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Abstract 

Covert channel analysis typically involves stu& of 
individual covert channels in isolation, and determining the 
thoroughness of such case-by-case analysis can be d@cult. To 
help address this problem, this paper$onnally dejnes the notion 
of a “complete” set of covert channels. In/brmally. a set of covert 
channels is “complete” when those channels in the set can 
operate in tandem to produce the maximum possible covert 
information flow out o$ a Jystem. h4ore Jonnal(v, a “complete” 
set of covert channels is defined as a solution to an equath 
called the h4aximum Injbnnation Flow Equation. An alternate 
u’w of expressing “completeness” for sets of covert channels is 
that all “complete” covert channel sets, and only “complete” sets, 
always satisfy a certain Entropy Conservation Law, which is 
given in dl@erent$onns. One form of the Entropy Conserwtion 
Law is that any “‘complete” set of covert channels can be used to 
represent overall system behavior in what the author calls 
Covert Channel Normal Form. Although this paper is mainly 
theoretical in nature, the author also discusses some posd& 
ways of using the theov, along with open issues. 

1 Introduction 

Any multilevel system that has any covert channels at 
all, can be regarded as having one single complex covert channel 
that induces some overall, global covert information flow. From 
the perspective of information theory [Shaunou48], calculating 
this global information flow could be viewed as the ideal 
objective of covert channel analysis. But in practice, covert 
channel analysis is usually limited to the study only of individual 
covert channels (using a variety of analysis techniques 
[NCSC93]) without explicit consideration of the global covert 
information flow. 
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However, such case-by-case analysis of individual, 
isolated covert channels invites questions about the thoroughness 
(completeness) of the analysis. Clearly, the combined effect 
(information flow) of any set of individual covert channels cannot 
exceed the global covert information flow (whatever that global 
flow is), but if we wish to capture the global covert information 
flow merely by studying individual covert channels, there are two 
problems we must deal with: 

1. The scope problem: In order to compute the global 
covert information flow, do we have to find all covert 
channels in a system? Or is there some subset of all 
possible covert channels that we can use to capture the 
global covert information flow in some way and, if so, 
how do we define such a covert channel subset? 

2. The quant$cation problem: Given a set of covert 
channels that is supposed to capture the global covert 
information flow, how can WC actually compute or 
estimate the global (aggregate) covert information flow 
from the channels in the set? 

Although interrelated, the second problem 
(quantification) is not the subject of this paper. Information 
theory offers at least a partial answer to the quantification 
problem of calculating the aggregate information flow 
[Shannon48, Shannon611. Rather, the main topic of this paper is 
the scope problem; identifying enough covert channels so that the 
global covert information flow is fully captured by those 
channels. 

To actually capture the global covert information flow 
for a system, it turns out that it is not generally necessary to 
discover all covert channels as such; only some subset (in 
general) which I will formally defme later as a complete set of 
covert channels. Complete sets of covert channels are analogous 
to the basis of a vector space [Halmos74] in that, the covert 
information flow from the combined action of a complete set of 
covert channels, is the same as for any other complete set, and 
also the same as for the system’s overall global covert 
information flow. 
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After discussing a simple example system which 
illustrates both the scope problem and the quantification 
problem, I will give a simple formal theory of covert channels as 
a basis for defining what is meant by a complete set of covert 
channels. After defining the concept of completeness for sets of 
covert channels, I will show that the notion of completeness is 
equivalent to whether or not a given set of covert channels 
“conserves entropy* in the sense defined by a certain Entropy 
Conservation Law. The Entropy Conservation Law is presented 
in different, but equivalent forms. One form in particular is the 
idea of describing a multilevel system’s behavior in what is 
called Covert Channel Nonnal Form (CCNF). I will show that if 
one can succeed in expressing a multilevel system’s behavior in 
CCNF using only a given set of covert channels, this is a 
necessary and sufftcient guarantee that the given set of covert 
channels is complete. 
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Finally, I discuss some potential ways of using the 
notion of complete sets of covert channels in security 
engineering. However, instead of using the Entropy Conservation 
Law (and the attendant notions of CCNF and completeness of 
covert channels) to solve the general problem of covert channel 
analysis, I will rather suggest that it is better to focus on speci/ic 
security architectures that lend themselves easily to CCNF and 
the related notions. I will discuss an approach to (selectively) 
applying the formal theory and various open issues after the 
theory is set out. 
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2 Global versus Local Information Flow 

To illustrate the difficulties in determining global 
covert information flow from a collection of isolated covert 
channels (so-called “local information flow”), we start with a 
simple “toy” problem that illustrates how a covert channel 
analyst might fail to detect a “complex” covert channel with non- 
zero capacity from a study of suspected covert channels, each of 
which has been found to have zero capacity. 
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Consider a simple multilevel system with two binary 
SECRET (or “high”) input channels, and three binary 
UNCLASSIFIED (or “low”) output channels: 

1 

In discussing this example, I will use the notation such 
as {I,,I~} a (0s) to denote the covert channel where both 
SECRET inputs are controlled but only the third 
UNCLASSIFIED output is monitored as a response. I make the 
following claims that can be verified by examining the above 
tables: 

1. The “system-wide” covert channel involving all 
inputs and outputs {ZI,ZZ) * {01,02,03) has 
non-zero capacity, because, if the inputs are held 
steady for an extended period of time, large 
samples of output triples will tend to have a 
relative frequency that matches the unique output 
distribution (shown by one of the four tables 
above) for the given fixed pair of inputs. 

We assume that the system contains an internal clock 
and upon each clock ‘tick’, the pair of inputs are sampled and the 
three outputs are generated according to the following four 
probability tables (showing the conditional probability of each 3- 
bit binary UNCLASSIFIED output pattern for each 2-bit binary 
SECRET input pattern): 
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2. Every covert channel that monitors fewer than 
three outputs has zero capacity, such as 
{I,} =a (02)) and even covert channels such as 
{/I, 1213 {02,031 using as many as two 
outputs, etc.. Indeed, channels that have only a 
single (binary) output will produce a 0 or 1 with 
probability 112 regardless of the input, and 
similarly, channels with only two outputs will 
produce each of the four possible output 
combinations with probability 114 also regardless 
of the input. 

Now let us consider two covert channel analysts (A and 
B) who have been assigned to assess the covert channels in our 
system. We will suppose for the sake of illustration that, for 
whatever reason, the analysis of the “system-wide” covert 
channel (1, ,12} 3 (0, , Oa , 03} is too complex to be analyzed 
directly, so our analysts want to try to discover this channel via 
an analysis of combinations of simpler channels such as 
{1,,12} =, (031, {12)* {01), etc. Now SuPPse our tWt3 
analysts discover and analyze various covert channels (every one 
of which has zero capacity) as shown here: 

Now one might wonder which of the two analysts has 
done a more thorough job of covert channel analysis? Since both 
analysts have produced lists of zero capacity channels and neither 
analyst has detected the “system-wide” covert channel 
(1, ,12} 3 (0, , 02, 03), is this even a meaningful question7 

As I will show later, this is indeed a meaningful 
question. The fact that the overall channel capacity is non-zero 
whereas the known channel capacities are zero is the 
quanti/icotion problem; not the scope problem. Using the 
Entropy Conservation Law (to be given later), we can still ask 
and get an answer to the question about whether our analysts 
have identified enough channels (the scope problem) in order to 
calculate the overall covert channel information flow (the 
quantification problem). 

The answer as to which if either of our analysts has 
done a thorough job of covert channel analysis may seem 
surprising at first, but will seem obvious aAer seeing the 
formalism. The fact is, Analyst B’s much shorter list is a 
complete set of covert channels in the sense I will define; Analyst 
A’s longer list containing more complex channels involving 

multiple outputs is, for all his/her effort, incomplete. We w-ill 
return to this later, but a hint as to why Analyst A’s list is 
incomplete is that, note that Analyst A has no channels involving 
the second UNCLASSIFIED output Ot which is one of the 
outputs in the “system-wide” channel {I, ,12} a {0, ,02 ,03}. 
This will turn out to be a special case of the Entropy 
Conservation Law. It isn’t necessary in general to find channels 
that involve all system outputs; just those outputs which might 
contain covert channels (which I will formalize later and which 
happens to be oil system outputs in our “toy” problem). 

3 A Simple Covert Channel Theory 

To define the notion of completeness for covert 
channels, we must first have a formalism for discussing covert 
channels in general. In this section I give a simple covert channel 
theory adequate for our purposes. Except for the formal 
definition of a covert channel (below), the model described in 
this section is essentially nothing more than a notational variant 
of the Turing Test Model prowne9 1, Browne941. 

3.1 A Closed Multilevel System Model 

As with the Turing Test Model [Browne91, 
Browne941, we deal only with multilevel state machines that are 
closed (“input-free”, “self-running”, “self-driving”, or 
“perpetual”). The restriction to closed machines is no loss of 
generality since, one can always consider a sequence of external 
inputs as being encoded in the initial state of the machine, either 
by explicitly encoding input sequences, or encoding input 
implicitly in “wound-up” form such as by defining an “input 
strategy” [WittboldJohnson90] or a “generator process” 
[Browne91]. I model a system as a collection of random variables 
and functions defined as follows, where parameter t corresponds 
to (discrete) time, and P is a security level: 

1. The information variable Cv’ can be thought of as a 
summary of all information being protected by a 
security policy. So that there is no loss of generality in 
power expressing security policies, we suppose that Cy 
is the initial state of some particular (closed) universal 
machine. Cy encodes the state transition relation for 
some particular machine to be “emulated” as well as 
the input and initial state information for the 
“emulated” machine at all different security levels. QJ 
has no specific security level, but different “views” of 
Cv (below) do have an associated security level. 

2. The (deterministic) fimction View (cV,P) extracts the 
information about Cy known to security level P, such as 

‘Since the covert channel model I am describing here is mainly just a 
notational change from the Turing Test Model [Browne91, Browne94], 1 am 
only partly desctibing the model. The reader interested in a full description 
should refer to [Browne91, Browne941. The covett channel model being 
described is actually a multi-player game where the information variable Cv 
(called the “Turing Test Variable” in IBrowne91, Browne94]), can be chosen 
from a variety of probability distributions. The nature of this game is not 
very important for understanding the central points of this current paper. 
However, the fact that Cy can be chosen fi-om a variety of distributions is 
partly relevant to understanding the notation used in the Maximum 
Information Flow Equation, give-n later. 
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a particular machine’s state transition relation (always 
known to all security levels; open design), the input 
strategies of all levels at or below level P, and the 
initial state variables at or below security level Q for the 
machine designated by Cv. 

3. The (random) function ~ufpuZ(cY,Q,C) indicates, for 
security level Q, the output produced by a particular 
“run” or “random trial execution” of the machine 
denote by Cu, when driven by the various “input 
strategies”, initial state, etc. as indicated (also) by Cy. 
(We assume that View(W,Q) determines the value of 
ourpur(cv,P,o).) 

3.2 A Formal Model of Covert Channels 

We also add to our basic definition of a multilevel state 
machine, various auxiliary random functions that represent 
covert channels in the system. A covert channel is any time- 
dependent random function written as C(CU,Q,t) with a random 
value that is determined by the system output, meaning: 

VP 3 vt w h(Output(cv,Q,t)) = C(cv,QJ) 

where h is any function from the range of 
Outpul(cV,Q,t) to the range of C(W,P,t) The only important 
attribute of function h is that h depends only on Q and on 
C(9,P,t) so that every covert channel is essentially a property 
of the system output (as seen at some security level Q). 

3.3 Ensemble Covert Channels 

If Cl,...., C, is a list of covert channels, the ensemble 
of those channels is that random function C(q,Q,t) such that: 

C(cv,Q,t) = cx I,...., Xn> 

where Vk Ck (Cv,Q,t) = xp. I remark that by this 
definition, the ensemble for any set (list) of covert channels 
Cl,.-, C, is itseva covert channel as formally defmed; meaning 
that the ensemble is also determined by Outpul(cV,Q,t) 
whenever all of C, ,...., C, are so determined. 

3.4 The Maximum Information Flow Equation 

The Maximum Information Flow Equation given below 
is essentially the same as the “Generalized Turing Test 
Condition” prowne94], except for notational changes and 
renaming of variables. The Equation can be thought of as an 
abstract and probabilistic form of Conditional Non-Interference 
[GoguenMeseguerSrl] and relates probabilities of the information 
variable CL’ given various other kinds of information. Formally, 1 
say that a covert channel C(cV,Q,t) has maximum information 
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Ml(cv lout,C) = AHpJ lout) 

and the two preceding assertions imply that: 

AH(cUlout,C) = AH(cyIc) 

From the preceding, the ensemble channel for 
Cl,...., C,, must be a solution to the Maximum 
Information Flow Equation and thus, by definition, the 
channels C, ,. . . . . C, are complete. 
cl 

*With regard to my previous remark that random variable Cu can be chosen 
from a variety of probability distributions, the Maximum Information Flow 
Equation must hold regardless of how Cy is chosen. Consequently, the reader 
should view tbe term “pr”, which denotes probability in the Equation, as a 
free variable ranging over various probability distributions corresponding to 
diierent ways that Cv may be chosen; for details, see [Rrowneg 11. 
3The average entropy change is also known as the “mutual shared 
information” between the random variables involved. 

/low if and only if the Maximum Information Flow Equation 
(here) is satisfied* for C(CU,Q,t): 

VW vx vy vz VP vt 
pr(cv = w 1 Output(cV,P,t) = x, 

C(CU,Q,t) = y,View (Lv,Q) = z) 
= pr(cV = w IC(cV,Q,t) = y,View(CV,Q) =z) 

3.5 Complete Sets of Covert Channels 

Next, I say that a set (list) of covert channels 
CI,....,C, is complete if and only if their ensemble covert 

channel C(CU,Q,t) has maximum information flow (that is, 
satisfies the Maximum Information Flow Equation). The sense in 
which the Maximum Information Flow Equation really 
maximizes covert information flow is expressed by the following 
theorem: 

Theorem I Consider n covert channels Cl , . . . . , C, and 
let AH(cY (our) be the average entropy change3 in Cu 
given Output(~,Q,t). Also, let the term AH(WIC) 
be the average entropy change in Cy given knowledge of 
the covert channels C, ,...., C,. Then the covert 
channels C,,...., C, are complete if and only if 

AH(cy)C) = AH(cy lout) 

Proof: By Theorem A of [Browne94], if C, ,....,C,, are 
complete, then we have that: 

AH(cyIC) 2 Azz(cy lout) 

But because the system output determines the values of 
the covert channels, we can conclude that: 

AH(cvJC) = AH(cy lout) 

Conversely, assume the preceding holds. Now, by the 
definition of a covert channel, we have: 



The preceding theorem justifies a loose analogy with 
the basis of a vector space [Halmos7414 in that the information 
flow of all complete sets of covert channels is the same. 
Furthermore, the covert information flow from any/all complete 
sets of covert channels achieves the maximum, global covert 
information flow occurring through the entire system output. 

Also, an absolutely crucial property of complete sets is 
that they are “stable”; meaning that any extension of a complete 
set of covert channels is complete. While this may seem a trivial 
comment, it is not as obvious as it first sounds. The example 
presented earlier involving our two Analysts A and B has already 
shown one case where adding random variables to a model can 
strictly increase information flow. The “stability” of the 
completeness notion is paramount to sensibility of this theory; 
otherwise, one might “stumble” across a “complete” set of 
channels only to find that by adding additional channels, 
information flow increases, making the notion of “completeness” 
absolutely worthless. 

Theorem II. Ifs is a complete set of covert channels, 
and T is any set of covert channels, then SW T is 
complete. 

Proof: Since S is complete, then by Theorem I: 

NT(cv IS) = AH(cylout) 

And obviously: 

but since Su T is a set of covert channels (not yet 
claimed to be complete), we have by the definition of a 
covert channel that: 

AH(cY lout) I AH(cY IS, T) 

whereby all of the preceding prove: 

AH(cVjS,T) = AH(Wlouf) 

And by using Theorem 1 in the other direction, we have 
finally that S u T is complete. 
Cl 

4 An Entropy Conservation Law 

We now come to a simple but general Entropy 
Conservation Law that, in various forms, captures the concept of 
completeness for covert channels. The Entropy Conservation Law 
can be viewed as an extension of the Separability Principle put 
forth by ~ushby81]. Roughly speaking, the Separability 
Principle requires that “the system output observed by an entity 
must be entirely explained by that entity’s input to the system”. 
The Entropy Conservation Law extends this by saying, loosely, 

4The analogy between the basis of a vector space and a complete set of 
covert channels isn’t perfect, however. There is no notion of “dimension” as 
such for complete channel sets because the number of channels in a complete 
set can vary for a given multilevel system. 

that “if system output is not determined by an entity’s input, then, 
whatever is ‘left over’ must be entirely explained by covert 
channels and real noise”. 

4.1 Abstract Entropy Conservation Law 

We start with an informal statement of the Entropy 
Conservation Law: 

Informal Statement [First Form of the Entropy 
Conservation Law]. For any (closed) multilevel 
information system, if an onlooker with clearance P is 
“fully informed”; meaning, is aware of all information 
authorized at level P, and may even have some 
information not authorized at level 0, then whatever the 
onlooker expects of the variability in the system output 
must always be due entirely to the anticipated 
variability of covert channels, plus possibly some noise 
source. That is, for a “fully informed onlooker” of a 
closed multilevel system: 

Output Uncertainty = 
Covert Channel Uncertainv + hloise 

For illustration sake, two special cases of the Entropy 
Conservation Law are, first, if a (closed) system has no covert 
channels, then whatever uncertainty one has in the system output 
must be due entirely to system noise (assuming full awareness of 
all authorized knowledge; input, initial state information, etc.). 
Second, if a (closed) system is deterministic, then whatever 
uncertainty one has in the system output must be due entirely to 
unpredictable behavior in the system’s covert channels. 

Further insight into the Entropy Conservation Law is 
possible with a more formal statement; in particular, more can be 
said about the noise soume than is evident from the informal 
statement, and also, the informal statement doesn’t indicate what 
“entropy conservation” has to do with completeness for sets of 
covert channels. However, to formalize the Entropy Conservation 
Law, we need to formalize what we mean by a “fully infonned 
onlooker”. I model a fully informed onlooker with security 
clearance P as a random process %(cV, P, t) such that: 

Elf 3g 3h V’t>O 

fw)=wu0) A 
g(cx(cy,P,0)) = view(cV,P) A 
h(%(Q,Q,t)) : one-one a 

<Oufput(cv,Q,t).sx(cv,Q,O) > 

This cryptic expression has a simple explanation. lhe 
first term above involving function/means that, in our closed 
system world, everything that ‘XX knows initially” is determined 
by the information variable Cv; there is nothing else to know 
about initially, except about Cv, so there is some function/that 
extracts from Cy what initially determines what YX knows”. 
Further, function g indicates that whatever “Sx knows initially” 
includes all knowledge of View (Cv, P) , so the existence of some 
function g indicates that there is some way of detemlining 
View(cV,f) merely from what 9 knows initially”. Finally, the 
function h shows exactly how “what GX knows” can change with 
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time. The fact that h is one-to-one indicates that the only thing 
that 5X ever knows” is what ‘?X knew initially” plus what ‘XX 
learned” from fully and carefully observing the output “without 
ever missing a tick”. 

With the above idea of how to model a fi~lly informed 
onlooker in our “closed world”, we can formally define our 
Entropy Conservation Law: 

Theorem III: The Entropy Conservation Theorem 
[Second Form of the Entropy Conservation Lew]. 
Consider any (closed) multilevel system operating over 
some closed time interval [t, ,r2]. Let q be (the 
random variable denoting) a fully informed onlooker 
with clearance P and let $$ and q2 be abbreviations 
for %(cV,P,f) at the respective endpoints for [tl,t2], 
and let out1 and out2 be similar abbreviations for the 
variable Output(cV,P,t) at their respective times in 
[t, ,t2]. Let A H,,,(q) be the total change in system 
output entropy perceived by Sx over [t, ,tJ. Let C 
represent any set of covert channels (with C, and cz 
corresponding to similar abbreviations for the ensemble 
covert channel C((v, P,t)) and let A H&SY) be that 
part of the output entropy reduction over [t, ,tz] due to 
action of the covert channels in C as perceived by 9. 
Let the term cc denote what is called the noise-e&t 

entropy, which is defined by cc = H(&r21CZ ,0&l, 
and is the equivocation between the ending system 
output and the covert channels in C acting over [t, ,t2] 
(given Out, and also View (cU,P) ; not shown). Then, 
the Entropy Conservation Law states that the covert 
channels in C are complete if and only if for every fully 
informed onlooker $Xx: 

AHovr(W = AHc(W + kc 

Proof: By definition we have: 

A Hout(% = WOutA%) - Wout&xXz) 

but H( Out2 1q2) = 0, since 5X fully learns the output 
at time f2, thus: 

A Hod%) = H(outzl%) 

Adding, and then subtracting H(Out2(C2 ,q,) to the 
right side and regrouping gives: 

A Hmt W) = [ Wh&x,) - 
fWutzIcz.W 1 

+ H(out2Ic2.W 

But the expression in [] is just the entropy change due 
to covert channels over [t, , tz], so this gives: 

AHoul(W = AHc(W + ff(OutzlC;?,SXJ 

By our model for 5X, s)(, has information content 
equivalent to the pair < Out, .Xc >, where q0 is the 
prior information about Cv known to onlooker %, so the 
preceding is equivalent to: 

AHour(W = AHc(W + H(Outzlc;?,Out,,%) 

Finally, by the definition of completeness for covert 
channels, the complex entropy term to the right of “+” 
above is equivalent to the noise-effect entropy SC if 
and only if the covert channels in C are complete. 
0 

The preceding Theorem is regarded as an Entropy 
Conservation Law since it turns out that if a set of covert 
channels is not complete, then it will always be the case that we 
can find some “fully informed onlooker” Sx so that: 

A H&W < AHc(W + 5c 

so that the output entropy is “not conserved” or “gets 
lost somewhere”. The noise-effect entropy cc represents the 
maximum amount by which AH~,,~(%() can differ from 
A H=(q), and it is only possible to achieve the maximum 
difference cc (for 011 fully informed onlookers) when the 

underlying set of covert channels is complete. However, with the 
current form of the Entropy Conservation Law, it is difficult to 
explain in English a simple physical interpretation for the noise- 
effect entropy term &, so I will postpone doing so until after 
presenting the idea of Covert Channel Normal Form. 

4.2 Covert Channel Normal Form (CCNF) 

The Entropy Conservation Law can also be expressed 
graphically with the following: 

Informal Description of Covert Channel Normal 
Form [Third Form of the Entropy Conservation 
Law]. Consider some closed multilevel information 
system and any complete set of covert channels C for 
that system. It is always possible to express the output 
of the system (seen at a given security level) in Covert 
Channel Normal Form (CCNF) by using only the 
covert channels in C and a noise generator to drive 
some deterministic function or process (as shown by 
this next picture): 
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Complete Set of 
n Covert Channels 

Noise 
Source 

cl(t) 

Wt) 

I 

Feedback to 
Covert Channels Deterministic 

and to Other Function 
System Elements or Process 

(not shown) 

(Output) 

The previous picture, and the Covert Channel Normal 
Form concept generally, will now be formalized. Recall that l’ve 
defined covert channels so that their behavior is some property of 
(determined by) the system output. This formalization of the 
Entropy Conservation Law (Covert Channel Normal Form) is a 
sort of “weak converse” in saying that the system output is 
determined by any complete set of covert channels to within 
some noise level: 

Theorem Iv: The Covert Channel Normal Form 
Theorem [Fourth Form of the Entropy 
Conservation Law]. Consider any (closed) multilevel 
information system operating over a time interval 
[t, ,tz]. Consider any set of covert channels c, ,...., C,, 
with an ensemble covert channel C(CU,P,t) . Then, the 
channels C,,...., C, are complete if and onfy i/ there 
exists a deterministic function A and a noise process 
q(t) such that (tz 2 r,): 

Output(cy,Q,r,) = 
f ( O~tPwKQ,tI), 

CW4t2)9 
View (Q(P), 

rl(tz)* tl9 t2 ) 

Proof: First, we suppose that / exists and use the 
Second Form of the Entropy Conservation Law (the 
Entropy Conservation Theorem) to prove the channels 
are complete. Adopting a similar notation as in the 
proof of the Second Form, we consider: 

where A Hout (91x;tl + t2) refers to some particular 

conditional entropy change over interval [t, , t2] due to 
a specific “random output trial” (not the “average 
entropy change” as in the Second Form above). Note 
that we have used our “fully informed onlooker” model 
and expanded the terms q, and q2 into the initial 
knowledge g,, and the corresponding output variable. 
Also, note that the second term is zero, so: 

Now further consider a specl$c random action taken by 
our covert channels up to time t2 written C2 = a. 
Then adding and subtracting the conditional entropy 
and re-grouping, we have: 

AHa 6% + td = 
[ H(Out2lout, = Lcx(o = VI - 

H(OuttlC2 = %Out, = Lx0 = v) I 
+ H(OutzIC2 = %OUtl= L%y, = v) 

Now by assumption, the function/determines output at 
t2 given C2 and Our, independently from (v, and 
therefore, also independently of q,,. Thus, in our 
particular random trial, we can eliminate q. in the 
term to the right of the “+” giving: 

AHour(92, + tt) = 
I H(Out2lOut, = h,%) = v) - 

fQOut2IC2 = OL,Out1= Lsxo = v)] 
+ ff(OutzIC2 = %outl= h) 

Now we can multiply both sides of the above by the 
joint probability pr(C2 = a,Out, = X,q(, = v) and 
sum over all values (all random trials) giving: 

AHo,,Wx) = I H(OutAOut,,%,) - 
~~(0ut2lC2,0ut1 ,cxxo) 1 

+ H(Out2 lc2 Pout,) 

But this is the same as: 

AHour = AH&W + <c 

which, from the Entropy Conservation Theorem 
(Theorem III) we can conclude that the covert channels 
Cl,-.., Cn are complete. Conversely, suppose the 
covert channels C, ,...., C,, are complete. We define 
(an algorithm for) a deterministic fimctionfas follows: 

A Ho,t(Xt, + tz) = 
Moutzlout, = h,% = v) - 
H(outzIout2 = A’,%, = v) 
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algorithm t: 
input values for rI and t2 
input value for Ou@ut(cV,P,r,) 

input value for C(cV, P, t2) 
input value for View (WV, P) 
input (random) value 0 < q(t2) < 1 
compute 

the conditional probability distribution for 
variable Output( Cv, P, t2) given 

O~@wLQ,rl); 

wm2); 

View (Cv, I) 
and call this measure pr2. Now, assuming that the 
values of variable Oufpuf (Cv, P, t2) are well~dered 

in some way, we next . . . . . . . . 
compute 

the least value of x such that the cumulative 
distribution function for pp equals or exceeds the 
random input value from the noise function: 

output x as the value of the function f 

Because by assumption, the covert channels associated 
with C(q,Q,t) are complete, the distribution for 
Outpuf(CU,P,t2) will be independent of variable Cv 
given C(cV,Q,r,), so the above function/will produce 
the proper joint distribution for Ou@ut(cV,Q,t2) and 
variable Cv. Thus the function /just described is a 
function having the required properties. 
cl 

The uncertainty in the output of deterministic fimctionf 
in the Covert Channel Normal Form (CCNF) obviously comes 
from two sources: (1) uncertainty from the set of covert channels 
and (2) uncertainty from the noise process q(t). These two 
separate sources of output uncertainty show the connection 
between CCNF and the more abstract (First and Second) forms 
of the Entropy Conservation Law, and also explains why I refer 
to SC as the noiseeffect entropy. Basically, the noise-effect 

enWy Cc in the First and Second forms of the Entropy 

Conservation Law is sort of the “image of noise function q(t) 
under function f’ for a system’s representation in CCNF. Of 
course, this relationship between q(t) and tc is only sensible 
precisely when the underlying covert channel set is complete. 
The comparison is meaningless otherwise, because the “image of 
q(t) underj” given the output of an incomplete set of covert 
channels would be correlated with sensitive information in Cy, 
and thus could not be related to the noise-effect entropy &. 

5 Thoughts on Potential Applications 

The Entropy Conservation Law indicates that the 
question about completeness of a set of covert channels comes 
down to whether or not the system output can be represented in 
CCNF using only the known covert channels. This suggests that 

given an arbitrary multilevel system, one might attempt to search 
for a complete set of covert channels with the following 
“algorithm”: 

Engineering Paradigm I: 

Channel-Set t 0; 
N t 0; 

while 
the system output (at a giien level) cannot be represented in 
Covert Channel Normal Form using on& the (knoWI) covert 
channels contained in ‘Channel-Set” 

do 
N t N+l; 
Channel-Set t Channel-Set u (CN); 

[where CN is sune covert channel not already in 
‘Channel-Ser] 

end loop 

output Channel-Set; [Complete set] 

Here again we have an analogy with vector spaces. The 
above is very similar to extending a set of vectors to a basis 
[Halmos74], except we haven’t defined any notion of 
“independence of covert channels” as such. The Entropy 
Conservation Law guarantees that if the above “algorithm” 
terminates, then it will determine a correct (complete) set of 
covert channels in the formal sense. However, use of the above 
“algorithm” for covert channel analysis must deal with several 
(related) problems, for any given system under analysis: 

1. There may not be an easy way of deciding whether or 
not a CCNF exists for a given set of channels. 

2. Even if a CCNF decision procedure exists, there may 
be no easy way of locating a new covert channel when 
the decision procedure rejects a candidate set of covert 
channels. 

3. The “algorithm” in theory may not terminate. We 
would like to be sure that every incomplete set can be 
fmitely extended to a complete set. 

finding 
These three problems seem serious enough so that 
a CCNF for an arbitrary multilevel system is 

problematic. It makes sense therefore to focus on purticufur 
security architectures for which a CCNF is readily apparent; this 
suggests a departure from the above engineering paradigm. 

5.1 Designing Systems to Simplify Channel Analysis 

In as much as one might design a system to be reliable, 
maintainable, testable, or to support formal proof, one might also 
design a system with the specific goal in mind of simplifying 
covert channel analysis. So rather than trying to find the CCNF 
for an arbitmry multilevel secure system, I suggest that one 
could limit the engineering paradigm to pursue specialized 
security architectures for which a useful CCNF is easily found: 
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Engineering Paradigm II: 

define 
a security architecture for a specific security application 

prove 
a ‘normal form theorem’ fa the particular security architecture 
so that any system that satisfies the architecture will ahwys be 
guaranteed to have a well-understood CCNF 

build 
a system that satisfies the chosen security architecture 

verify 
that the system satisfies the chosen security architecture 

analyze 
the covert channels in the system relying mainly on the ‘normal 
form theorem’ for the architecture 

The above engineering paradigm is thus a change t?om 
doing covert channel analysis based mainly on system 
peculiarities, to more emphasis on covert channel analysis at a 
higher level of architecture using a more general understanding 
of the covert channel characteristics of a given security 
architecture. I now illustrate how such an engineering paradigm 
might be used by discussing a specific security architecture that 
has a particularly simple CCNF. 

5.2 Mode Security 

In prowne94], a security architecture known as Mode 
Security is presented5. The idea behind Mode Security is to 
partition a multilevel system’s states into disjoint sets called 
secure modes. This is done in a way so that the apparent 
behavior of a Mode Secure system is that the system will spend 
most of its time fixed in one of it modes. Periodically, the 
machine may “jump” from a secure mode to another, and 
[Browne94] represents this “periodic jumping” by an automaton 
showing how the secure modes can change. This next picture 
shows an example of such au automaton (called a Characteristic 
Automaton in [Browne94]) having five secure modes: 

51 emphasize that Mode Security is nor a covett channel analysis method, it 
is a specialized orchifecrure (having covet? channels that may be analyzed a 
variety of ways). Mode Security is nor a panacea; it is only intended for 
certain security applications [Browne94], so the uscti~lness of finding a 
CCNF for a Mode Secure system is limited to those applications for which 
Mode Security itself is useful. This is exactly the sort of specialization of the 
application domain that I’ve suggested that is probably needed to facilitate a 
search for a CCNF. 

The basic claim in [Browne94] is that this organization 
of the system into secure modes ensures that all covert channels 
are connected with mode change events. Supposedly, there are 
never any covert channels between any two consecutive mode 
change events. We can support this claim by the fact that every 
Mode Secure system has the following general CCNP: 

Mode Change Noise 

Decision Process Source 

I 

[Optional] Deterministic 
Feedback to Function 

Mode Decision or Process 
Logic, etc. 

I 

Iu the above CCNF, the noise process is the only thing 
driving the (otherwise deterministic) system output while the 
system operates in one of its secure modes. The mode change 
decision process is idle and produces no output unless and until a 
mode change occurs. The fact that all Mode Secure systems have 
the above CCNP can be proven by Theorem B of [Browne94], 
together with Theorem I and the Covert Channel Normal Form 
Theorem (Theorem IV) in this paper (although I will not give the 
proof, here). This supports the claim in prowne94] that all 
covert channels within a Mode Secure machine are associated 
with mode change decisions, and there are no other hinds of 
covert information flow in such a system. 
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5.3 The Kang-Moskowitz Data Pump 

To further illustrate specialized uses of CCNF, one 
might like to devise a security architecture that makes deliberate 
allowances for covert channels to serve some specific purpose. 
Covert channels might be deliberately allowed in a system to 
provide reliable multilevel communication, for instance. One 
way to do this would be to use a Pump ~angMoskowitz93] for 
efficient, reliable, and (adequately) secure communication 
between a pair of applications at two different security levels: 

1 

1 

P 
[ 
4CK 

Trusted 
Low Process 

High 
Application 

Each Pump consists of a pair of trusted “low” and 
“high” processes that share a buffer. The Pump permits reliable 
inter-level communication by permitting “high” to “low” 
acknowledgments under the auspices of the Pump’s internal 
trusted processes. The internal acknowledgment from the trusted 
“high” process to the trusted “low” process (dashed, downward 
arrow in the above picture) is implicit; the actual mechanization 
for the acknowledgment [KangMoskowitz93] is having the 
trusted “low” process detect when space is available in the 
buffer. The Pump controls covert timing channels by having the 
trusted “low” process inject random lime delays into its own 
acknowledgments to the “low” application external to the Pump. 

6 Remarks 

In the preceding section, we discussed issues pertaining 
to applications of the Entropy Conservation Law. In this section, 
I make other observations about the Entropy Conservation Law 
as well as discussing new topics mainly relating to open 
problems. 

One might implement a trusted operating system which 
provides a set of n of these Pumps for use by application 
processes. Now suppose that we wanted to prove that the on/y 
covert channels in our system were due to the action of these 
Pumps. Then, from our Entropy Conservation Law, we could 
prove our claim if we could somehow show that our architecture 
had the following CCNF: 
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The above picture is just for illustration since, without 
looking at a specific architecture, one cannot know what design 
assumptions would be needed to ensure that the n Pumps were 
the sole source of covert channels. What we do know is that if 
the architecture could not be put into the above CCNF, we could 
be certain from the Entropy Conservation Law that the set of n 
Pumps did not constitute a complete set of covert channels (and 
this would reveal a hidden covert channel). We could then 
identify and document the missing covert channel(s), or redesign 
our system to remove those covert channels not related to action 
of the Pumps and again attempt to put our system into CCNF to 
verify our redesign effort. 

6.1 Interpreting the “Toy Problem” 

We return to our 2-input/3-output “toy” problem of 
Section 2. If we form a closed system (by tying the two inputs to 
a pair of SECRET input generators and embed those generators 
as part of our system), the Entropy Conservation Law requires 
that any complete set of covert channels must constrain all three 
outputs. We can put our “toy” problem in CCNF for any set of 
channels that determine the value of all three outputs. (In this 
case, the noise-effect entropy SC is zero). 

6.2 More about the Scope Problem 

The fact that we have managed to separate the scope 
problem (identifying complete channel sets) from the 
quantification problem (computing the global covert information 
flow) is a “double-edged sword”. The “toy problem” of Section 2 



illustrates the bothersome situation that one can have a complete 
set of covert channels all of which have zero channel capaciv, 
and still have an ovemll covert information flow with non-zero 
capacity. It isn’t that the Entropy Conservation Law is wrong; the 
problem is that the notion may not always be helpful. In practice, 
the separation between the scope and quantification problems 
may not bc as pure as we have achieved in theory. 

In some cases for example, it may be that the only way 
to prove that a CCNF does not exist is to actually fmd a channel 
of non-zero capacity. In the case of Mode Security (described 
briefly in Section 5.2), it was very easy to separate the 
quantification and scope problems; specifically, Theorem B in 
[Browne94] gives a constructive proof that (in effect) the random 
process that drives mode changes is, by itself, a complete set of 
covert channels, and the proof in no way depended on actually 
calculating the global covert information flow (the latter which is 
done by Theorem C in [Browne94]). However, it is not clear if 
this is entirely an accidental aspect of Mode Security, or if there 
really is a natural separation, in general, between proving 
channel completeness and quantifying covert information flow. 
Given all of this, more work is clearly needed to see if separating 
the scope and quantification problems would be useful in 
practice. 

6.3 Comments about Noise-Effect Entropy 

Theorems I-IV show that completeness of a covert 
channel set is equivalent to whether the set satisfies the Entropy 
Conservation Law in its various forms. If the Entropy 
Conservation Law is not satisfied for a given set of channels, 
there is no question that some covert channel is missing from the 
set. On the surface, we are thus immune from the effect of 
“formal flows” pckmann94j in the sense that violations of the 
Entropy Conservation Law always indicate some gemhe 
compromising covert information flow that has been omitted 
from a given covert channel set. Using the Entropy Conservation 
Law, we are ostensibly never unsure whether some unexplained 
behavior of the system output is due to a real covert channel or a 
“phantom” effect due to an overly conservative security policy; 
unexplained system output behavior is always a covert channel, 
if not noise. 

Nevertheless, there is a problem with the Entropy 
Conservation Law that is analogous to the problem of “formal 
flows”. The unfortunate fact is that the noise-effect entropy kc is 

not unique. As the subscript C in cc indicates, the “residual 
output noise” does depend on the set of covert channels C and 
can differ between complete sets. Informally, complete sets of 
channels with larger values of cc are “better” than those with 
lower values, since, the more that output entropy can be 
attributed to noise, the less that output entropy need be attributed 
to covert channels. The current theory does not address this at 
all, however. 

6.4 Quasi-Complete Covert Channel Sets 

In lieu of finding complete sets of covert channels, one 
might wish to develop a theory whereby one could compute the 
“residual global flow” for an incomplete set of channels as a 

“goodness” measure for covert channel analysis. Our Entropy 
Conservation Law sheds some light on this since, for a given set 
of covert channels C, , . . . . C, , when the expression: 

rnqa (6, - H(outpurlC,,....,C,,~X)) 

is small, then the covert channels C, ,.... Cn are in a 
sense “close” to being a complete set. One might prove, for a 
particular security architecture, some kind of “Remainder 
Theorem” that gives an upper bound on that part of the global 
information flow not captured by some nearly complete covert 
channel set C, ,.... C,. 

6.5 Informal Measures of Completeness 

Yet another idea that our work has cast some light on, 
would be a result that shows that if one identities at random a 
large number of zero or low capacity covert channels, then one 
might put a rigorous upper bound on the probability of finding a 
channel having a capacity exceeding some value &. The reason I 
suspect this is not epistemological, but purely mathematical. 
Consider the following result: 

Theorem V. For every pair of natural numbers 
n,m > 0, there exists a system with n input channels 
and m output channels such that: (1) all channels with 
fewer than m outputs (if any) have zero capacity, and 
(2) there exists at least one channel of non-zero 
capacity (having m outputs). 

This theorem, which amounts to a generalization of our 
“toy” problem, has a simple constructive argument whereby one 
constructs 2” tables with 2” rows each (with n = 2 and m = 3 
in Section 2) for giving the conditional probability of each of 2” 
output combinations for every 2” possible inputs. Initially, every 
one of the zrn rows in all 2” tables is set to a uniform 
distribution 1 / 2m making all channels have zero capacity. To get 
a channel of non-zero capacity, simply add the amount 
((k - 1) / (2m+’ * 2”)) to every table row in table number k when 
the row corresponds to an output combination having an even 
number of “1’ outputs, and subtract that same amount from every 
row corresponding to an odd number of ” 1” outputs. The point to 
this construction is that, the channel capacity of the “global 
channel” that is constructed is quite small and seems to shrink as 
n,m H 00. This appears to be generally true, mathematically, if 
one wants to “hide” a statistical dependency among a large set of 
random variables, such that all medium and smaller size sets are 
zero or low capacity channels, it stems that the amount of 
probability mass that one can “redistribute” (via a perturbation 
argument such as I just gave) tends to be limited and this seems 
to have a substantial mitigating effect on potential global channel 
capacity. There thus seems to be a mathematical basis for 
concluding that global covert information flow is small when 
large numbers of complex, small capacity channels are found via 
extensive search. 
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7 Conclusion 

In this paper, we used a simple formal theory of covert 
channels to formalize the notion of a complete set of covert 
channels. The purpose in this was to define a formal test for 
determining when enough individual covert channels have been 
discovered so as to capture global covert information flow. 

Complete sets of covert channels turn out to be 
precisely those that satisfy a certain Entropy Conservation Law. 
This Entropy Conservation Law was expressed in different 
forms; most notable is the notion of a Covert Channel Normal 
Form (CCNF) for a multilevel system. The existence of a CCNF, 
specifically, as well as the Entropy Conservation Law, generally, 
were shown to entail a necessary and sufficient test for whether 
or not a further search for covert channels is warranted. 

Finally, we touched on possible connections between 
theory and practice while recognizing that there are numerous 
open issues. While the Entropy Conservation Law is theoretically 
“universal”, as a practical matter, the use of the Entropy 
Conservation Law would probably have to be limited as 
described in Section 5. I suggested that rather than trying to 
apply the Entropy Conservation Law directly to an arbitrary 
covert channel analysis problem, it would probably be better to 
apply the Entropy Conservation Law only to spectfic covert 
channel analysis problems. I indicated that specialized use of the 
Entropy Conservation Law could mean designing specific 
security architectures for which the concepts of entropy 
conservation (such as CCNF) could be directly applied to such 
systems, and some suggestions were made along these lines. A 
number of open areas relating to the results in the paper were 
also identified. 
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