
The Circle Game: Scalable Private Membership Test
Using Trusted Hardware

Sandeep Tamrakar
Aalto University

sandeep.tamrakar@aalto.fi

Jian Liu
Aalto University
jian.liu@aalto.fi

Andrew Paverd
Aalto University

andrew.paverd@ieee.org

Jan-Erik Ekberg∗

Darkmatter
jan-erik.ekberg@darkmatter.ae

Benny Pinkas
Bar-Ilan University
benny@pinkas.net

N. Asokan
Aalto University &

University of Helsinki
asokan@acm.org

Abstract
Malware checking is changing from being a local service to a cloud-
assisted one where users’ devices query a cloud server, which hosts
a dictionary of malware signatures, to check if particular applica-
tions are potentially malware. Whilst such an architecture gains
all the benefits of cloud-based services, it opens up a major privacy
concern since the cloud service can infer personal traits of the users
based on the lists of applications queried by their devices. Private
membership test (PMT) schemes can remove this privacy concern.
However, known PMT schemes do not scale well to a large number
of simultaneous users and high query arrival rates.

We propose a simple PMT approach using a carousel: circling
the entire dictionary through trusted hardware on the cloud server.
Users communicate with the trusted hardware via secure channels.
We show how the carousel approach, using different data structures
to represent the dictionary, can be realized on two different com-
mercial hardware security architectures (ARM TrustZone and Intel
SGX). We highlight subtle aspects of securely implementing seem-
ingly simple PMT schemes on these architectures. Through exten-
sive experimental analysis, we show that for the malware check-
ing scenario our carousel approach surprisingly outperforms Path
ORAM on the same hardware by supporting a much higher query
arrival rate while guaranteeing acceptable response latency for in-
dividual queries.

Keywords
ARM TrustZone; Intel SGX; Malware checking; Privacy

1. INTRODUCTION
Malware checking used to operate primarily as a local service:

a locally-installed anti-malware tool periodically receives lists of
known threats from its vendor, but all its checks are done locally.
This paradigm has already started to change in the era of cloud

∗This work was done while the author was at Trustonic.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02 - 06, 2017, Abu Dhabi, United Arab Emirates
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3053006

computing. Nowadays, anti-malware tools are often thin clients
and the bulk of the threat data is held by a cloud-based service. The
anti-malware tool consults the cloud service to determine if a par-
ticular application is likely to be malware. Such a design pattern
is attractive for anti-malware vendors for a variety of reasons: it
avoids unnecessary data transfers, ensures that all users have up-
to-date threat information, and allows the anti-malware vendor to
retain its full set of known malware signatures as a potential com-
petitive advantage without having to disclose it in full to all cus-
tomers. For example, Google’s Verify Apps is a cloud-based service
that checks if a mobile application is potentially harmful before it is
installed [14]. Protocols involving such remote lookup operations
also occur in other scenarios, such as querying whether a document
contains a malicious payload, or checking if a password is present
in a database of leaked passwords. Abstractly, such a lookup oper-
ation is a remote membership test: a user holding an item q wants
to check if q is a member of a large set X , called the dictionary,
held by a remote server.

Although services built on remote membership test have signif-
icant advantages, they suffer from a major privacy concern – the
server learns all queries submitted by users, which allows inference
of sensitive personal information. For example, it has been demon-
strated that the set of applications on a user’s device can be used to
infer the user’s gender, age, religion, and relationship status [33].
Service providers who want to use such remote membership tests
therefore wish to demonstrably preclude any ability to infer per-
sonal information about their users [17]. The natural cryptographic
primitive to build such a private membership test (PMT) is private
set intersection (PSI) [28, 29]. However, PSI schemes have two
major drawbacks: high complexity and poor scalability. First, a
PSI involving a dictionary of size n, requires O(n) communica-
tion between client and server and requires the server to perform
O(n) operations. Second, PMT servers receive a large number of
simultaneous queries, but PSI-based schemes are not amenable to
aggregation of queries.

Trusted hardware has now become widely available on commod-
ity computing platforms. Trusted execution environments (TEEs)
are already pervasive on mobile platforms [9], and newer TEEs
such as Intel’s SGX [22] are being deployed on PCs and servers.
Several prior works [2, 16, 21] show how trusted hardware can
be used to establish a trust anchor [32] in the cloud. The com-
bination of such a trust anchor with Path ORAM [34], the recent
breakthrough in oblivious random access memory (ORAM), can
be used to solve the PMT problem. This solution has constant
communication overhead and only O(logn) computational over-
head per query. However, like PSI, Path ORAM is not amenable

31

http://dx.doi.org/10.1145/3052973.3053006

to aggregation of simultaneous queries. Therefore, supporting m
simultaneous queries will incur O(m logn) cost.

However, in cloud-based mobile malware checking, it is criti-
cal to optimize for number of queries performed (m) rather than
dictionary size (n). To illustrate this: in 2015, anti-malware ven-
dor Kaspersky identified nearly 3 million malicious mobile instal-
lation packages [35]. In contrast, Google reported that at the end of
2015 over 1 billion devices were protected by its end-point security
services, and that it performed over 400 million device scans per
day [14]. Furthermore, it is estimated that each Android device has
on average 95 apps installed [37]. Therefore, the O(m logn) cost
incurred by Path ORAM will be too high – the ideal PMT service
for this scenario should maximize the throughput of queries.

For this use case, the time required to respond to a query (i.e.
the response latency) must be within a couple of seconds. More
importantly, the service must be able to guarantee an upper bound
on its response latency, even as the arrival rate of queries increases.
If a PMT scheme provides this guarantee for a given query arrival
rate, we say the scheme is sustainable at that rate. For every scheme
there is a maximum query arrival rate beyond which the response
latency will keep increasing over time. We call this the breakdown
point. At this point, new hardware must be added to the server in
order to guarantee response latency.

Another important characteristic of cloud-based mobile malware
checking is that it is acceptable for the PMT protocol to exhibit a
small but non-zero false-positive rate (FPR). A user who receives
a positive result from the service can resubmit the same query di-
rectly to the anti-malware vendor to ascertain the true result and re-
ceive guidance on how to remediate the potential threat. If the FPR
is sufficiently low, only a small fraction of apps will be revealed to
the dictionary provider, thus still protecting users’ privacy.

Based on these characteristics, we propose an effective and ef-
ficient PMT scheme that can support a significantly larger number
of simultaneous queries compared to known PMT schemes. Our
contributions are as follows:

• We introduce a new carousel design pattern in which the
dictionary (or a representation thereof) is continuously cir-
cled through trusted hardware on the lookup server (Sec-
tion 5). This prevents the lookup server from learning the
contents of the queries, and also guarantees low query re-
sponse latency.
• We show how the system’s performance can be significantly

improved by selecting efficient data structures to represent
the dictionary. We evaluate several different data structures
(Section 6), and describe how to construct and process each
without leaking information.
• Through a systematic and extensive experimental evaluation

using two different commercial hardware security architec-
tures (ARM TrustZone and Intel SGX), we show that for
typical parameters in the malware checking scenario, our
carousel-based PMT can support a large number of simul-
taneous queries while still guaranteeing sufficiently low re-
sponse latency for every query (Section 7.2).
• We also describe how to solve the PMT problem using Path

ORAM (Section 7.3) and experimentally compare this against
our carousel approach. Although the ORAM-based scheme
achieves very low query response latency, it reaches its break-
down point quickly. In contrast, the carousel approach pro-
vides a more modest query response latency while sustain-
ing much higher query arrival rates with the same hard-
ware – 2.75 times on Intel SGX and nearly 10 times on ARM
TrustZone (Section 7.4).

2. PRELIMINARIES

2.1 Trusted Execution Environment
A Trusted Execution Environment (TEE) is a system security

primitive that isolates and protects security-critical logic from all
other software on the platform. All software outside the TEE is
said to be running in the Rich Execution Environment (REE), which
usually includes the operating system and the majority of the plat-
form’s software. A piece of application logic running in the TEE
is referred to as a Trusted Application (TA), whilst an application
running in the REE is a Client Application (CA). Fundamentally,
a TEE protects the confidentiality and integrity of a TA’s data, and
ensures that no REE software can interfere with the TA’s operation.
A TEE usually provides some form of remote attestation, which al-
lows remote users to ascertain the current configuration and behav-
ior of a TA. The combination of these capabilities enables remote
users to trust a TA. In modern systems, the capability to establish
and enforce a TEE is often provided by the CPU itself. This leads
to very strong hardware-enforced security guarantees, and also im-
proves performance by enabling the TEE to execute on the main
CPU. However, in some cases this may allow malicious software
in the REE to mount side-channel attacks against the TEE. Our de-
sign does not depend on any platform-specific features, and can
thus be realized on any TEE that exhibits the above characteristics.
We demonstrate this by implementing our system on the two most
prevalent commercial TEEs: ARM TrustZone and Intel SGX.

2.1.1 ARM TrustZone
ARM TrustZone1 is a contemporary TEE architecture that is

widely deployed on smartphones and is now being deployed on
infrastructure-class AMD CPUs.2 TrustZone provides a platform-
wide TEE, called the secure world, which is fully isolated from
the REE or normal world. All interaction between the REE and
TEE is mediated by the CPU. In order to support multiple TAs,
the secure world usually runs a trusted OS, such as Kinibi from
Trustonic.3 Due to the constraints of the platform, the trusted OS
may limit TA’s internal code and data memory (e.g. Kinibi limits
each TA to 1 MB). The platform can be configured to map TA’s
internal memory to system-on-chip (SoC) RAM. With such a con-
figuration, TA’s internal memory is secure memory since TrustZone
protects its confidentiality and integrity against an adversary who
controls the normal world. Furthermore, TA’s internal memory is
private memory since the adversary cannot observe TA’s memory
access pattern (i.e. the metadata about which addresses are being
accessed, and in what order). In contrast, the adversary can observe
all accesses TA makes to the REE memory.

In Kinibi on ARM TrustZone (Kinibi-TZ), interaction between a
normal world CA and a TA in the TEE follows a request-response
pattern: CA can invoke a specific operation provided by TA. In
addition to a small set of TA invocation parameters, CA can usu-
ally demarcate up to 1 MB of its memory to be shared with TA.
In the same way that memory can be shared between applications
on any modern OS, the memory management unit (MMU) maps
a physical memory page to the virtual address spaces of both CA
and TA. This page can be read and written by both endpoints, and
the processor’s mechanisms for cache coherency ensure that mem-
ory accesses are properly synchronized. This feature allows TA to
access large portions of normal world memory.

1https://www.arm.com/products/security-on-arm/trustzone
2http://www.amd.com/en-us/innovations/software-technologies/
security
3https://www.trustonic.com/products/kinibi

32

https://www.arm.com/products/security-on-arm/trustzone
http://www.amd.com/en-us/innovations/software-technologies/security
http://www.amd.com/en-us/innovations/software-technologies/security
https://www.trustonic.com/products/kinibi

2.1.2 Intel SGX
Intel’s recent Software Guard Extensions (SGX) technology [22]

allows individual applications to establish their own TEEs, called
enclaves. An enclave can contain application logic and secret data,
protecting the confidentially and integrity of them from all other
software on the platform, including other enclaves, applications, or
the (untrusted) OS. SGX includes remote attestation capabilities to
provide remote parties with assurance about the code running in an
enclave [1]. For consistency, we refer to the untrusted application
that hosts the enclave as Client Application (CA), and the enclave
itself as Trusted Application (TA). Although both SGX and Trust-
Zone have similar objectives, the specific architectures of these two
technologies give rise to several important differences.
Memory considerations. Unlike TrustZone’s platform-wide TEE,
SGX supports multiple enclaves: each TA runs in its own enclave.
Each enclave is part of an application and runs in the same virtual
address space as its host application. This means that the enclave
can directly access the application’s memory, but attempts by the
application or OS to access the enclave memory are blocked by the
CPU. Whenever any of the enclave memory leaves the CPU (e.g.
is written to DRAM), it is automatically encrypted and integrity-
protected by the CPU. However, even though SGX provides secure
memory (i.e. confidential and integrity-protected), the enclave’s
memory access pattern may still be observable by untrusted soft-
ware on the same platform. This lack of private memory potentially
gives rise to the following classes of side-channel attacks:
Deterministic side-channel attacks. Xu et al. [36] have shown
how a malicious OS can manipulate the platform’s global mem-
ory page table, which includes the enclave memory pages, to cause
page faults whenever the enclave reads from or writes to its mem-
ory. If the enclave’s memory access pattern depends on some secret
data, their technique can be used to discover its value by observing
the sequence of page faults. This side-channel attack is determinis-
tic and thus can be effective even with only a single execution trace.
However, the adversary can only observe memory accesses at page-
level granularity (usually 4 kB). For example, he can observe when
a particular memory page is accessed and can distinguish between
reads and writes, but cannot ascertain the specific addresses of these
operations within the page.
Probabilistic side-channel attacks. Liu et al. [20] have presented
an even stronger cache side-channel attack, which could be used
against SGX. They exploit the fact that the CPU’s level 3 (L3)
cache is shared between all cores, and that the adversary may have
control of the other cores while the enclave is executing. Through
this type of attack, an adversary may be able to observe the en-
clave’s memory access pattern at cache line (CL) granularity (usu-
ally 64 B). However, since the adversary does not have direct con-
trol of the L3 cache, this is a probabilistic attack that requires the
secret-dependent memory accesses to be repeated multiple times.

In this paper, we assume that SGX enclave memory can be con-
sidered private at page-level granularity. That is, different accesses
within a page of enclave memory are indistinguishable to an ad-
versary. Accesses to different enclave pages can be noticed by
the adversary, even though the pages’ contents are encrypted and
integrity-protected. Therefore, as explained in Section 7, we ensure
that in all our SGX implementations the page-level memory access
patterns do not depend on secret data. On the other hand, proba-
bilistic cache side-channel attacks are generally infeasible if secret-
dependent memory accesses are not repeated multiple times. We
therefore ensure that none of our SGX implementations perform
secret-dependent memory accesses more than once. If stronger re-
sistance to probabilistic side-channel attacks is required, techniques
such as those used in Sanctum [6] could be applied.

TEE	REE	

Client	App.	(CA)	

Lookup	Server	

Dic9onary	provider	

User	

Results	

Trusted		
App.	(TA)	

qi∈{0,1}128		

ri∈{0,1}1	

Secure	Channel	

Secure	Channel	

Dic9onary	(X)	

	
	

	

x1	
x2	
.	
.	
.	
xn	

Queries	
(Q)	

Figure 1: System model: cloud-based private membership test.

2.2 Oblivious RAM
Oblivious RAM (ORAM) is a cryptographic primitive originally

proposed by Goldreich and Ostrovsky [13] to prevent information
leakage through memory access patterns. In ORAM schemes, a
secure processor (e.g. TEE) divides its data into blocks, which
it encrypts and stores in randomized order in non-secure memory,
such as the platform’s main memory. On each access, the processor
reads the desired block and some dummy data, and then re-encrypts
and reshuffles this data before writing it back to non-secure mem-
ory. The processor also needs to update some state in its private
memory. Under ORAM, every access pattern is computationally
indistinguishable from other access patterns of the same length.

The state-of-the-art ORAM techniques are tree-based construc-
tions [30, 34, 8, 7, 5], where the data blocks are stored in a tree
structure. For example, in Path ORAM the processor stores a po-
sition map in its private memory to record the path in which each
block resides. When the processor wants to access a block, it reads
the block’s complete path from the root to the leaf. To store and
access n blocks from insecure memory, tree-based ORAM has a
bandwidth cost of O(logn) and uses O(logn) private memory (if
recursively storing the position map).

3. PROBLEM SETTING

3.1 System Model
Figure 1 depicts a generalized system model for cloud-based pri-

vate membership test (PMT) using trusted hardware. It consists of
a dictionary provider, a lookup server, and users. We describe and
evaluate our system in terms of the concrete use case of cloud-
based malware checking, but we emphasize that our approach can
be applied to many other use cases.

In the cloud-based malware checking scenario, the dictionary
provider is the anti-malware vendor that constructs and maintains
a malware dictionary X = {x1, ..., xn} containing n entries. Each
entry xi in X is a unique malware identifier. The lookup server
is a remote server that provides malware checking functionality to
users. The lookup server could be operated by a third party, such
as a content delivery network. The actual lookup functionality is
provided by a TA running in the TEE. The lookup server also runs
a CA in its REE, which facilitates interaction between users and
TA, and makes X accessible to TA. In general, the dictionary may
grow arbitrarily large and thus cannot be stored inside the TEE.

33

Each user can authenticate and attest TA before establishing a
secure communication channel with TA. The user then submits
a query (q) representing an application. TA stores the received
queries Q = {q1, ..., qm} in its secure memory, where m is the
number of concurrent queries at any given time. TA must return
a single bit: 1 if q ∈ X and 0 otherwise. These responses are
also kept in secure memory until they are ready to be returned to
the users via their respective secure channels. The primary pri-
vacy requirement is that the adversary (with capabilities defined
in Section 3.3) must not learn any information about q. Note that
the adversary is permitted to learn statistical information such as
the number of queries submitted by a particular user (e.g. through
traffic analysis) or the total number of queries currently being pro-
cessed. Hiding the communication patterns between users and the
lookup server is an orthogonal problem.

3.2 Mobile Malware Use Case Parameters
As explained in Section 1, in 2015 approximately 3 million mo-

bile malware samples were detected – an increase of nearly 900 000
over the previous year [35]. Therefore, we target a malware dictio-
nary of 226 entries (~67 million entries) as a reasonable estimate
for the next ten years. Furthermore, in the cloud-based mobile mal-
ware checking scenario, it is acceptable for the PMT protocol to
exhibit a small but non-zero false-positive rate (FPR) without sig-
nificantly diminishing users’ privacy. However, false negatives are
never permissible. This tolerance of a non-zero FPR can provide
significant performance benefits, as we show in Sections 6 and 7.
Based on the recommendation of a leading anti-malware vendor,
we selected an FPR of 2−10 which implies that the majority of
users will encounter at most one false positive in total [17]. Given
that the average Android user has 95 installed apps [37], the major-
ity of users will encounter at most one false positive in total.

3.3 Adversary Model
The primary adversary we consider is a malicious lookup server,

which is assumed to have full control of the REE. Its objective is
to learn information about the contents of users’ queries, which
can be used to profile users. As usual, we assume that the adver-
sary is computationally bounded and cannot subvert correctly im-
plemented cryptographic primitives. Therefore the secure channels
between TA and users prevent the lookup server learning the con-
tent of messages exchanged via these channels. Furthermore, we
assume the adversary will not perform hardware-level attacks due
to the relatively high cost of such attacks compared to the value
of the data. Therefore, the adversary cannot observe or modify
the internal state of TA or TA’s interactions with its data in private
memory. On the other hand, a lookup server can masquerade as a
user and submit its own arbitrary queries. It can also schedule or
remove incoming queries as it sees fit. It can observe and measure
the duration of TA’s interactions with non-private memory and indi-
vidual query response latencies. It can attempt to use any available
software side channel (deterministic or probabilistic), and it may
attempt to modify or disclose the dictionary.

Our secondary adversary is the dictionary provider itself, which
is assumed to be honest-but-curious. It may attempt to infer infor-
mation about users or profile them based on any application iden-
tifiers revealed to it by the users. However, it is assumed to only
add legitimate malware identifiers to the dictionary (X). Enforcing
this behaviour is an orthogonal problem, which may be addressed
by e.g. introducing reputation scores for dictionary providers. The
dictionary provider authenticates X towards TA (e.g. via a mes-
sage authentication code using a key it shares with TA) so that TA
can detect any tampering of X . If the dictionary provider wants

to keep the dictionary confidential from the lookup server, it is also
possible to encrypt the dictionary such that it can only be decrypted
by TA. We deem denial-of-service attacks to be out-of-scope.

4. REQUIREMENTS
We define the following requirements to ensure the system’s se-

curity, performance and accuracy:

R1. Query Privacy: The lookup server and dictionary provider
must not be able to learn anything about the content of the
users’ queries or the corresponding responses. The dictio-
nary provider may learn the content of queries for which TA
gave a positive response (i.e. potentially malicious applica-
tions), if the user chooses to reveal these. Stated in the ide-
al/real model paradigm: If there were an inherently trusted
entity (ideal model), then it could have received the dictio-
nary from the dictionary provider and the queries from users,
and sent responses to users without leaking any other infor-
mation to any entities. We require that a real world solution
does not disclose more information than this ideal model.

R2. Response latency: The service must answer every query in
an acceptable time (e.g. in 2 seconds for the malware check-
ing use case). This response latency must be sustainable.

R3. Server scalability: The service must be able to sustain a
level of overall throughput (i.e. queries processed per sec-
ond) that is sufficient for the intended use case (e.g. in the
order of thousands of queries per second for the malware
checking use case).

R4. Accuracy: The service must never respond with a false neg-
ative. The false positive rate must be within the acceptable
limits for the intended use case.

5. THE CAROUSEL APPROACH
To meet the requirements defined in the preceding section, TA

needs a mechanism for accessing the dictionary (X) without leak-
ing any information about the users’ queries (Requirement R1).
The naive approach of accessing specific elements of X in the
REE violates this requirement because the adversary can observe
which dictionary items are being checked. Canonically, this type
of problem could be solved using ORAM where TA is the ORAM
processor and REE stores the encrypted shuffled database. How-
ever, as an alternative approach, we propose a new carousel design
pattern in which a representation of the dictionary is continuously
circled through TA. As we demonstrate in Section 7, the funda-
mental advantage of our carousel approach is that it supports ef-
ficient processing of batches of queries in a single carousel cycle.
Namely, whereas using ORAM to answer a batch of m queries re-
quires accessingO(m logn) dictionary items, thesem queries can
be answered by a single cycle that reads n dictionary items. When
the size of the batch increases, the latter approach becomes more
efficient. Figure 2 gives an overview of our carousel approach.
Dictionary Representation. To avoid leaking information about a
query’s position in the dictionary (X), TA cannot send a response
until it has completed one full carousel cycle, starting from the
point at which the query arrived. Therefore, the two factors influ-
encing response latency are the size of the dictionary and the pro-
cessing efficiency. To minimize latency, the Dictionary Provider
transforms the dictionary X into a more compact and/or more ef-
ficient data structure, which we call the dictionary representation
Y = {y1, ..., yn′}, which is cycled through TA. The choice of data
structure therefore has a significant impact on the performance of

34

TEE	 REE	

Lookup	Server	

Dic1onary	provider	

User	

Results	 qi∈{0,1}128		

ri∈{0,1}1	

Secure	Channel	

Secure	Channel	

Queries
(Q)	

Query	
Representa1on	(S)	

Client	App.	(CA)	

Encode	

Dic1onary		
Representa1on	(Y)	

	
y1	
y2	
.	
.	
.	
yn’	
	

Trusted		
App.	(TA)	

Dic1onary	(X)	

	
	

	

x1	
x2	
.	
.	
.	
xn	

Figure 2: Overview of the carousel approach.

the system, and although several well-known data structures sup-
port efficient membership tests, it is not obvious which is best-
suited for the carousel setting. In Section 6 we discuss these dif-
ferent data structures and in Section 7 we experimentally evaluate
their performance.
Query representation. TA transforms queries Q into representa-
tions S = {s1, ..., sm′} in a similar manner to Y and maintains
them in sorted order. TA stores Q in its secure memory along with
the queries’ times of arrival and references to their representations
in S. When more than one query maps to the same representation
sk, TA only maintains a single sk in S, but adds dummy query
representations in S and keeps track of the number of queries ref-
erencing sk. Keeping a single instance of sk in S irrespective of
the number of queries that maps to it allows the TA to only operate
on the single sk. This is required to prevent information leakage,
since the adversary is also permitted to submit queries.
Carousel processing. To process queries, TA cycles through Y and
scans its contents in order to answer the received queries. CA di-
vides Y into several chunks and invokes TA sequentially with each
chunk as input along with waiting queries. We assume that queries
arrive continuously and breaking Y into chunks allows queries to
be passed to TA without having to wait for a full carousel cycle. In-
coming queries are associated with the identifier of the chunk with
which they arrived, which is defined as their time of arrival. At
the beginning of each chunk, TA updates S based on the newly re-
ceived queries. TA then compares each entry in the chunk with S
and records the results. This process is repeated for each chunk.
Response construction. When a query has waited for a full cy-
cle of Y , TA processes the accumulated results and computes the
response. Responses are sent to the users at the end of each invoca-
tion of TA. Once a response has been sent, TA removes the query
fromQ and removes its representations from S if there are no other
queries associated with those representations, otherwise it removes
dummy representations from S.
Avoiding information leakage. As explained in Section 3.3, the
adversary ADV can observe memory access patterns for all non-
private memory (including CA’s memory), and can measure the
time taken to respond to each query. To provide the strongest possi-
ble security guarantees, we assume thatADV knows exactly which
entry in Y is currently being processed by TA. If ADV could de-
termine whether or not this entry is relevant to the current set of
queries, which in the worst case could be a single query, this would

leak information. Furthermore, for a given query, it is possible that
TA could respond before completing a full carousel cycle (e.g. if
the relevant information was found at the start of Y). However,
since Y is not secret and ADV knows which chunk is currently
being processed by TA, the time between query arrival and re-
sponse might also leak information about both the query and re-
sponse. Therefore, in the carousel approach, we can satisfy Re-
quirement R1 by a) performing constant-time processing for every
entry in Y , and b) ensuring that every query remains in TA for
exactly one full carousel cycle. In other words, the number of op-
erations TA performs per chunk must be independent of S, and the
query response latency must be independent of the queried value.

6. DICTIONARY REPRESENTATION
As explained in the preceding section, the performance of the

system can be significantly improved by choosing an efficient data
structure with which to represent the dictionary. Although there
are various data structures that support efficient membership tests
in general (e.g. Bloom filter [4]), it is not obvious which of these
is best-suited for use in the carousel approach. Since query latency
depends on the length of the dictionary and the cost of processing
each entry, the ideal dictionary representation would minimize both
of these aspects (Requirement R2). Furthermore, the chosen data
structure must support efficient batch processing (i.e. answering
multiple queries in each carousel cycle), since this is the fundamen-
tal advantage of the carousel approach and also improves server
scalability (Requirement R3). In this section we explore different
data structures for representing the dictionary. We first discuss the
naive approach of using an unmodified dictionary, but show that
this is always less space-efficient than our new Sequence of Differ-
ences representation in which we encode the differences between
successive dictionary entries. We then describe how to use two
well-known data structures, Bloom filter and 4-ary Cuckoo hash, in
the carousel setting. Finally, we compare the size and processing
complexity of these different representations.

As explained in Section 1, our motivating scenario of cloud-
based malware checking can tolerate a low but non-zero false pos-
itive rate (FPR). We argue that this is also a reasonable assumption
for other such applications of a PMT protocol. This is important
because it enables us to use data structures with an inherently non-
zero FPR (e.g. Bloom filter) or to reduce the size of the dictionary
representation (e.g. using shorter hashes in the 4-ary Cuckoo hash
representation). We denote the acceptable FPR as 2−ε and explain
how this is determined for each representation.

6.1 Naive Approach
The most naive approach is to cycle the unmodified dictionary

entries through TA (i.e. Y = X) and compare these against the
queries. This is suboptimal because the dictionary entries could be
arbitrarily large, thus increasing the size of Y unnecessarily.

Given that it is acceptable to have an FPR of 2−ε, a slightly
better naive method is to map each dictionary entry xi uniformly to
a point in a domain of size n · 2ε. The FPR can be calculated as:

FPR = 1− (1− 1/(n · 2ε))n ≈ 1− e−1/2ε ≈ 1/2ε = 2−ε,

Therefore (ε+ logn) bits are needed in order to represent an item,
and thus the length of Y is n · (ε+ log n) bits. The same mapping
is applied to the queries such that the resulting query representa-
tions can be compared against Y . However, this approach always
results in a larger Y compared to our new Sequence of Differences
representation, as described in the following subsection. We there-
fore elide the naive approach from our comparisons and use the
Sequence of Differences representation as our baseline.

35

6.2 Sequence of Differences
Dictionary representation. Compared to the naive approach, we
can reduce the size of Y by representing only the differences be-
tween successive items, with minimal additional processing cost.
We first hash each entry xi to a value hi of length (ε+ logn), and
sort the resulting values: h0 < h1 < · · · < hn. Alternatively, hi

can simply be a truncation of xi, since the entries are already uni-
formly distributed in the malware checking case. Instead of storing
the entries themselves in Y , we only store the differences between
successive entries: y0 = h0, y1 = h1 − h0, . . . , yn = hn − hn−1.
If multiple entries result in the same hj , we only keep one copy of
hj in Y to avoid leaking information. The advantage of this ap-
proach is that the length of the differences (yi values) is smaller
than the length of items (hi values). However, this approach re-
quires choosing a fixed number of bits to represent all differences.

We ran a simulation which showed that the probability of a dif-
ference being larger than (2ε+2 − 1) is approximately 2%. There-
fore, we chose to use (ε + 2) bits to represent a single difference.
In the vast majority of cases, the difference yi = hi − hi−1 is
less than 2ε+2, so we insert it directly into Y . Otherwise, yi =
p · (2ε+2 − 1) + b, where b < 2ε+2 − 1. In this case we insert
p entries of “zero” (each ε + 2 bits) into Y , followed by b (with
ε + 2 bits as usual). Note that since the actual difference yi is al-
ways greater than 0, it is easy to recognize these dummy entries.
We expect to add about 0.02n dummy entries, so the total size of
Y remains approximately 1.02(ε+ 2)n.
Query representation. TA maps each query to its representation
in S by applying the same operation as for xi. TA maintains S as a
sorted list with m unique items, each (ε+ logn) bits in length.
Carousel processing. Algorithm 1 shows the carousel processing
for a chunk of Y . TA first recovers the value of the current dic-
tionary entry hi by adding the difference yi to the previous entry
hi−1. For each recovered entry hi, it uses binary search to check
and mark whether hi is in S. The time taken for this binary search
must not depend on the values of the current queries, and thus TA
spends equal time processing every hi. If TA stopped after finding
sj ≤ hi, an adversary ADV , who knows Y , could measure re-
sponse latency to learn whether a certain query is in S (note: ADV
can also insert false queries to influence response latency). Over-
all, it takesO(ndlogme) operations to process each hi. Whenever
yi = 0, TA identifies this as a dummy item and adds (2ε+2 − 1)
to hi−1, but it continues without performing a binary search for
the hi, since Y is already known to the adversary. This algorithm
ensures that TA spends equal time for non-zero entries in Y .
Response construction. When a query completes one carousel
cycle, TA generates its response by checking if the corresponding
item in S is marked as a match.

Algorithm 1 Membership test using Sequence of Differences
Y : Dictionary representation
S: Query representation
h: Current entry
i = 0
while i is in the current chunk do

if Y [i] equals 0 then
h← h+ 2ε+2 − 1

else
h← h+ Y [i]
binary_search of Y [i] in S

end if
i++

end while

6.3 Bloom Filter
Dictionary representation. A Bloom filter is a data structure used
for efficient membership testing. It is an N -bit array B initialized
with 0s, together with l independent hash functions Hi(·) whose
output is uniformly distributed over [0, N − 1] [4]. To add an entry
x to the filter, we compute l array positions: hi = Hi(x), ∀i, 1 ≤
i ≤ l, and set each of these l positions in B to 1 (B[hi] = 1). To
test if an item is in the dictionary, l positions are calculated using
the same set of hash functions. If any of these positions in B is set
to 0, we can conclude that the item is not in B. Otherwise, the item
is declared to be in B. The false positive rate is:

FPRbf = (1− (1− 1
m
)nl)l ≈ (1− e−

nl
m)l,

For an FPR of 2−ε, an optimized bloom filter needs 1.44εn bits
to store n items [25]. We represent the Bloom filter as a bit array
Y , which is the dictionary representation.
Query representation. For each query, TA calculates l byte posi-
tions in the bloom filter and adds the positions to S in sorted order.
Carousel processing. Algorithm 2 shows the carousel process-
ing for a chunk of Y . The algorithm essentially copies from the
carousel all bytes containing data required to decide whether the
queries are in the dictionary (namely, the bytes to which the queries
are mapped by the hash functions). R is a list of bytes for storing
results, initialized to zeros. For each byte in the current chunk,
TA checks whether the byte is needed, as indicated by S. If so, it
copies the byte to R. Otherwise, it copies the byte to a dummy lo-
cation dummy_byte. TA performs an equal number of operations
for every byte in Y .
Response construction. Once the carousel processing completes,
TA goes through all the queries, links them back to the query rep-
resentation, and inspects the corresponding values in R to check if
all bit positions for a particular query are set.

Algorithm 2 Membership test using Bloom Filter
Y : Dictionary representation
S: Query representation
R: A list empty bytes
dummy_byte: a byte used to do dummy operations
dummy_int: an integer used to do dummy operations
i = 0, j = 0
while i is in the current chunk do

if S[j] equals i then
R[j]← Y [i]
j ++

else
dummy_byte← Y [i]
dummy_int++

end if
i++

end while

6.4 4-ary Cuckoo hash
Cuckoo hash is another data structure for efficient membership

test [26]. We use a variant, called d-ary Cuckoo hash with four
hash functions, since it utilizes approximately 97% of the hash table
(compared to less than 50% utilization in standard Cuckoo hash
with two hash functions) [10].
Dictionary representation. Four hash functionsH1 –H4 are used
to obtain four candidate positions for a given dictionary entry xi in
Y . During insertion, xi is hashed to a (ε+2)-bit value yi (e.g. by
truncating xi). This value is inserted into the first available candi-
date position. If all 4 positions for a given yi are already occupied

36

(say, by values ŷ1, ŷ2, ŷ3, ŷ4), yi is inserted by recursively relocat-
ing ŷj into one of their 3 other positions (since each ŷj has a choice
of 4 positions in Y). In the worst case, this recursive strategy could
take many relocations or get into an infinite loop. The standard
solution for this problem is to perform a full rehash, but the prob-
ability for this event is shown to be very small. Kirsch et al. [18]
introduce a very small constant-sized auxiliary stash for putting the
current unplaced item when a failure occurs. They show that this
can dramatically reduce the insertion failure probability. Note that
this dictionary construction process affects neither the performance
nor the privacy guarantees of our system, since it is performed by
the Dictionary Provider and takes place before any queries arrive.
The dictionary is always assumed to be known to the adversary.

To test the existence of an element xi, we need only calculate
its four candidate positions in Y , and check if any of these contain
xi. We use a Cuckoo hash table of 1.03n slots, storing a hash of
(ε+ 2) bits in each slot. The FPR is 4 · 2−(ε+2) = 2−ε.
Query representation. For each query, TA applies the four hash
functions to the query to compute the 4 possible positions of the
query in Y , and adds these positions into the sorted list S.
Carousel processing. Algorithm 3 shows how TA does carousel
processing for the current chunk of the Cuckoo hash table. R is a
list of (ε + 2)-bit values, initialized to zeros, to store results. For
each entry in Y , TA checks whether it is contained in S. If so, TA
copies the byte to R. Otherwise, it copies it to a dummy location
dummy_value. It is clear that TA performs an equal number of
operations for each entry in Y .
Response construction. TA links a query back to its query presen-
tation, and compares it with the four corresponding values in R. A
match with any of these indicates that the query is most probably
in the dictionary X .

Algorithm 3 Membership test using Cuckoo Hash
Y : Dictionary representation
S: Query representation
R: A list (ε+2)-bit empty values
dummy_value: a byte used to do dummy operations
dummy_int: an integer used to do dummy operations
i = 0, j = 0
while i is in the current chunk do

if S[j] equals i then
R[j]← Y [i]
j ++

else
dummy_value← Y [i]
dummy_int++

end if
i++

end while

6.5 Comparison
Table 1 shows a comparison of these three representations. For

a dictionary of n = 226 entries, and FPR of 2−10 the sequence of
differences takes the least space. When the number of concurrent
queries m is smaller than the dictionary size N , Cuckoo hash will
be fastest (asymptotically) to process m queries. In comparison,
an ORAM-based approach requires O(m logN) time to process
m queries. Asymptotically, this will be worse than the carousel
approaches at about the point where m > N/ logN . We compare
the performance of all methods in Section 7.

Table 1: Comparison of dictionary representations.

Dictionary
Representa-
tion

Dictionary
size (N)

Size for
ε = 10
n = 226

Time for
processing
m queries

Sequence of
Differences

1.02(ε+2)n 97.74 MB O(N logm)

Bloom Filter 1.44εn 115.2 MB O(10m+N)

4-ary Cuckoo
Hash

1.03(ε+2)n 98.88 MB O(4m+N)

7. EXPERIMENTAL EVALUATION
To evaluate the performance of our carousel approach, we im-

plemented the full system (including multiple data structures) on
the two most prominent hardware security architectures currently
available: ARM TrustZone and Intel SGX. In order to compare our
approach with ORAM, we also implemented the essential compo-
nents of a functional Path ORAM prototype on both hardware plat-
forms. All measurements were obtained using real hardware.

7.1 Environment Setup
Kinibi-TZ. We used a Samsung Exynos 5250 development board
from Arndale with a 1.7 GHz dual-core ARM Cortex-A17 proces-
sor to implement the lookup server.4 It runs Android OS (version
4.2.1) as the host OS and Kinibi OS as the TEE OS. Kinibi allows
authorized trusted applications to execute inside the TEE. We use
the ARM GCC compiler and Kinibi-specific libraries.

Since Kinibi limits total TA private memory to a total of 1 MB,
the memory available for heap and stack data structures is only
about 900 KB. This limits the number of queries that can be pro-
cessed concurrently. Further, Kinibi on the development board only
allows CA to share 1 MB of additional memory with TA. We used
this memory to transfer chunks of Y as well as to submit queries
and retrieve responses. This placed an upper bound on the size of
the chunks shared with TA at a given time. CA includes the meta-
data (e.g. queries per chunk, chunk identifiers, and number of items
from Y in the chunk) in TA invocation parameters. To obtain tim-
ing measurements, we used the gettimeofday() function, a Linux
system call, which provides µs resolution.5

Intel SGX. We used an SGX-enabled HP EliteDesk 800 G2 desk-
top PC with a 3.2 GHz Intel Core i5 6500 CPU and 8 GB of RAM.
It runs Windows 7 (64 bit version) as the host OS, with a page size
of 4 KB. We used the Microsoft C/C++ compiler and the Intel SGX
SDK for Windows. Since we are practically unconstrained by code
size, we configured the compiler to optimize execution speed (O2)
and used the same compiler options for all experiments. To obtain
timing measurements, we used the Windows QueryPerformance-
Counter (QPC) API, which provides high resolution (<1µs) time
stamps suitable for time-interval measurement.6

For Intel SGX, we have to account for the fact that TA does
not have private memory, and thus the adversary can observe TA’s
memory access pattern at page-level granularity (as discussed in
Section 2). To overcome this challenge, we designed each SGX TA
such that its memory access pattern does not depend on any secret
data. A central primitive in these designs is a page-sized data con-
tainer, which we refer to as an oblivious page. Whenever a private
4http://arndaleboard.org/
5http://man7.org/linux/man-pages/man2/gettimeofday.2.html
6https://msdn.microsoft.com/en-us/library/windows/desktop/
ms644904

37

http://arndaleboard.org/
http://man7.org/linux/man-pages/man2/gettimeofday.2.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644904
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644904

data structure spans more than one oblivious page, we perform the
same memory access operations on all pages. Since we assume
the adversary can also measure the timing between these memory
accesses, we ensure that this does not depend on and private infor-
mation. These challenges were also recently identified by Gupta
et al. [15], who used a similar approach of ensuring constant-time
operations and performing uniform memory accesses to avoid leak-
ing information. We do not attempt to defend against probabilistic
cache-based side-channel attacks, but we argue that these would
not be feasible against our implementation since we do not per-
form repeated operations using any piece of secret data (e.g. as re-
quired for the attacks by Liu et al. [20]). Our mitigation techniques
could be adapted to these types of attacks, but this would have an
equal impact on the performance of all data structures in both our
carousel and ORAM experiments, so the overall comparisons and
conclusions will remain unchanged.

7.2 Implementing PMT: Carousel Methods
For all hash table lookups, we used the fast non-cryptographic

lookup3 hash function from the set of Jenkins hash functions.7 For
AES operations, we used the mbed TLS cryptography library8 on
Kinibi-TZ, and the official Intel-supplied trusted cryptography li-
brary (sgx_tcrypto) on SGX. We generated a dictionary of
n = 226 items, each represented as 128 bits, drawn from a uni-
form random distribution.9 We used the data structures described
in Section 6 to generate Y . Each user communicates with TA via a
secure channel, using 128 bit AES encryption in CBC mode.

In all cases, we aimed to implement the dictionary representa-
tion data structures using an integer number of bytes so as to avoid
additional bit-shift operations. However, for the sequence of differ-
ences and 4-ary Cuckoo hash in Kinibi-TZ, we represented items in
Y as 12-bit structures (ε = 10) and operated on two items (3 bytes)
at a time. Furthermore, we optimized our implementations to make
use of the largest available registers on each platform (32-bit on
Kinibi-TZ and 64-bit on Intel SGX) for read/write operations.
Sequence of Differences. Each dictionary entry was truncated to a
36-bit value (hi) whilst maintaining the desired FPR (ε = 10). En-
tries in Y are 12-bit differences between two successive dictionary
entries. In Kinibi-TZ, Q is a linked-list ordered by chunk identifier
while S is maintained as a sorted array. Both Q and S are stored
entirely in TA’s private memory, which can accommodate a maxi-
mum of 12800 queries. In SGX, Q is stored as a sorted array span-
ning one or more oblivious pages. Given the size of a query and
its associated metadata (i.e. query ID and result), a single obliv-
ious page can accommodate up to 500 queries. If the number of
concurrent queries exceeds 500, TA uses multiple oblivious pages
but always performs the same number of operations on each page.
This is achieved by including a dummy query on each oblivious
page. The adversary is unable to distinguish these dummy opera-
tions from real operations since they take exactly the same amount
of time and access the same oblivious page. Clearly, this results
in many additional operations and thus has a significant impact on
performance as the number of queries increases. However, one op-
timization, which arises from the requirement to perform the same
operations on each page, is that we can process each page indepen-
dently (i.e. each page can be processed as if it were the only page
present). Although this does not negate the performance overhead,
it is a significant improvement over a naive implementation.

7http://www.burtleburtle.net/bob/c/lookup3.c
8https://tls.mbed.org/
9In a real deployment, this could be a hash of a mobile application
package, which is customarily used by anti-malware vendors as a
(statistically) unique package identifier.

4-ary Cuckoo Hash. We use Cuckoo hash with 4 hash functions
to generate Y . We represent a query as a 12-bit value, and each
of the four positions as 32-bit values. Each query representation
therefore consists of a 32-bit position and a 16-bit buffer (R) to
store the dictionary item corresponding to that position. In Kinibi-
TZ, we maintain S as a sorted linked list. The private memory
can accommodate a maximum of 4500 queries. In SGX, we again
store S as a sorted array spanning one or more oblivious pages.
In this scheme, we can only accommodate up to 170 queries on
each oblivious page, since we must store four positions for each
query. As in the previous scheme, if the number of queries ex-
ceeds this threshold, multiple oblivious pages are used, and must
all be accessed uniformly. In addition to the previous optimization
of treating these pages independently, we can further optimize by
selecting hash functions that do not overlap with each other. Fo-
takis et al. [11] used this approach to simplify the algorithm, but
in our case it can also provide a significant performance advantage.
Using four non-overlapping hash functions essentially allows us to
partition the dictionary representation into four regions, and con-
sider only the query representations for one region at a time. We
therefore allocate the four query representations to four different
sets of oblivious pages, thus allowing up to 680 queries per set of
four pages. When a particular region of the dictionary representa-
tion is being processed, we only operate on the pages corresponding
to that region (if there are multiple such pages, the memory access
must still be uniform for each of them).
Bloom filter. We use Bloom filter with 10 hash functions, and thus
represent each query as ten positions in Y . Each query represen-
tation consists of a 32-bit position value and an 8-bit buffer (R)
to store the byte from Y which contains that position. In Kinibi-
TZ, both Q and S are maintained as linked-lists in the TA’s pri-
vate memory. The private memory can hold a maximum of 1750
queries. The Bloom filter approach always requires more opera-
tions than 4-ary Cuckoo hash. Having confirmed this on Kinibi-TZ,
we omit the repetition of this experiment on SGX. The implementa-
tion follows the same principles as that of the Cuckoo hash scheme.

7.3 Implementing PMT: Cuckoo-on-ORAM
Since ORAM itself is not specifically designed for PMT, we

need to generate a suitable dictionary representation (Y) to store
in the ORAM database. We chose Cuckoo hash because it re-
quires the fewest memory accesses. By comparison, each Bloom
filter query requires 10 different accesses, and each binary search
in the sequence of differences representation accesses at least 26
positions. TA is the ORAM processor whilst CA stores the en-
crypted shuffled database. When TA receives a query, it maps the
query to four cuckoo positions in Y . It then access these four posi-
tions following an ORAM protocol to complete the PMT. Since
ORAM was designed to hide the access patterns, the adversary
ADV learns no information about which positions have been ac-
cessed. We chose Path-ORAM as baseline for comparison because
of its simplicity and because the Goldreich-Ostrovsky lower bound
of O(m log n) amortized lookups for m queries applies to all
ORAM variants mentioned in Section 2.2, e.g. Ring-ORAM only
has a 1.5x speedup over Path-ORAM in the secure-processor set-
ting. Moreover, advanced parallel or asynchronous ORAM schemes
require parallel computation, and are difficult to implement without
leaking information, e.g. TaORAM requires additional temporary
data storage in TA, which in SGX must be made oblivious. A sum-
mary of our chosen parameters is shown in Table 2.

We set the block size to 4 KB and each node of the tree contains
4 blocks. Our 98.88 MB dictionary (Table 1) therefore required
6329 nodes, which results in a tree of height 13. It required a 6 KB

38

http://www.burtleburtle.net/bob/c/lookup3.c
https://tls.mbed.org/

Table 2: Path ORAM parametrization.

Block size Node size Tree size Tree height

4 KB 4 blocks 6329 nodes 13 levels

position map which can easily be stored in TA’s private memory.
Although the Path ORAM algorithm is relatively simple, imple-

menting it in full has been found to be quite complicated [3], and is
not required for this comparison. Instead, we prototyped the main
operations and in all cases chose options that favor the ORAM im-
plementation. This partial prototype therefore represents a gener-
ous upper bound on the performance of any full implementation.
Kinibi-TZ. In Kinibi-TZ, we avoided maintaining the stash re-
quired by Path ORAM. Instead while storing a path back, the nodes
were re-encrypted and shuffled along the path and the position map
updated accordingly. Again, this simplification favors ORAM in
the comparison since maintaining a stash would increase the num-
ber of operations performed per query.
Intel SGX. Since Path ORAM assumes some amount of private
memory, which is not available in SGX, we had to take additional
steps to ensure that no information is leaked through the enclave’s
memory access pattern. As with previous schemes, we used the
concept of an oblivious page. All private data structures are stored
on oblivious pages, and whenever a data structure’s size exceeds
one page, we ensure that the same sequence of operations is per-
formed on each page (e.g. by reading and writing dummy values).

Specifically, with the above parameters, the Path ORAM position
map spanned four oblivious pages, thus requiring four reads/writes
for every read/write to the position map. Each node in the stash also
takes up four pages. Reading a node into the stash does not require
specific privacy protection (e.g. ADV may learn the location of a
specific node in the stash without compromising privacy), and thus
no additional operations are required. However, whenever a node
is evicted from the stash, ADV must not be able to identify the
evicted node. To achieve this, we allocate a stash output buffer,
equal to the size of one node, within the enclave’s secure memory.
We then iterate over all nodes in the stash, copying the intended
node into the output buffer and performing a constant-time dummy
write to the output buffer for every other block. Since the stash
output buffer is still in the enclave’s secure memory, ADV cannot
determine which node has been placed in this buffer. The contents
of the output buffer are then encrypted and evicted as usual.10

We use the same optimization for Cuckoo hash as described ear-
lier: the four hash functions are selected to have non-overlapping
outputs. As above, this allows us to partition the dictionary rep-
resentation into four different regions. In the case of ORAM, we
construct four separate ORAM trees, such that each holds the val-
ues for a single region. This optimization improves performance in
the Path ORAM case by reducing the size of each tree, and hence
the path length and size of the position map. With this optimization,
each tree’s position map fits onto two oblivious pages.

7.4 Performance evaluation
Batch Performance. Figures 3 and 4 show the total processing
time for a single batch of queries using different carousal schemes.
Queries were sent in a batch at the beginning of the each carousel
cycle. To achieve the desired FPR, we used dictionary representa-

10The issue of preventing side-channels from leaking information
about the ORAM queries is similar to the issue of asynchronicity in
ORAM queries discussed in [31]. We took a conservative approach
of preventing such side-channels.

tions with ε = 10 on Kinibi-TZ, and ε = 14 on Intel SGX (since it
was more efficient to operate on byte-aligned data structures on the
Intel SGX platform).

Each point in the figures represents the average time for process-
ing the batch over 1000 repetitions. The figures show that process-
ing time increases with query load for all three carousel schemes.
On both platforms, Difference-on-a-carousel has longer processing
time, because of having to do a binary search on S for every item
in Y . On Intel SGX, the non-linear step-like behavior is caused
by the use of multiple oblivious pages. Since the same number of
operations must be performed on each page (to preserve privacy),
each additional page causes a step increase in processing time. The
width of each step corresponds to the number of queries that can be
accommodated per page. In the Difference-on-a-carousel scheme,
the steps take a logarithmic shape due to the binary search on the
final (under-utilized) page, which eventually reaches full capacity.

On Kinibi-TZ, under small query load (less than 500 queries),
the batch processing time for Bloom-filter-on-a-carousel is faster
than other carousel approaches, however, processing time increases
rapidly as the number of queries grows (beyond 1000 queries). The
hardware was unable to support larger query batch sizes.

Cuckoo-on-a-carousel (CoaC) can process more queries with less
overhead than the other methods. Again, the non-linear perfor-
mance characteristics in SGX are due to the use of multiple obliv-
ious pages. Since this algorithm requires only pointer-based oper-
ations (i.e. no binary search), each step adds a constant number of
additional operations, resulting in flat step increase.

In contrast to CoaC, Cuckoo-on-ORAM (CoO) provides a very
fast response latency (9 ms) for a single query. However, queries
are processed sequentially. For example, when 2,000 queries ar-
rive at once, the latency of the final response will be 18 seconds on
Kinibi-TZ, which is beyond the acceptable tolerance of a malware
checking service. By comparison, on Kinibi-TZ, CoaC takes only
1.83 seconds to process 2,000 queries. Results for Intel SGX show
a similar pattern with significantly lower latencies (e.g. 0.282 sec-
onds to process 2,000 queries). Carousel schemes therefore achieve
lower query response latencies when handling batches of queries.
Steady-state Performance. In addition to measuring batch query
processing, we also compare the steady-state performance of CoaC
and CoO, assuming a constant query arrival rate. Again we are
primarily concerned with the average query response latency. On
Kinibi-TZ, CoO provides responses with a latency of 9 ms if the ar-
rival rate is below 111 queries/second. On Intel SGX, this latency
decreases to 1 ms latency for arrival rates below 1000 queries/sec-
ond. Figure 5a and Figure 5b show the steady state performance of
Kinibi-TZ and Intel SGX for different query arrival rates (averaged
over 1000 repetitions). In order to identify the breakdown point
where CoaC can no longer guarantee a bounded query response
latency, we simulated the steady-state operation of CoaC with dif-
ferent query rates and calculated the average number of concurrent
queries in TA (i.e. the occupancy) during each carousel cycle. On
Kinibi-TZ, we identify a query rate as sustainable when the av-
erage query occupancy remains stable at a level below the maxi-
mum number of concurrent queries the TA can handle (e.g. 4500
queries). We noticed that the carousel cycle time fluctuates due to
OS scheduling, which occasionally causes the occupancy to reach
the maximum capacity. Although occasional spikes can be toler-
ated, we consider the breakdown point to be the arrival rate at which
the average occupancy consistently reaches this maximum capac-
ity. For example in Kinibi-TZ, we found that for query arrival rates
above 1030 queries/second, the CoaC query response latency can-
not be sustained. In contrast, with 1025 queries/second, the oper-
ating characteristics of CoaC are stable, and we therefore conclude

39

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
1

5

10

15

20

Number of queries

Pr
oc

es
si

ng
tim

e
(s

ec
on

ds
) Bloom-Filter-on-a-Carousel

Cuckoo-on-a-Carousel
Differences-on-a-Carousel

Cuckoo-on-ORAM

Figure 3: Kinibi-TZ: Total processing time for a batch of queries (average and variance over 1000 runs).

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

1

2

3

4

Number of queries

Pr
oc

es
si

ng
tim

e
(s

ec
on

ds
)

Cuckoo-on-a-Carousel
Differences-on-a-Carousel

Cuckoo-on-ORAM

Figure 4: Intel SGX: Total processing time for a batch of queries (average and variance over 1000 runs).

that the breakdown point is between 1025 and 1030 queries/second.
For Intel SGX, we noted that there is virtually no variability in

the batch performance results (i.e. the results do not change much
over multiple runs), and leveraged this to ascertain the steady-state
breakdown point. We set the occupancy of TA to a fixed value and
measured the time taken to process one carousel’s worth of chunks.
Dividing this fixed occupancy by the average carousel time gives
the maximum query arrival rate sustainable at that occupancy level.
Repeating this for multiple occupancy values yields the curve in
Figure 5b. For Intel SGX, this is the best method for determin-
ing the breakdown point because of the non-linear behavior caused
by the oblivious pages. Although each additional page allows more
queries to be processed in a single carousel cycle, it also adds a per-
formance penalty, which increases the carousel cycle time. There-
fore, the maximum sustainable rate can only be achieved by fully
utilizing every page. In practice, the system would employ a opti-
mization algorithm to select the optimal number of pages for each
situation. The steady-state query rates shown in Figure 5b would
be the input parameters for this optimization algorithm.

8. VARIATIONS AND EXTENSIONS
Query scalability. Query arrival rates that exceed the breakdown
point can be supported by adding new hardware so that multiple
TAs can run in parallel. The same dictionary representation can be
replicated for each TA. Without loss of privacy, any incoming query
can be routed to any TA (e.g. using any type of load balancing
scheme) since each TA has its own dictionary representation.
Dictionary scalability. Our carousel approach is specifically de-
signed around the parameters for the malware checking use case,
including generous safety margins (e.g. a dictionary size of 226 en-
tries). For larger dictionary sizes, the dictionary can be split into

multiple subsets, each handled by a separate TA running on its own
core or processor. To ensure query privacy, an adversary must not
be able to identify which TA receives a given query. This requires
a central dispatcher TA that multiplexes incoming requests to the
worker TAs. Additional decoy traffic may be needed to thwart the
adversary from gaining information via traffic analysis.
Compact representation vs. complexity of processing. More
compact dictionary representations may lead to shorter carousel cy-
cle times, but this may be offset by the complexity of processing
the representation. Conditional clauses (if) in the carousel pro-
cessing logic are particularly expensive. For example, we initially
implemented the sequence of differences approach using Huffman
encoding to represent the differences. This resulted in each differ-
ence represented by ε+1.35 bits on average, which is a significant
reduction in dictionary size. In particular, as Huffman encoding is
prefix-free, there was no need to add dummy entries (as explained
in Section 6). However, the decoding process required processing
variable-size suffixes, which resulted in an overall increase in the
carousel cycling time.
Implementation optimization. By default, items in the dictio-
nary representations are not necessarily aligned on byte boundaries
(e.g. in the sequence of differences and Cuckoo hash methods, our
desired FPR results in dictionary representations with 12-bit item
length). Extracting such an item from a bit string requires multiple
shift and add operations compared to byte-aligned representations.
However, in Kinibi-TZ we still use 12-bit representations since we
can represent two items with exactly 3 bytes. Similarly, we reduced
the number of read operations by designing our algorithms to read
data at the maximum register size of each platform.
Adversary capabilities. We assumed that the adversary can ob-
serve the full memory access pattern for non-private memory (e.g.

40

0 200 400 600 800 1,000 1,200
10−3

10−2

10−1

100

101

102

1025 queries/second

111 queries/second

1.24 seconds

Query arrival rate (queries/second)

Pr
oc

es
si

ng
tim

e
(s

ec
on

ds
)

Cuckoo-on-a-Carousel
Cuckoo-on-ORAM

(a) Kinibi-TZ

0 1,000 2,000 3,000 4,000
10−4

10−3

10−2

10−1

100

101

102

1354 queries/second

3720 queries/second

0.36 seconds

Query arrival rate (queries/second)

Pr
oc

es
si

ng
tim

e
(s

ec
on

ds
)

Cuckoo-on-a-Carousel
Cuckoo-on-ORAM

(b) Intel SGX

Figure 5: Steady-state processing time for uniform query arrival rates (average and variance over 1000 runs). Vertical lines indicate
breakdown points.

the CA’s memory, from which the dictionary representation is ac-
cessed). This provides the strongest privacy guarantee on all hard-
ware platforms. However, if certain platforms do not allow the ad-
versary to make such detailed observations, our approach could be
further optimized for these platforms without impacting privacy.

9. ANALYSIS
Privacy Analysis. TA is implemented to behave essentially as a
trusted third party. Namely: (1) The communication channels be-
tween users and TA are encrypted and authenticated. (2) Remote at-
testation guarantees to all parties that TA runs the required program.
(3) The TEE isolates TA’s computation from the rest of the system.
(4) The algorithms that are used (Algorithms 1, 2 and 3) were de-
signed and carefully implemented to prevent side-channels. In gen-
eral, guaranteeing that different code paths take equal processing
cannot be fully achieved at source code level. In Appendix B, we
discuss how we ensured equal processing time at instruction level.
The access patterns and the entire behavior of TA, when viewed ex-
ternally, are indistinguishable for different query sets of the same
size. In all algorithms, TA accesses every dictionary entry within
the dictionary and performs an equal number of operations per en-
try, regardless of whether a match is found. An adversary who
measures, for example, the time taken to process a given chunk,
will always get the same measurement, since this time depends on
the number of queries but not on the contents of the queries. There-
fore, Requirement R1 is satisfied.
Performance Analysis. Figure 3 and 4 show that the carousel time
for 1000 simultaneous queries is within about a second for both
Kinibi-TZ and SGX, satisfying Requirement R2 (latency). When
the number of simultaneous queries in the TA increase to 4000, the
response latency is still reasonable (4 seconds for Kinibi-TZ and
2 seconds for SGX). Figures 5a and 5b show that the carousel ap-
proach can sustain a high query arrival rate (1025 queries/second
for Kinibi-TZ and 3720 queries/second for SGX) without break-
down. Use of multiple TEEs can support more queries or a larger
dictionary, satisfying Requirement R3 (scalability). Finally, none
of our schemes introduces any false negatives, and the false posi-
tive rate is within the 2−10 limit identified (Requirement R4).

10. RELATED WORK
Private Information Retrieval (PIR) is a cryptographic protocol

that allows a user to retrieve an item from a known position in a
server’s database without the server learning which item was ac-
cessed. The first single-server scheme was introduced by Kushile-
vitz and Ostrovsky [19]. It is not reasonable to assume that users
know the indices of desired items. This motivates Private Key-
word Search (PKS). In PKS, the server holds a database of pairs
{(x1, p1), . . . , (xn, pn)}, where xi is a keyword and pi is a pay-
load. A query is a searchword x instead of an index. After the pro-
tocol, the user gets the result pi if there is a value i for which xi = x
or otherwise receives a special symbol ⊥. PKS can be constructed
based on PIR, oblivious polynomial evaluation [12], or multiparty
computation [27]. Private membership test can be viewed as a sim-
plified version of PKS, where the user does not require the actual
payload. The main limitation of the current PIR/PKS solutions is
their efficiency, in terms of both computation and communication.

In addition to the purely cryptographic solutions, another option
is to use trusted hardware combined with cryptography to solve
the PIR/PKS problems. For example, [16] can achieve PIR with
constant computation and communication, but have to periodically
re-shuffle the dataset. Backes et al. [2] combine trusted hardware
with ORAM to ensure access privacy in online behavioral adver-
tising. However, this approach has two drawbacks compared with
our solution: it requires all elements in the database to be encrypted
thus some subset must be decrypted to answer each query, and it is
hard to achieve batched query processing, thus limiting scalability.

Another approach for implementing PMT is to have the server
offload some data to the user (retaining the same order) in the of-
fline phase. This allows constant communication and computation
for each query in the online phase [24, 23]. However, the drawback
is that it prevents the dataset from being updated frequently, which
is a critical requirement for a malware checking use case.

11. CONCLUSION AND FUTURE WORK
Motivated by the problem of privacy-preserving cloud-based mal-

ware checking, we introduced a new carousel approach for pri-

41

vate membership test. We evaluated several data structures for
representing the dictionary and described how to adapt them to
the carousel design pattern. We implemented these on both ARM
TrustZone and Intel SGX and found that Cuckoo hash provides the
lowest query response latency. We compared our carousel approach
with ORAM, and found that the former can sustain significantly
higher query arrival rates. Future work will investigate other data
structures for representing the dictionary, compare newer ORAM
schemes, and explore new ways of using trusted hardware to en-
hance these schemes.

Acknowledgements
This work was supported by the Cloud Security Services (CloSer)
project (3881/31/2016), funded by TEKES – the Finnish Fund-
ing Agency for Innovation, and by a grant from the Israel Science
Foundation, and the BIU Center for Research in Applied Cryptog-
raphy and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office.

12. REFERENCES
[1] ANATI, I., ET AL. Innovative Technology for CPU Based

Attestation and Sealing. In Workshop on Hardware and
Architectural Support for Security and Privacy. (2013).

[2] BACKES, M., ET AL. Obliviad: Provably secure and
practical online behavioral advertising. In IEEE Symposium
on Security and Privacy (2012).

[3] BINDSCHAEDLER, V., ET AL. Practicing oblivious access
on cloud storage: The gap, the fallacy, and the new way
forward. In ACM SIGSAC Conference on Computer and
Communications Security (2015).

[4] BLOOM, B. H. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM 13, 7 (1970), 422–426.

[5] BOYLE, E., ET AL. Oblivious parallel RAM and
applications. In Theory of Cryptography Conference (2016).

[6] COSTAN, V., ET AL. Sanctum: Minimal hardware extensions
for strong software isolation. In USENIX Security (2016).

[7] DACHMAN-SOLED, D., ET AL. Oblivious network RAM
and leveraging parallelism to achieve obliviousness. In
International Conference on the Theory and Application of
Cryptology and Information Security (2015).

[8] DEVADAS, S., ET AL. Onion ORAM: A constant bandwidth
blowup oblivious RAM. In Theory of Cryptography
Conference (2016).

[9] EKBERG, J., ET AL. The untapped potential of trusted
execution environments on mobile devices. IEEE Security &
Privacy 12, 4 (2014), 29–37.

[10] ERLINGSSON, U., ET AL. A cool and practical alternative to
traditional hash tables. In Workshop on Distributed Data and
Structures (2006).

[11] FOTAKIS, D., ET AL. Space efficient hash tables with worst
case constant access time. Theory of Computing Systems 38,
2 (2005), 229–248.

[12] FREEDMAN, M. J., ET AL. Keyword search and oblivious
pseudorandom functions. In Theory of Cryptography
Conference (2005).

[13] GOLDREICH, O., AND OSTROVSKY, R. Software protection
and simulation on oblivious RAMs. J. ACM 43, 3 (May
1996), 431–473.

[14] GOOGLE. Android Security 2015 Year In Review, Apr. 2015.
http://static.googleusercontent.com/media/source.android.

com/en//security/reports/Google_Android_Security_2015_
Report_Final.pdf.

[15] GUPTA, D., ET AL. Using Intel software guard extensions
for efficient two-party secure function evaluation. In
Financial Cryptography and Data Security (2016).

[16] ILIEV, A., AND SMITH, S. W. Protecting client privacy with
trusted computing at the server. IEEE Security Privacy 3, 2
(2005), 20–28.

[17] KIRICHENKO, A. Personal communication. F-Secure, 2015.
[18] KIRSCH, A., ET AL. More robust hashing: Cuckoo hashing

with a stash. SIAM Journal on Computing 39, 4 (2010),
1543–1561.

[19] KUSHILEVITZ, E., AND OSTROVSKY, R. Replication is not
needed: single database, computationally-private information
retrieval. In Foundations of Computer Science (1997).

[20] LIU, F., ET AL. Last-level cache side-channel attacks are
practical. In IEEE Symposium on Security and Privacy
(2015).

[21] LORCH, J. R., ET AL. Shroud: Ensuring private access to
large-scale data in the data center. In USENIX Conference on
File and Storage Technologies (2013).

[22] MCKEEN, F., ET AL. Innovative instructions and software
model for isolated execution. In Workshop on Hardware and
Architectural Support for Security and Privacy (2013).

[23] MESKANEN, T., ET AL. Private membership test for Bloom
filters. In IEEE Trustcom/BigDataSE/ISPA (2015).

[24] NOJIMA, R., AND KADOBAYASHI, Y. Cryptographically
secure Bloom-filters. Trans. Data Privacy 2, 2 (Aug. 2009),
131–139.

[25] PAGH, A., ET AL. An optimal Bloom filter replacement. In
ACM-SIAM Symposium on Discrete Algorithms (2005).

[26] PAGH, R., AND RODLER, F. F. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122 – 144.

[27] PAPPAS, V., ET AL. Blind seer: A scalable private DBMS. In
IEEE Symposium on Security and Privacy (2014).

[28] PINKAS, B., ET AL. Faster private set intersection based on
ot extension. In USENIX Security (2014).

[29] PINKAS, B., ET AL. Phasing: Private set intersection using
permutation-based hashing. In USENIX Security (2015).

[30] REN, L., ET AL. Constants count: Practical improvements to
oblivious RAM. In USENIX Security (2015).

[31] SAHIN, C., ET AL. TaoStore: Overcoming asynchronicity in
oblivious data storage. In IEEE Symposium on Security and
Privacy (2016).

[32] SCHIFFMAN, J., ET AL. Seeding clouds with trust anchors.
In ACM Workshop on Cloud Computing Security (2010).

[33] SENEVIRATNE, S., ET AL. Predicting user traits from a
snapshot of apps installed on a smartphone. SIGMOBILE
Mob. Comput. Commun. Rev. 18, 2 (2014), 1–8.

[34] STEFANOV, E., ET AL. Path ORAM: An extremely simple
oblivious RAM protocol. In ACM SIGSAC conference on
Computer & communications security (2013).

[35] UNUCHEK, R., AND CHEBYSHEV, V. Mobile malware
evolution 2015. Kaspersky Security Bulletin, Feb. 2016.
https://securelist.com/analysis/kaspersky-security-bulletin/
73839/mobile-malware-evolution-2015/.

[36] XU, Y., ET AL. Controlled-channel attacks: Deterministic
side channels for untrusted operating systems. In IEEE
Symposium on Security and Privacy (2015).

[37] YAHOO AVIATE. How Android users interact with their
phones. https://yahooaviate.tumblr.com/image/95795838933.

42

http://static.googleusercontent.com/media/source.android.com/en//security/reports/Google_Android_Security_2015_Report_Final.pdf
http://static.googleusercontent.com/media/source.android.com/en//security/reports/Google_Android_Security_2015_Report_Final.pdf
http://static.googleusercontent.com/media/source.android.com/en//security/reports/Google_Android_Security_2015_Report_Final.pdf
https://securelist.com/analysis/kaspersky-security-bulletin/73839/mobile-malware-evolution-2015/
https://securelist.com/analysis/kaspersky-security-bulletin/73839/mobile-malware-evolution-2015/
https://yahooaviate.tumblr.com/image/95795838933

APPENDIX
A. ADDITIONAL BENCHMARKS

Table 3: Average carousel cycle time of a 116 MB dictionary
representation under different access patterns.

Memory access patterns
Platform No reads (TA

invocations
only)

One read per
4 kB page

Read every
byte

Kinibi-TZ
55.84 ms

(±6.04)

159.06 ms

(±34.52)

234.44 ms

(± 55.94)

Intel SGX
0.37 ms

(±0.02)

0.67 ms

(±0.03)

10.32 ms

(±0.59)

As shown in Table 3, we experimentally measured the average
time to cycle a 116 MB dictionary representation (Y) through TA
in 1 MB chunks, for different memory access patterns. The first
column shows the time required to perform 116 TA invocations
without any memory access or computation. As confirmed by this
column, a main strength of Intel SGX is that its enclave entries/ex-
its add very little overhead. The second column shows the time for
accessing one byte per 4 KB page in Y , in addition to TA invoca-
tions. The third column shows the total time for accessing the en-
tirety of Y , also in addition to TA invocations. All read operations
were performed using the maximum register size on each platform
(i.e. 32 bit on Kinibi-TZ and 64 bit on Intel SGX). For Intel SGX,
TA invocation overhead is negligible, so overhead shown in the last
column is almost entirely due to the read operations. We can see
that more memory accesses result in longer carousel cycling time
for both platforms. However, even if a dictionary representation al-
lows otherwise, we always access the entirety of Y to ensure query
privacy. Therefore, the last column represents a lower bound for
carousel cycling time (and hence query response latency).

B. CODE OPTIMIZATION
Implementing algorithms from Section 6 naively does not en-

sure that the TA performs equal number of operations on every
item in Y at machine-level instructions. For example, in Algo-
rithm 3, R can be an unsigned char array and dummy_byte
an unsigned char variable. The compiler uses different sets of
instructions to copy values of Y on to them causing unequal num-
ber of machine-level instructions at the conditional clauses (if and
else). Similarly, the compiler removes or optimizes the dummy
operation (e.g. dummy_int ++) if they are not used elsewhere
in the code. It also removes dummy conditional clauses that are
unreachable / unnecessary.

We tailored our implementation to achieve a balanced set of in-
structions for the conditional clauses encountered while processing
the carousel. Figure 6 depicts a section of the carousel processing
code for Cuckoo hash method that produces equal number of oper-
ations on every item in Y at machine-level instructions. Figure 7
shows the disassembled machine-level instructions mnemonics for
the same code segment. For simplicity the code segment shown in
the figure is for processing 16-bit (ε = 14) items in Y .

In Figure 6, ptr_query_rep represents the pointer to S. We
use the same variable to represent the dictionary positions as well as
store the value of the corresponding position. We implemented the
code to operate on 32-bit values. The variables ptr_query_rep,
ptr_chunk and ptr_chunk_end are defined as unsigned
int*. Similarly dummy_pos is an array of type unsigned
int.

43

/ / p t r _ c h u n k : p o i n t e r t o t h e
/ / b e g i n i n g of Y chunk

/ / p t r _ c h u n k : p o i n t e r t o t h e
/ / end Y chunk

/ / y_pos : c u r r e n t p o s i t i o n
/ / i n Y

/ / p t r _ q u e r y _ r e p : p o i n t e r t o S

/ / dummy_pos : dummy a r r a y o f s i z e 255

w h i l e (p t r _ c h u n k < p t r _ c h u n k _ e n d)
{

i f (y_pos == ∗ p t r _ q u e r y _ r e p)
{
∗ p t r _ q u e r y _ r e p = ∗ p t r _ c h u n k ;
p t r _ q u e r y _ r e p ++;

} e l s e {
dummy_pos [(u i n t 8 _ t)∗ p t r _ c h u n k] = \
∗ p t r _ c h u n k ;

}
y_pos ++;
p t r _ c h u n k = p t r _ c h u n k + 1 ;

}

Figure 6: Kinibi TA code for Cuckoo-on-a-Carousel processing

70 e : 1b61 subs r1 , r4 , r5
710 : 4439 add r1 , r7
712 : f5b1 1 f40 cmp .w r1 , #3145728 ; 0 x300000
716 : f1c5 0200 r s b r2 , r5 , #0
71 a : d20a bcs . n 732 < t l M a i n +0x1b4 >
71 c : 6819 l d r r1 , [r3 , #0]
71 e : 4422 add r2 , r4
720 : 5dd2 l d r b r2 , [r2 , r7]
722 : 428 f cmp r7 , r1
724 : b f0c i t e eq
726 : f843 2b04 s t r e q .w r2 , [r3] , #4
72 a : f84a 2022 s t r n e .w r2 , [s l , r2 , l s l #2]
72 e : 3701 adds r7 , #1
730 : e7ed b . n 70 e < t l M a i n +0x190 >

Figure 7: Disassembled machine instructions mnemonics for Cuckoo-on-a-Carousel processing

44

	Introduction
	Preliminaries
	Trusted Execution Environment
	ARM TrustZone
	Intel SGX

	Oblivious RAM

	Problem Setting
	System Model
	Mobile Malware Use Case Parameters
	Adversary Model

	Requirements
	The Carousel approach
	Dictionary Representation
	Naive Approach
	Sequence of Differences
	Bloom Filter
	4-ary Cuckoo hash
	Comparison

	Experimental Evaluation
	Environment Setup
	Implementing PMT: Carousel Methods
	Implementing PMT: Cuckoo-on-ORAM
	Performance evaluation

	Variations and Extensions
	Analysis
	Related Work
	Conclusion and Future Work
	References
	Additional Benchmarks
	Code Optimization

