
POSTER—CryptServer: Strong Data Protection in
Commodity LAMP Servers

Zhaofeng Chen
∗

Institute of Computer Science and Technology
Peking University

chenzhaofeng@pku.edu.cn

Xinshu Dong, Prateek Saxena,
Zhenkai Liang

Department of Computer Science
National University of Singapore

{xdong,prateeks,liangzk}@comp.nus.edu.sg

ABSTRACT
Modern web applications store sensitive data on their servers.
Such data is prone to theft resulting from exploits against
vulnerabilities in the server software stacks. In this work, we
propose a new architecture for web servers, called Crypt-
Server, in which we pre-determine and fix a small amount
of application code that can compute over sensitive data. By
encrypting sensitive data before making it available to the
rest of untrusted application code, CryptServer provides
strong defense against all malicious code that an attacker
may run in the server software stack. As a step towards
making this approach practical, we develop an assistance
tool to identify the portion of server-side logic that requires
computation over sensitive data. Our preliminary results
show that the size of such logic is small in six popular web
applications we study. To the extent of our evaluation, con-
verting these applications to a CryptServer architecture
requires modest developer effort.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Web security, server security, data protection

1. INTRODUCTION
Web servers are prone to a large variety of attacks at the

application layer — SQL injection, server misconfiguration,
data-to-code attacks, OS command injection, and so on [11].
These attacks can be used to exfiltrate financially sensitive
or user’s private data. A recent study shows that 54% of
data breaches involved compromised servers [10].

Several research works have started investigating mech-
anisms to protect sensitive data on web servers, such as

∗Research done when visiting National University of Singa-
pore

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CCS’13, November 4–8, 2013, Berlin, Germany.
ACM 978-1-4503-2477-9/13/11.
http://dx.doi.org/10.1145/2508859.2512525.

applying encryption scheme to databases [3, 6] or by parti-
tioning web application code into different trust levels [4,5].
However, these techniques do not protect the sensitive data
comprehensively throughout its processing lifetime in the
web application code, and trust a large TCB.

Our Solution. In this work, we fortify web servers with
a new second line of defense to secure sensitive data on
commodity cloud-hosted LAMP servers. Conceptually, our
solution protects sensitive data by encrypting the sensitive
data and splitting the PHP engine logic into two strands of
computation logic: sensitive and non-sensitive. Only cer-
tain trusted functions that compute on sensitive data in the
PHP engine are executed in the sensitive strand. We call
such functions Pieces of Sensitive Logic (PSLs). We isloate
the PSLs in an isolated exectuion enviroment (trusted VM)
to provide rich computations on the encrypted data. All of
the rest of web application logic only has access to sensi-
tive data in encrypted form. With this new architecture,
which we call CryptServer, we significantly reduce sensi-
tive data’s direct exposure to untrusted code on commodity
cloud-hosted server stacks.

To migrate existing web applications to this new architec-
ture, we take a two-phase approach to help the adoption: an
analysis phase and an instrumentation phase. In the anal-
ysis phase, we automatically identify PSLs in the PHP ap-
plication using an assistance tool we have built. When web
developers run this tool with their application test harness,
it tracks the flow of sensitive data, and automatically iden-
tifies functions that compute on the sensitive data.

Once all the PSLs for the application are identified, we
manually instrument the original PHP application to invoke
the corresponding PSL functionality running in an isolated
environment (e.g. in a VM, a PAL [1], or a hypapp [9]).
CryptServer enforces that all data input and output from
PSLs are cryptographically sealed, i.e., protected with au-
thenticated encryption. All data exchanged between the
transformed PSLs and the non-PSLs is encrypted using au-
thenticated encryption. Thus, the vulnerable web server,
even if compromised, can only observe the encrypted flows
of sensitive data.

Our main empirical finding is that PSL logic for the real-
world applications we test is small. It consists of only 30K
lines of C code of the PHP interpreter logic that runs in the
trusted isolated environment. In contrast, previous works
that partition servers, such as CLAMP [5] and SilverLine [7],
have reported either much lareger TCB [5] or do not per-
mit any computation on sensitive data [7]. Our evaluation

1457

reports that CryptServer is expressive enough to support
real-world flows of sensitive data without directly leaking
information about sensitive data through explicit channels.
We also find that the developer effort to migrate existing
applications to this new architecture is on the order of a few
hours, with the help of our assistance tool.

In summary, to our knowledge, CryptServer is the first
to propose an architecture that enables significant TCB re-
duction in web server stacks with authenticated encryption;
our analysis tool and preliminary results verify its applica-
bility to existing web applications. CryptServer comple-
ments server platforms with encrypted databases [6].

Authentication
Access Control

CRYPTSERVER Proxy

Enc/Dec With
Per-User key

Untrusted
PHP Sever VM

Sensitive
Operation

Service
(small TCB)

Zend Engine

Trusted VM

Sensitive Logic Non-sensitive Logic

Hypervisor

Secret Key
Management

Figure 1: Architecture of CryptServer

2. CryptServer ARCHITECTURE
Figure 1 shows the CryptServer architecture. In our

setting, the web server stack is built on top of a trusted
hypervisor. The entire web server stack in the server VM is
not trusted and is assumed to be vulnerable.

CryptServer Proxy. Our target is to secure both the
confidentiality and integrity of sensitive data with authen-
ticated encryption. In our approach, a lightweight Crypt-
Server Proxy is introduced to encrypt sensitive data based
on developer annotations before the data flows into the PHP
application server VM. Similar to CLAMP [5], we have an
HTTPS front end that authenticates the users, and performs
key management and access control. On receiving each re-
quest from the client, the proxy authenticates the user and
invokes the underlying hypercalls to encrypt sensitive data
in annotated HTTP request fields with the per-user secret
key accordingly. Then the encrypted data is delivered to
the untrusted server VM. An alternative approach is that
the client (e.g. user browser) helps encrypt the sensitive
data instead of the proxy.

Untrusted PHP Server VM. When the encrypted sensi-
tive data flows into the vulnerable server, the pre-compiled
PHP opcodes (see details in Section 3) start execution in
the PHP engine. Only parts of the opcode functions handle
the sensitive data. We treat a function as PSL if and only if
it receives sensitive data as arguments, and returns a value.
To enable PSLs to operate on the encrypted sensitive data,
we manually instrument the PSLs to make remote call to a
trusted VM for computation on encrypted data.

Trusted VM. We isolate PSLs into a separate trusted VM
(DOM0 in Xen Hypervisor [2]) that provides a Sensitive Op-

eration Service (SOS) component to facilitate access to the
sensitive data. When a sensitive operation is requested from
the PHP server VM, the SOS first decrypts the sensitive data
and checks the data integrity. If the check passes, the SOS
component calls the requesting PSL to compute on the de-
crypted data. Finally, the SOS component encrypts the re-
turn value with authenticated encryption scheme and sends
it back to the PHP server VM.

If all arguments in the request are encrypted, an attacker
cannot tamper with them without failing the integrity check
by the SOS component. However, there are cases where both
sensitive (encrypted) and non-sensitive (unencrypted) data
appear in the argument list. For example, PHP applica-
tions frequently search for special characters in user input
strings. In this case, the input string is sensitive while the
special character set is a constant and non-sensitive variable.
An attacker can manipulate the constant argument value to
obtain information on the sensitive data. We prevent such
information leakage channels by applying the analysis as we
detail in Section 3 to identify constant values that flow into
function arguments, and encrypt them to prevent tampering
from malicious code.

Summary. In the CryptServer architecture, any sensi-
tive data flowing into the vulnerable server is encrypted.
For ease of implementation, we are currently not encrypt-
ing boolean return values. This could leak certain control
flow information to attackers. However, by design, PSLs do
not allow attackers to control the argument values, as they
take encrypted sensitive values and pre-encrypted constant
and static variables as arguments. This achieves reduced in-
distinguishability [8]. In addition, as we show in Section 4,
the pre-encrypted values allow little information leakage to
attackers, as their numbers are very small for each web ap-
plication we study. Although our solution tightly limits ex-
plicit information leakage, side channels are still possible,
such as timing, length, and power monitoring attacks, etc.
Our current solution does not address these issues.

3. ANALYSIS ENGINE
To aid developers to migrate their existing web applica-

tions to the CryptServer architecture, we build a dynam-
ical analysis engine to automatically identify PSLs in the
PHP engine. It takes developer annotations of sensitive data
and a test harness of the web application as input. It then
performs dynamic taint analysis to identify the operations
that require access to the plaintext of the sensitive data,
and finally marks them as PSLs as output. Note that not
all operations that process sensitive data require decryption
of the data. For example, the ASSIGN operation copies the
encrypted data, but it does not require access to the plain-
text of the data. Thus this kind of operation is not marked
as PSL.

Before execution, PHP code is pre-compiled into PHP op-
codes. Each opcode corresponds to a set of handling func-
tions the PHP engine. Variables in PHP scripts are compiled
into an internal presentation (the zval structure). Besides,
all the constant and static variables mentioned in Section 2
can be automatically identified at the compilation time as
zvals. Presently, we identify PSLs at the granularity of the
PHP opcode level. Our analysis engine intercepts all oper-
ations on data in zvals and converts them into a standard
“source->dest” propagation formula. It dynamically tracks

1458

Application #Pages
w/ PSLs

#PSLs vs. Total
#OPs

#Constant/Static PSL
Arguments vs. Total
#PSL Arguments

#Uniq PSLs vs.
#Uniq Total OPs

Names of Sensitive Fields

phpBB3 16 342/131808 (0.26%) 20/635 (3.15%) 41/234 (17.52%) subject, message, keywords
OpenEMR 6 46/59474 (0.08%) 3/86 (3.49%) 17/137 (12.41%) reason, form ss, form body, note,

issues
AjaxRPG 1 28/2044 (1.37%) 2/61 (3.28%) 9/86 (10.47%) inputText
Roundcubemail 13 72/68541 (0.11%) 0/161 (0.00%) 30/237 (12.66%) subject, message
Wordpress 15 111/440504 (0.03%) 1/209 (0.48%) 38/236 (16.10%) post title, content
HotCRP 8 97/76980 (0.13%) 4/131 (3.05%) 13/153 (8.50%) paperSummary, commentsToAu-

thor, commentsToPC

Table 1: Percentage of PSLs in PHP applications

the data flow of sensitive data and marks operations in this
flow that requires arguments’ plaintext information. Finally
the analysis engine outputs all marked operations as PSLs.

We implement this engine as a PHP extension in 9K lines
of C code. All these identified PSLs are inspected manu-
ally and instrumented to request operations provided by the
SOS.

4. EVALUATION
To evaluate the applicability, adoption effort, and TCB

reduction of our solution, we apply our solution to 6 open-
source PHP applications. Our preliminary results demon-
strate that our proposed solution applies to these popular
applications with moderate adoption cost. The experiments
also show that the reduction in TCB that has access to sen-
sitive data is also significant.

For each application, we manually annotate sensitive fields,
shown in the last column in Table 1. For analysis we fill in
these fields in the web pages, and submit the sensitive data
to the server. For each web application we study, it takes
one author about 3 hours to understand the functionality
of the application, and further annotate the sensitive field.
In real-world deployment, this identification effort can be
reduced with developer assistance.

Column 2 in Table 1 shows the number of pages containing
PSLs in each application. The PSLs mainly consist of com-
putation opcodes (e.g. arithmetic operation opcode) and
PHP functions (e.g. operations for string, array and regular
expression). We calculate the number of opcodes executed
during the execution, compared with number of identified
PSLs. As shown in Column 3 of Table 1, the number of ex-
ecuted PSLs is much smaller than total executed opcodes,
especially for large PHP applications (less than 1%). This
indicates that the CryptServer is applicable to existing
PHP applications. After eliminating the duplicate opera-
tions, the number of unique PSLs (Column 5) accounts for
a very small portion (less than 18%). In fact, the PSLs
code isolated in the SOS is small, with 30K lines of PHP
interpreter logic for corresponding PHP applications.

For instrumentation, we identify the unique opcodes from
dynamic runs with the test harness, which need to be tun-
neled back to the trusted SOS VM. Given the identified
unique opcodes for PSLs, it takes less than 5 minutes to
instrument each of them to request the corresponding op-
eration from the SOS. In addition, once an opcode, for ex-
ample ZEND CONCAT, is instrumented in one application,
it can be directly applied to all other applications. In all,
our manually instrumented work only requires one-time ef-
fort for developers to migrate the existing application to
CryptServer.

5. ACKNOWLEDGMENTS
This research is partially supported by research grant R-

252-000-495-133 from Ministry of Education (MOE), Singa-
pore. Any opinions, findings, and conclusions or recommen-
dations expressed in this paper are those of the authors and
do not necessarily reflect the views of MOE, Singapore.

6. REFERENCES
[1] Portableapps.com launcher. http://portableapps.com/

apps/development/portableapps.com_launcher.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization. In
Proceedings of the 9th ACM Symposium on Operating
Systems Principles, SOSP ’03, 2003.

[3] Adrienne Porter Felt, Matthew Finifter, Joel Weinberger,
and David Wagner. Diesel: applying privilege separation to
database access. In Proceedings of the 6th ACM
Symposium on Information, Computer and
Communications Security, ASIACCS ’11, 2011.

[4] Taesoo Kim and Nickolai Zeldovich. Making linux
protection mechanisms egalitarian with userfs. In
Proceedings of the 19th USENIX Security Symposium,
2010.

[5] Bryan Parno, Jonathan M. McCune, Dan Wendlandt,
David G. Andersen, and Adrian Perrig. Clamp: Practical
prevention of large-scale data leaks. In Proceedings of the
2009 IEEE Symposium on Security and Privacy, 2009.

[6] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai
Zeldovich, and Hari Balakrishnan. Cryptdb: Protecting
confidentiality with encrypted query processing. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles, SOSP ’11, 2011.

[7] Krishna P. N. Puttaswamy, Christopher Kruegel, and
Ben Y. Zhao. Silverline: toward data confidentiality in
storage-intensive cloud applications. In Proceedings of the
2nd ACM Symposium on Cloud Computing, SOCC ’11,
2011.

[8] Shruti Tople, Shweta Shinde, Prateek Saxena, and
Zhaofeng Chen. Autocrypt: Enabling homomorphic server
computation to protect sensitive web content. In
Proceedings of the 20th ACM Conference on Computer and
Communications Security, CCS ’13, 2013.

[9] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan M.
McCune, James Newsome, and Anupam Datta. Design,
implementation and verification of an extensible and
modular hypervisor framework. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, 2013.

[10] Verizon. 2013 data breach investigation report.
http://www.verizonenterprise.com/DBIR/2013/.

[11] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: a practical approach to defeat a wide
range of attacks. In Proceedings of the 15th USENIX
Security Symposium, 2006.

1459

