible to implement an error-free RNG channel using
the existing RNG hardware. To implement reliable commu-
nication over the RNG channel in the presence of occasional
errors, it is necessary to carefully select and use a proper
Error Correcting Code (ECC). We now describe how this
can be accomplished in a simple and effective way.

Most commonly used ECCs are block codes that operate
on a block-by-block basis. A popular variation of such codes
is the Reed-Solomon [54] (RS) group of codes. The RS code
is capable of detecting and correcting a number of corrupt-
ed/erased symbols in a block. The number of symbols the
code can correct depends on the specific parameters of the
code and is highly configurable. An RS code is typically de-
scribed by a set of parameters: s is the number of bits per
code symbol; n is the number of symbols per block, and k
is the message length in symbols per block. The parameter
t represents the number of symbols that can be corrected

in each block. It is defined as t = (n−k)
2

. For example, the
widely used code with n = 255 and m = 223 is usually de-
noted as RS(255,223) and it is capable of correcting up to 16
erroneous symbols. In order to select appropriate parame-
ters of the code, one must determine the maximum possible
number of corrupted symbols that can appear in a block and
set the parameter k accordingly.

To make the RNG channel compatible with the RS codes,
we adjusted the communication protocol based on Protocol
1 to send and receive bytes instead of the individual bits.
We used Protocol 1 as a starting point for this experiment
because it is based on simultaneous execution of the trojan
and the spy and is easier to use in this case. A limitation of
the byte-granularity channel is its lower tolerance to errors,
because an error in any bit of a transmitted byte corrupts
the entire byte. To overcome this limitation, we used the
following approach. We reduced the speed of the trojan
while keeping the speed of the spy at the maximum level.
This allows the spy to perform multiple measurements (14
measurements in our setup) during the transmission of each
bit by the trojan. This approach also has the additional
advantage of easing the timing constraints.

Figure 7 demonstrates the spy’s observations when the
trojan transfers a byte with the bit value of 10110011. In
this protocol, the spy makes the decision about the received
value based on the majority of its readings. In most cases
when the trojan transfers logical ”0”, the spy observes a se-
quence of all zeroes. Decoding of such readings is straight-
forward. However, when logical ”1” is transferred, some of
the readings will appear to the spy as zeroes. The spy can
make a decision based on the number of observed ones in
a sequence of readings. We adjust this threshold in such a
way that minimizes the number of incorrectly decoded bits.
For example, the leftmost bit in the sequence is decoded as
logical one, because most of the readings are ones, as seen
from the figure. The next bit is decoded as logical zero.

We set the number of rdseed instructions that the spy
executes during each probing stage in such a way that allows
the spy to monitor the state of the RNG module at any
given time, but at the same time creating minimal parasitic
contention from performing the probes.

We implemented this channel and discovered that it takes
200 657 cycles to transmit one byte of data, which involves
making the required number of probes by the spy and stor-

1 0 11 1 0 0 1

Figure 7: Spy’s observation when the trojan transfers a byte
of data over the channel.

ing the values read by these probes in memory. Thus, the
attackers can transmit 19 934.42 bytes per second. This esti-
mation assumes ideal inter-byte synchronization so that the
primes and probes occur at exactly the same time. In prac-
tice, context switches and timing variations may distort this
synchrony. We discuss possible solutions to synchronization
and demonstrate one of them in Section 4.6.

Although the rate of about 20 kB/sec is lower than the
theoretical rates that we showed above, the channel can still
be considered as a high-bandwidth channel. We studied this
channel under several noisy conditions. To be consistent
with the previous measurements, we evaluated the chan-
nel under the same effect of the GPU noise as we did in
Section 4.2.1. We did not measure the impact of legiti-
mate programs that use RNG hardware in our evaluation
model, because normal programs request random seeds very
rarely, usually only during startup and initial key genera-
tion. Such events do not create a steady contention for the
random seeds and thus do not introduce significant noise.
Programs that have high demand for the random values (e.g.
Monte Carlo simulations) rely on pseudo-random [8] num-
bers, rather than on true random seeds. This is one of the
critical advantages for considering the RNG hardware unit
as covert communication medium.

To perform this experiment, we first set up the RNG chan-
nel equipped with ECC to transfer blocks of 255 bytes. Fol-
lowing that, we evaluated the channel under different noise
conditions and recorded the maximum number of errors ob-
served in any of the transferred blocks for each environment
setting. This statistics allowed us to select the best value of
parameter k for each case. This parameter was selected to
allow the correction of all errors that occurred during our ex-
periments. The resulting error rates, along with the value of
parameter k and the resulting channel bit rates are presented
in Table 2. As seen from the presented data, the observed er-
ror rate increases with the interference from the GPU which
confirms the earlier observed behavior. However, we note
that covert channels are considered more dangerous in server
machines which usually do not have graphics. Even in the
case of active 3D animation performed in the background,
the channel error rate is still within acceptable ranges and
can be easily corrected with the use of ECC.

Finally, we note that the bit rates reported here should

851

No GUI Static GUI 2D 3D
Maximum
block error rate
(= t)

6 11 33 40

k 243 233 189 175
Bit rate with
ECC (bytes/s)

18 996 18 215 14 775 13 680

Table 2: Channel Characteristics Under Noisy Conditions

not be interpreted as the maximum achievable practical bit
rate. Further optimizations such as more sophisticated en-
coding/decoding and aggressive timing optimizations can
achieve higher rates. Our goal was to demonstrate that rea-
sonably high transmission rates can be achieved even with
a simple implementation.

4.5 Capacity Estimation of Multi-process
Channels

With the trojan and the spy detection capability in place,
the actual channel capacity when operating in a multi-
process setting will be limited by the amount of time that the
spy and the trojan execute simultaneously on two different
cores. Naturally, this time depends on the OS scheduling
and also on the external system load (e.g. on other pro-
cesses also running in the system at the same time). To
estimate the impact of scheduling and interference on the
achievable transmission rate, we performed the experiments
on three different systems: a desktop system with 4-core
processor running standard user environment applications,
a server-class system with 16 computing cores, and a dedi-
cated virtual machine running on Amazon EC2 cloud. For
each experiment, we measured the percentage of trojan’s cy-
cles during which the spy also executes on one of the other
cores. We did not change the scheduler policy and allowed
normal competition for the time resources with other pro-
cesses. The results are presented in Table 3.

Desktop Server EC2
Clean Loaded Clean Loaded Normal Load

P 0.937 0.319 0.991 0.179 0.850
Protocol 2 bit
rate (kbit/s)

187.4 63.8 198.2 35.8 170

ECC chan-
nel bit rate
(kbit/s)

71.212 24.244 75.316 13.604 64.6

Table 3: Fraction of time P the trojan runs simultaneously
with the spy and estimated bit rate

For each system, the table shows the percentage of cycles
(out of the total trojan’s cycles) when the trojan and the
spy are co-executing together (P). It also shows the result-
ing channel capacity that would be achieved on each system
under each scheduling scenario and the additional load from
external processes. We used two baseline capacities. First is
the upper bound capacity of 400 kbit/s as shown in Table 1
(Protocol 2 channel) and the second capacity of 152 kbit/s
(18.9 kB/S) with built in error correction as shown in Ta-
ble 2 (ECC channel). We used the value of P to adjust the
capacities under the normal scheduling policies. For exam-
ple, if the value of P is 0.5, then 50% of the time the trojan
executes together with the spy and the capacity in this case
would decrease by two times.

For the desktop system in a clean state (no other processes
are running), the spy runs alongside trojan 94% of the cy-
cles, resulting in the channel capacity of 375 and 142 kbit/s
for the channel based on Protocol 2 and the ECC-equipped
channel respectively. In order to allow the spy to detect
when the trojan is not executing, the usage of Manchester
codes is needed as we discussed in Section 4.3.2. Incorpo-
rating Manchester codes into the ECC channel results in
the reduction of the throughput by two times. Although 8
bits are still transferred and decoded, only 4 bits are then
extracted by the spy. However, to be consistent with our
previous ECC parameters, we let the ECC still operate on
the symbol size s of 8. The spy simply combines two 4-bit
symbols into one and uses it in error correction. As a result,
the capacity is lowered by a factor of two. Resulting bit
rates when Manchester codes are used are 187 and 71 kbit/s
for Protocol 2 and ECC channel respectively. We also ex-
perimented with noisy environment, where two CPU-bound
external processes are scheduled on the cores where the tro-
jan and the spy execute. In this case, the co-scheduled time
is only about 32%, resulting in the channel capacity of 64
and 24 kbit/s for the two channels (again, accounting for
the effects of Manchester encoding). On the server, the co-
scheduled percentages are 99% which results in bit rates of
198 and 75 kbit/s. In noisy environment, the two processes
are co-scheduled 18% of the time, resulting in the bit rate
of 36 and 14 kbit/s for both channels. We also performed
scheduling experiments on the EC2 cloud with normal load.
In this setting, the experimental VM shares the hardware
with other VMs running on the cloud. The trojan and the
spy run together 85% of the time, resulting in the channel
capacities of 170 and 65 kbit/s for the two channels. In all
of these scenarios, a high-capacity channel can be realized.

4.6 Channel Synchronization: Simultaneous
Scheduling Intervals

In previous sections, we demonstrated the RNG covert
channel in single and multi-process settings, discussed how
to detect the presence of trojan and spy, and demonstrated
how to adapt the transmission protocol to incorporate the
error correction using Reed-Solomon ECC. However, previ-
ous discussions and results assume ideal internal synchro-
nization and the described channels are suitable for the
transmission of short byte-sized messages. We conclude
the attack part of this paper by demonstrating a simple
covert channel synchronization mechanism to support the
transmission of longer messages. Our implementation is
simple and is only intended to show practical end-to-end
RNG channel realization. Higher transmission rates can be
realized using more complicated fine-grain synchronization
schemes, this is left for future work.

To understand the need for synchronization, consider a
situation when the trojan is interrupted by a context switch
in the middle of its message, and later resumes execution. In
this case, both the trojan and the spy need to know that the
transmission resumes when the trojan is rescheduled. More
generally, both processes need to know when the message
begins and when it ends. Synchronization of this nature is
not a problem that is unique to the RNG channel — any
covert channel needs to be synchronized. Several previous
studies considered this problem. For example, [22] used the
idea of a pilot signal. For simplicity, we implemented a dif-
ferent approach that we call Simultaneous Scheduling Inter-

852

vals (SSI). The key idea is to schedule the trojan and the
spy for short time intervals, so that they run simultaneously
multiple times per second without interrupts. During each
interval, the transmission of a single byte occurs. The syn-
chrony is achieved by accurately aligning the times when the
trojan and the spy wake up for the next interval.

To implement SSI, we relied on the timer_create POSIX
interface available on Unix-like systems. Specifically, both
the trojan and the spy use this system call to request to
be woken up 1,000 times per second. During each interval,
the two processes send and receive a small amount of data.
Due to the very short duration of the execution periods,
the trojan and the spy are not interrupted by the OS. To
synchronize the clocks more closely, both processes perform
some additional tuning during the first interval. Specifically,
they read the system timer (with microsecond resolution),
and insert the additional sleep time to the first execution
interval to end it at the millisecond boundary, or as close
to it as possible. After that, the scheduling of the conse-
quent intervals occurs at the millisecond boundaries, with
slight deviations due to system noise. The OS assures that
these deviations do not accumulate over consecutive inter-
vals and synchronous execution of the two processes is sus-
tained. Our experiments showed that these deviations do
not impact the transmission and error-free channel can be
realized in this manner. Note that the nature of this par-
ticular approach to synchronization also makes the spy and
the trojan detection unnecessary, thus obviating the need
for Manchester coding. However, Manchester coding will
still be needed if more fine-grain and high-performance syn-
chronization schemes are used.

The simplest way to use the SSI synchronization is to
transmit a single bit during each interval. This results in a
bit rate of 1 kbit/s, but does not require ECC or Manchester
coding. Our experiments showed that on a clean system
such bit rate can be reliably achieved with no errors, as the
clocks of the trojan and the spy are very closely synchronized
with typical deviation of about 3-5 microseconds. It is also
possible to use SSI for transmitting a byte of data per inter-
val. However, occasional decoding errors occur in this case,
requiring ECC for error correction. According to our exper-
iments, the average error rate of 0.9% was observed. The
maximum number of errors in a block of 255 bytes (ECC
parameter t) was observed to be 19. Therefore, for this ex-
periment 38 ECC bytes of ECC are needed inside every 255
bytes of transmitted data to correct all errors. Consequently,
the channel bit rate is 6.8 kbit/s. While representing a true
end-to-end transmission rate that we achieved on a real sys-
tem, this number should not be viewed as the best achiev-
able rate. Timing optimizations and more efficient fine-grain
synchronization can increase the channel capacity further.

5. MITIGATING THE RNG COVERT
CHANNEL

The new covert channel through the RNG hardware mod-
ule presented in this paper imposes security risks that have
to be addressed. In general, several classes of mitigation
techniques against side channels and covert channels to elim-
inate information leakage are well known from prior litera-
ture, and some of these can be adapted to mitigate the RNG
channel. These solution classes include static partitioning of
hardware resources, approaches targeted at equalizing access

delays by different instructions, and approaches designed to
complicate or disable the usage of timekeeping infrastruc-
ture by the attackers. In terms of closing the RNG covert
channel, the defense goal is to ensure that the latency (and,
more specifically, the failures) experienced by an rdseed in-
struction executed by one process is not impacted by any
activity of another process.

Compared to many other architectural covert channels,
the RNG channel is relatively more difficult to mitigate.
This is because the communicating processes in most covert
channels have to rely on a measurement mechanism by ei-
ther using hardware performance-monitoring counters [22]
or the processor time stamp counter [39]. The access to
these counters is typically offered through the use of spe-
cific instructions, such as rdpmc and rdtsc on x86 systems.
However, since these instructions can carry a potential se-
curity risk, the hardware designers make their availability
configurable. In particular, system software can set up these
instructions to be either available to software executing at
any privilege level, or restrict it to only software executing
in ring 0. Restricting the usage of these instructions to ring
0 programs essentially closes the user-level covert channels
that rely on such measurement.

Since accurate and frequent time measurement is criti-
cal for proper functionality of many applications, techniques
have been proposed to make the timing measurements less
precise (thus distorting the timing channels), while main-
taining the capabilities of benign applications [37, 51]. How-
ever, fuzzing with or disabling the time measurement infras-
tructure does not close the RNG channel, because the CPU
explicitly informs the software about the availability of ran-
dom bits. Moreover, operating systems in non-virtualized
environments cannot restrict programs from executing the
rdseed instructions, thus making it impossible to mitigate
the RNG channel by simply applying configuration tweaks
in such systems.

In the rest of this section we propose two software mitiga-
tion techniques that can either disable the RNG channel or
bring its capacity down to impractical levels. In addition,
we propose two hardware-supported mechanisms to make
the design of RNG modules in future processors immune to
the exploitation as covert channel media.

5.1 Software Mitigations
First, we describe possible software-only protections from

the RNG channel. We propose two software-based mitiga-
tions: one approach is based on the support available in
Intel-based virtualized systems, and the other approach re-
lies on executing a background thread to add constant load
on the RNG hardware.

5.1.1 Virtualization Based Solution
As we discussed above, the OS does not have the capabili-

ties to directly disable the RNG channel. However, it is pos-
sible to mitigate the RNG channel in a virtualized system.
Specifically, the Intel virtualization technology [24] (VMX)
allows to configure the hardware to cause a VM exit oper-
ation and trap into the Virtual Machine Monitor (VMM)
every time rdrand and rdseed instructions are executed by
a guest VM. This provides an effective mechanism to control
accesses by guest VMs to the RNG hardware and allows for
a number of defenses to be implemented within the VMM
to disable the RNG covert channel.

853

One mitigation technique that can be implemented within
the VMM is to completely emulate the functionality of the
RNG hardware in software. Specifically, whenever a trap
to the VMM occurs after the guest VM executes the rdseed

instruction, the VMM provides a software-generated random
value. Unfortunately, this approach loses the benefits of pure
hardware-based random seed generation.

Another solution is to add the capability of distributing
random seeds to the VMM itself. In particular, the VMM
software can execute the rdseed instructions to fill up its
own pool of random seeds and then pass these seeds to the
guest VMs whenever a VM makes an attempt to execute the
rdseed instruction.

Finally, the VMM can introduce a delay following a trap
from the VM upon encountering the rdseed instruction and
then return the control to the VM. If the delay is sufficiently
long to allow the RNG hardware to completely replenish
its random bits, then no rdseed instruction will experience
failure because they are separated by a sufficient number of
cycles.

The VMM-based mitigations described above will cur-
rently only work on Intel processors. While AMD processors
do not implement the rdseed instruction, they support the
rdrand instruction. The support for rdseed is expected to
be added to AMD processors in the next microarchitecture
revision. According to recent documentation [1], the AMD
virtualization hardware does not allow configuring it to pro-
duce a VM exit when executing rdrand. Unless this support
is added with the introduction of the rdseed instruction, al-
ternative mitigation strategies for AMD processors have to
be used.

5.1.2 Equalizing the RNG Loading
If the VMM-based solution described above can be used,

it represents the simplest way to mitigate the RNG covert
channel. However, virtualization is not always used or is
not always available. Another potential limitation of VMM-
based approach is that it may not always be possible to
modify the VMM’s code. In those cases, alternative solu-
tions need to be used.

Another approach to mitigating the RNG channel is to
make the load on the RNG module equal at any time, thus
making it impossible for the attackers to encode information
using the RNG state. For example, if we introduce constant
high-intensity demand for the RNG services in the back-
ground, then the spy process will always detect the high-
contention RNG state, making it impossible to distinguish
between one and zero for data transmission using the RNG
channel.

We propose to achieve such constant pressure on the RNG
hardware by dedicating a hardware thread to repeatedly ex-
ecute the rdseed instructions at a high rate. To evaluate the
effectiveness of such mitigation, we repeated the experiment
described in Section 4.2.1 by transmitting a large number
of bits (100 million bits) through the RNG channel using
Protocol 2. The only difference was that this time we also
executed the protection thread in the background (on one
of the available cores) that presented constant high-level de-
mand for the RNG hardware. As expected, the noise process
significantly interferes with the functionality of the RNG
channel. Specifically, almost all of the transferred bits were
decoded as ”1” by the spy process, regardless on their actual
value. For example, of the 50 million zeroes that were trans-

mitted, only 556 were correctly received by the spy. This
translates into the values of ε0 and ε1 of 0.99998886 and
2.54e-06, the transmitted bits per one channel use of 2.132e-
06, and the resulting theoretical bit rate of 0.87 bit/s. An
extremely high error rate caused by this protection makes
the channel with such a low bit rate (less than a bit per sec-
ond) unusable for transmitting any practical information.

While the protection based on running a spurious thread
looks expensive, it can be enabled only when the system
detects that potential trojan and spy processes have been
scheduled. This protection also does not impede the capa-
bility of processes to obtain small random seeds. Based on
our experiments, a process can still receive seeds, possibly
after repeating the attempts several times. In particular,
when a single RNG-equalizing process is present, a legiti-
mate process needs to perform 5 failed rdseed attempts on
average before succeeding. Since random seed generation is
an infrequent operation in typical scenarios during normal
program execution, the normal system functionality is not
significantly distorted by this mechanism.

5.2 Hardware-supported Mitigations
In future systems, the hardware design itself can be modi-

fied to mitigate the RNG-based covert channel. We describe
two possible approaches that future RNG modules can im-
plement to support security: equalization-based approach
and partitioning-based approach.

5.2.1 Equalizing Delay of rdseed Instructions
To eliminate the RNG-based channel, future RNG hard-

ware can be designed in a way that ensures uniform latency
of every rdseed operation and eliminates random seed re-
quest failures. First, the explicit failure signal that the RNG
hardware currently uses to inform software about the lack
of random bits can be eliminated. Instead, the rdseed in-
structions can be required to wait until the random bits are
replenished if the module is currently out of bits. This tweak
does not completely eliminate the vulnerability, but requires
the attackers to use timing infrastructure instead of capital-
izing on the explicit failure signal. This makes the attack
more difficult and allows the defenses based on fuzzing the
timers to be used. Going a step further, the hardware can
also equalize the timing of each rdseed request by main-
taining only a single 64-bit random seed inside the RNG
unit. When a request is made, the RNG unit will first gen-
erate another seed and only then return the original seed
to the requesting process. This also eliminates failures and
simplifies the RNG hardware design, removing the need for
multiple CB entries. The drawback of this approach is in-
creased delay of the rdseed instructions. However, since
these instructions are typically not used often, such an in-
crease may be acceptable. Another potential problem is that
it is not clear how the increased delays of some instructions
impact interrupt handling and the application’s response to
interrupts.

5.2.2 Partitioning RNG Resources
If the performance impact of the equalization-based ap-

proach described above is too high, or significant issues with
interrupt handling arise, an alternative mechanism can also
be implemented in hardware, where vulnerable hardware re-
sources of the RNG module can be fairly partitioned among
the CPU cores. Specifically, each core can be assigned a slice

854

of the CB and can only operate on that slice. As a result, the
RNG activity performed by one process (the trojan) sched-
uled on one core will not impact a successful completion of
an rdseed instruction issued by another process (the spy)
executed on another core. Consequently, the RNG channel
disappears. This approach requires a larger number of en-
tries in the CB, but supports high performance and security.
Partitioning the CB bits closes all inter-core channels, only
leaving the possibility of a channel when the trojan and the
spy are consecutively scheduled on the same core. To pre-
vent such a channel, the RNG logic must ensure that the
CB slice belonging to the core on which the communicating
processes execute is completely refilled during the context
switch interval. Fortunately, this is already the case with
the current RNG implementation. According to our evalua-
tion, the complete CB refill takes about 1.75 microseconds,
while the context switch interval is typically around 3-4 mi-
croseconds [33, 47].

6. RELATED WORK
Several covert channels through shared processor re-

sources have been described and analyzed in recent litera-
ture. In this section, we review some of these related works
and contrast them with the RNG channel described in this
paper.

The work of [56] presented a cross-VM covert channel
through the L2 cache. According to the results, the L2 chan-
nel has a theoretical capacity of 262 bit/s, which is signifi-
cantly lower than the capacity of the RNG channel. Under
realistic loads in EC2 cloud, the mean bit rate was reported
to drop further to 3.2 bit/s with the error rate of above
9%. Since the L2 cache is private to each core, the chan-
nel can only be used when two virtual machines share the
same CPU. Core migration drastically reduces the channel’s
capacity.

Maurice et al. [39] developed a cross-core covert chan-
nel through shared Last Level Caches (LLC). The authors
demonstrated the bit rate of about 1300 bit/s for a non-
virtualized setup, and 751 bit/s for a virtualized setup. Set-
ting up the channel through the LLC requires significant ef-
fort and understanding of complex LLC addressing nuances.
In contrast, the RNG channel only requires simple manipu-
lations with RNG instructions and trivial knowledge about
the details of the RNG module operation.

The work of [55] presented a timing covert channel be-
tween virtual machines exploiting contention on the memory
bus through the use of atomic memory instructions. The au-
thors achieved the channel transmission rate over 700 bit/s
in their laboratory setup and over 100 bit/s in Amazon EC2
cloud. This channel works in cross-core and cross-VM set-
ting.

All channels created through caches and memory bus re-
quire access to either processor timekeeping infrastructure
or to the hardware performance counters to allow the spy to
time the events and recognize transmission of bits. However,
the access to such infrastructure is not always available at
the user level. In addition, such access can be disabled just
to secure systems against such channels. Wang et al. [52] an-
alyzed timing channels through shared memory controllers
and proposed techniques to close this channel. Hunger et al.
[22] present an excellent summary of multiple covert chan-
nels, including the ones through caches, memory bus, branch
predictor and the AES hardware. They also analyze chan-

nel capacities and discuss synchronization protocols. [14,
12] perform a detailed analysis of covert channels through
branch prediction units. The branch predictor channels only
work if the trojan and the spy execute on the same physical
core, either in two hardware thread contexts of a simulta-
neously multithreaded processor, or consecutively scheduled
on a single-threaded core. Because the channel is on a single
core, no additional synchronization is required in this case.

CC-Hunter [7] is a technique that detects the presence
of covert timing channels by dynamically tracking conflict
patterns on shared processor hardware. In principle, if CC-
Hunter can be repurposed to track the rdseed events, it is
conceivable that it will detect the RNG-based channel, but
further investigations are needed to establish that.

Besides exploiting the shared physical CPU structures
as covert communication medium, recent work also inves-
tigated the use of thermal characteristics of the CPU for
secret data transmission [38, 2]. This example demonstrates
that unexpected covert channels can be created and it is
important to investigate, discover and mitigate all sources
of such covert communications. This paper makes a contri-
bution in this direction by uncovering a new and powerful
covert channel and proposing software and hardware miti-
gations for it.

7. CONCLUDING REMARKS
In this paper, we introduced a new covert communication

channel using the shared hardware random number gener-
ator unit as communication medium. The key idea is to
control the pressure on the shared RNG hardware unit by
the sender by either executing a sequence of rdseed instruc-
tions or busy-waiting, thus impacting the behavior of the
rdseed instructions issued by the receiver. We showed that
this channel works reliably and with high transmission rate
across cores and across virtual machines and can be imple-
mented directly within user space with no OS assistance. In
addition, we showed that the RNG channel can be created
without relying on any processor timekeeping infrastructure
or hardware performance counters.

The above characteristics make the RNG channel easy to
establish and difficult to mitigate. In terms of protection,
we proposed two software approaches and two hardware ap-
proaches. The software approaches either utilize support
available on Intel virtualization platforms to handle the rd-

seed instructions in special ways or executing the additional
thread to create constant pressure on the hardware RNG
unit. The hardware approaches are based on either equaliz-
ing the timing of the rdseed instructions across threads, or
partitioning the RNG resources among cores to remove the
dependency of instruction latencies issued by one thread on
the instructions of the other.

For secure system design, it is important to develop ar-
chitectures that do not have paths for information leakage,
either through side channels or covert channels. To this end,
it is critical to discover the new vulnerabilities in the existing
and emerging systems and propose defenses against them.
This paper makes contributions on both of these fronts.

8. ACKNOWLEDGMENT
We would like to thank our shepherd Edward Suh for his

insight and suggestions for improving the paper, and the
anonymous reviewers for their useful comments. This mate-

855

rial is based on research sponsored by the National Science
Foundation grant CNS-1422401.

9. REFERENCES
[1] AMD. AMD64 architecture programmer’s manual

volume 2: System programming, 2016.

[2] Bartolini, D. B., Miedl, P., and Thiele, L. On
the capacity of thermal covert channels in multicores.
In Proceedings of the Eleventh European Conference
on Computer Systems (2016), ACM, p. 24.

[3] Bello, L. DSA-1571-1 OpenSSL Predictable random
number generator, 2008. Debian Security Advisory.

[4] Berger, S., Cáceres, R., Pendarakis, D., Sailer,
R., Valdez, E., Perez, R., Schildhauer, W., and
Srinivasan, D. TVDc: managing security in the
trusted virtual datacenter. ACM SIGOPS Operating
Systems Review 42, 1 (2008), 40–47.

[5] Bucci, M., Germani, L., Luzzi, R., Trifiletti, A.,
and Varanonuovo, M. A high-speed oscillator-based
truly random number source for cryptographic
applications on a smart card ic. Computers, IEEE
Transactions on 52, 4 (2003), 403–409.

[6] Burdonov, I., Kosachev, A., and Iakovenko, P.
Virtualization-based separation of privilege: working
with sensitive data in untrusted environment. In
Proceedings of the 1st EuroSys Workshop on
Virtualization Technology for Dependable Systems
(2009), ACM, pp. 1–6.

[7] Chen, J., and Venkataramani, G. CC-hunter:
Uncovering covert timing channels on shared processor
hardware. In Intl. Symp. on Microarchitecture (2014),
IEEE Computer Society, pp. 216–228.

[8] Demchik, V. Pseudo-random number generators for
monte carlo simulations on ati graphics processing
units. Computer Physics Communications 182, 3
(2011), 692–705.

[9] Dorrendorf, L., Gutterman, Z., and Pinkas, B.
Cryptanalysis of the random number generator of the
windows operating system. ACM Transactions on
Information and System Security (TISSEC) 13, 1
(2009), 10.

[10] Evtyushkin, D., Elwell, J., Ozsoy, M.,
Ponomarev, D., Abu-Ghazaleh, N., and Riley,
R. Iso-x: A flexible architecture for
hardware-managed isolated execution. In Proceedings
of 47th International Symposium on Microarchitecture
(MICRO) (2014), pp. 190–202.

[11] Evtyushkin, D., Elwell, J., Ozsoy, M.,
Ponomarev, D., Ghazaleh, N. A., and Riley, R.
Flexible hardware-managed isolated execution:
Architecture, software support and applications. IEEE
Transactions on Dependable and Secure Computing
(TDSC) (2016).

[12] Evtyushkin, D., Ponomarev, D., and
Abu-Ghazaleh, N. Covert channels through branch
predictors: a feasibility study. In Proceedings of the
Fourth Workshop on Hardware and Architectural
Support for Security and Privacy (HASP) (2015),
ACM, p. 5.

[13] Evtyushkin, D., Ponomarev, D., and
Abu-Ghazaleh, N. Jump Over ASLR: Attacking
Branch Predictors to Bypass ASLR. In Proceedings of

49th International Symposium on Microarchitecture
(MICRO) (2016).

[14] Evtyushkin, D., Ponomarev, D., and
Abu-Ghazaleh, N. Understanding and mitigating
covert channels through branch predictors. ACM
Transactions on Architecture and Code Optimization
(TACO) 13, 1 (2016), 10.

[15] Felt, A. P., Chin, E., Hanna, S., Song, D., and
Wagner, D. Android permissions demystified. In
Proceedings of the 18th ACM conference on Computer
and communications security (2011), ACM,
pp. 627–638.

[16] Gruss, D., Maurice, C., Fogh, A., Lipp, M., and
Mangard, S. Prefetch Side-Channel Attacks:
Bypassing SMAP and Kernel ASLR. In Proceedings of
the 23rd ACM Conference on Computer and
Communications Security (CCS) (2016), ACM.

[17] Gruss, D., Maurice, C., and Wagner, K. Flush+
Flush: A stealthier last-level cache attack. In
Detection of Intrusions and Malware, and
Vulnerability Assessment: 13th International
Conference, DIMVA 2016, San Sebastián, Spain, July
7-8, 2016, Proceedings (2016), Springer.

[18] Guri, M., Monitz, M., Mirski, Y., and Elovici,
Y. Bitwhisper: Covert signaling channel between
air-gapped computers using thermal manipulations. In
Computer Security Foundations Symposium (CSF),
2015 IEEE 28th (2015), IEEE, pp. 276–289.

[19] Gutmann, P. Software generation of practically
strong random numbers. In Usenix Security (1998).

[20] Hamming, R. W. Error detecting and error correcting
codes. Bell System technical journal 29, 2 (1950),
147–160.

[21] Hu, W.-M. Reducing timing channels with fuzzy time.
Journal of computer security 1, 3-4 (1992), 233–254.

[22] Hunger, C., Kazdagli, M., Rawat, A., Dimakis,
A., Vishwanath, S., and Tiwari, M. Understanding
contention-based channels and using them for defense.
In High Performance Computer Architecture (HPCA),
2015 IEEE 21st International Symposium on (2015),
IEEE, pp. 639–650.

[23] Intel. Digital Random Number Digital Random
Number Generator Generator (DRNG) Software
Implementation Guide.

[24] Intel. Intel 64 and ia-32 software developer’s manual,
volume 3c: System programming guide, part 3.

[25] Jang, Y., Lee, S., and Taesoo, K. Breaking Kernel
Address Space Layout Randomization with Intel TSX.
In Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS)
(2016), ACM.

[26] Jun, B., and Kocher, P. The intel random number
generator. Cryptography Research Inc. white paper
(1999).

[27] Junkins, S. The Compute Architecture of Intel
Processor Graphics Gen9.

[28] Kaplan, D., Kedmi, S., Hay, R., and Dayan, A.
Attacking the Linux PRNG on android: weaknesses in
seeding of entropic pools and low boot-time entropy.
In 8th USENIX Workshop on Offensive Technologies
(WOOT 14) (2014).

856

[29] Kayaalp, M., Abu-Ghazaleh, N., Ponomarev, D.,
and Jaleel, A. A high-resolution side-channel attack
on last-level cache. In Proceedings of the 53rd Annual
Design Automation Conference (2016), ACM, p. 72.

[30] Koetter, R., and Kschischang, F. R. Coding for
errors and erasures in random network coding.
Information Theory, IEEE Transactions on 54, 8
(2008), 3579–3591.

[31] Latham, D. C. Department of defense trusted
computer system evaluation criteria. Department of
Defense (1986).

[32] Lenstra, A., Hughes, J. P., Augier, M., Bos,
J. W., Kleinjung, T., and Wachter, C. Ron was
wrong, whit is right. Tech. rep., IACR, 2012.

[33] Li, C., Ding, C., and Shen, K. Quantifying the cost
of context switch. In Proceedings of the 2007 workshop
on Experimental computer science (2007), ACM, p. 2.

[34] Li, K., Kavčić, A., Venkataramani, R., and
Erden, M. F. Channels with both random errors and
burst erasures: Capacities, ldpc code thresholds, and
code performances. In Information Theory Proceedings
(ISIT), 2010 IEEE International Symposium on
(2010), IEEE, pp. 699–703.

[35] Liberty, J. S., Barrera, A., Boerstler, D. W.,
Chadwick, T. B., Cottier, S. R., Hofstee, H. P.,
Rosser, J. A., and Tsai, M. L. True hardware
random number generation implemented in the 32-nm
SOI POWER7+ processor. IBM Journal of Research
and Development 57, 6 (2013), 4–1.

[36] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee,
R. B. Last-level cache side-channel attacks are
practical. In IEEE Symposium on Security and
Privacy (2015), pp. 605–622.

[37] Martin, R., Demme, J., and Sethumadhavan, S.
Timewarp: rethinking timekeeping and performance
monitoring mechanisms to mitigate side-channel
attacks. ACM SIGARCH Computer Architecture News
40, 3 (2012), 118–129.

[38] Masti, R. J., Rai, D., Ranganathan, A., Müller,
C., Thiele, L., and Capkun, S. Thermal covert
channels on multi-core platforms. In 24th USENIX
Security Symposium (USENIX Security 15) (2015),
pp. 865–880.

[39] Maurice, C., Neumann, C., Heen, O., and
Francillon, A. C5: cross-cores cache covert channel.
In Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2015, pp. 46–64.

[40] McKeen, F., Alexandrovich, I., Berenzon, A.,
C.Rozas, Shafi, H., Shanbhogue, V., and
Svagaonkar, U. Innovative instructions and software
model for isolated execution. In Wkshp. on Hardware
and Architectural Support for Security and Privacy,
with ISCA’13 (2013).

[41] Moser, S. M. Error probability analysis of binary
asymmetric channels. Dept. El. & Comp. Eng., Nat.
Chiao Tung Univ (2009).

[42] Mundada, Y., Ramachandran, A., and
Feamster, N. Silverline: Data and network isolation
for cloud services. In HotCloud (2011).

[43] Naghibijouybari, H., and Abu-Ghazaleh, N.
Covert Channels on GPGPUs. Computer Architecture
Letters (2016).

[44] Pessl, P., Gruss, D., Maurice, C., Schwarz, M.,
and Mangard, S. DRAMA: Exploiting DRAM
Addressing for Cross-CPU Attacks. In 25th USENIX
Security Symposium (USENIX Security 16) (Austin,
TX, 2016), USENIX Association, pp. 565–581.

[45] Sailer, R., Valdez, E., Jaeger, T., Perez, R.,
Van Doorn, L., Griffin, J. L., Berger, S.,
Sailer, R., Valdez, E., Jaeger, T., et al. sHype:
Secure hypervisor approach to trusted virtualized
systems. Techn. Rep. RC23511 (2005).

[46] Schneider, F. B. Least privilege and more. In
Computer Systems. Springer, 2004, pp. 253–258.

[47] Sigoure, B. How long does it take to make a context
switch, 2010.

[48] Son, S. H., Mukkamala, R., and David, R.
Integrating security and real-time requirements using
covert channel capacity. Knowledge and Data
Engineering, IEEE Transactions on 12, 6 (2000),
865–879.

[49] Stone, J. E., Gohara, D., and Shi, G. OpenCL: A
parallel programming standard for heterogeneous
computing systems. Computing in science &
engineering 12, 1-3 (2010), 66–73.

[50] Sunar, B., Martin, W. J., and Stinson, D. R. A
provably secure true random number generator with
built-in tolerance to active attacks. Computers, IEEE
Transactions on 56, 1 (2007), 109–119.

[51] Vattikonda, B. C., Das, S., and Shacham, H.
Eliminating fine grained timers in xen. In Proceedings
of the 3rd ACM workshop on Cloud computing
security workshop (2011), ACM, pp. 41–46.

[52] Wang, Y., Ferraiuolo, A., and Suh, G. E. Timing
channel protection for a shared memory controller. In
High Performance Computer Architecture (HPCA),
2014 IEEE 20th International Symposium on (2014),
IEEE, pp. 225–236.

[53] Wang, Z., and Lee, R. Covert and side channels due
to processor architecture. In Annual Computer
Security Applications Conference (2006), IEEE.

[54] Wicker, S. B., and Bhargava, V. K. Reed-Solomon
codes and their applications. John Wiley & Sons, 1999.

[55] Wu, Z., Xu, Z., and Wang, H. Whispers in the
hyper-space: high-speed covert channel attacks in the
cloud. In Presented as part of the 21st USENIX
Security Symposium (USENIX Security 12) (2012),
pp. 159–173.

[56] Xu, Y., Bailey, M., Jahanian, F., Joshi, K.,
Hiltunen, M., and Schlichting, R. An exploration
of l2 cache covert channels in virtualized environments.
In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop (2011), ACM, pp. 29–40.

[57] Xu, Y., Cui, W., and Peinado, M.
Controlled-channel attacks: Deterministic side
channels for untrusted operating systems.

[58] Zhang, Y., Juels, A., Oprea, A., and Reiter,
M. K. Homealone: Co-residency detection in the
cloud via side-channel analysis. In Proc. 2011 IEEE
Symposium on Security and Privacy (S&P) (2011),
pp. 313–328.

857

