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ABSTRACT
Authentication is an important security measure for multicast 
applications, providing receivers with confidence that the packets 
they receive are valid. Simply signing every multicast packet with 
a digital signature incurs high overhead; therefore, a scheme such 
as signature amortization helps reduce this overhead. To tolerate 
packet loss, erasure codes are employed to enhance signature 
amortization. However, the use of erasure codes introduces 
pollution attack, an attack in which the adversary injects packets 
to disrupt the erasure decoding procedure and consequently 
denies the authentication service to the receiver. Unfortunately, 
current solutions to pollution attack are computationally intensive 
and inefficient. To cope with this problem, we propose a new 
lightweight, pollution-attack resistant multicast authentication 
scheme (PARM), which generates evidence that receivers can 
validate on a fast, per-packet basis. This approach effectively 
resists pollution attacks and has better performance than 
previously proposed solutions. 
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1. INTRODUCTION
A multicast protocol enables a sender to efficiently disseminate 
digital media data to many receivers. Due to the time-sensitive 
requirement of some applications, reliable transmission protocol 
like TCP (Transmission Control Protocol) is impractical for 
multicast. Therefore, unreliable transmission protocol such as 
UDP (User Datagram Protocol) is generally adopted for multicast 

applications. Multicast protocol is suitable for many applications, 
e.g. video transmissions, live broadcasts, stock quotes, or news 
feeds. These applications may have many receivers or distribute 
time-sensitive data. To ensure secure communications between a 
sender and its receivers, it is important to implement security 
measures in a multicast environment. 

An attacker may impersonate a sender to transmit malicious 
packets to receivers, causing disruptions in the communications. 
Multicast authentication is used to defend against forged packets 
injected by the attackers by enabling a receiver to authenticate the 
packet source and discard malicious packets. There have been 
many multicast authentication approaches, which can be roughly 
divided into two categories: symmetric cryptographic primitives 
and asymmetric cryptographic primitives. Symmetric 
cryptographic primitives, such as MAC (Message Authentication 
Code), generally use a symmetric key to authenticate a data 
source. In MAC, an identical secret key is maintained by the 
sender and receiver. The sender uses the secret key to generate a 
MAC for a packet, and the receiver is able to authenticate the 
packet source by verifying the MAC of the packet with the secret 
key. Asymmetric cryptographic primitives, such as digital 
signatures, use an asymmetric key pair to authenticate a data 
source. In general, an asymmetric key pair consists of two keys; 
one key is used to generate the signature, while the other key is 
used to verify the signature. Using digital signatures, like RSA, 
for authentication is popular and believed to be secure; 
nevertheless, digital signature generation and verification incur 
significant computation overhead. 

Signature amortization [10][11][15][16][17][18][19][20] 
addresses this concern by generating a single digital signature for 
a block of packets. After verifying the signature, a receiver can 
consider this block of packets authentic. Signature amortization 
makes a tradeoff between security and computation overhead. An 
elaborate signature amortization scheme should still work well 
despite packet loss in a multicast protocol. For this reason, 
signature amortization schemes utilize fault-tolerant coding 
algorithms to encode and decode packets. Fault-tolerant coding 
algorithms, like erasure codes [7][8][9][12] or diversity codes 
[21], partition information into many segments and can correctly 
reconstruct the original information even though a number of 
segments, up to a threshold, may be lost. 

Although signature amortization with a fault-tolerant coding 
algorithm reduces computation overhead and tolerates packet loss, 
it suffers from pollution attacks [1]. Pollution attacks occur when 
an adversary injects a large quantity of forged packets into a 
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block of valid packets. The receiver fails to decode a correct 
signature using the fault-tolerant coding algorithm, forcing the 
receiver to drop the entire block of packets, which may include 
valid packets. 

Distillation codes [1] have been proposed for signature 
amortization to defend against pollution attack. In distillation 
codes, the sender augments each packet with a witness. Upon 
receipt, the receiver separates packets into groups by witness. 
Distillation codes guarantee that all valid packets are partitioned 
into groups that do not contain forged packets, allowing the 
receiver to decode the correct signature from the packets in this 
group. Unfortunately, the receiver cannot realize in advance 
which group contains valid packets; therefore, it must attempt to 
decode a valid signature from each group. Furthermore, the 
receiver cannot immediately distinguish between valid and invalid 
packets, making it necessary to first buffer all received packets. 
Distillation codes incur high computation overhead, storage 
space, and verification delay. 

To summarize, authentication in multicast applications is an 
important security measure that cannot be neglected. However, 
signing every multicast packet with a digital signature incurs high 
overhead, which may be impractical for many resource-limited 
devices. Signature amortization can reduce the computation and 
communication overhead, and a fault-tolerance coding algorithm 
can help tolerate packet loss. Despite these countermeasures, a 
signature amortization scheme still suffers pollution attack. To 
solve this problem, we have designed a lightweight and pollution 
attack resistant multicast authentication protocol (PARM). Our 
proposed scheme is fast and lightweight, which is ideal for 
multicast applications with time-sensitive requirements or devices 
with limited computational power. In contrast to distillation 
codes, our proposed scheme requires less computation overhead 
and storage space. 

In the next section, we briefly discuss work related to signature 
amortization, an overview of the SAIDA signature amortization 
scheme, and distillation codes. We describe our proposed scheme 
in section 3 and provide an analysis of PARM against distillation 
codes in section 4. After deriving the security strength of PARM 
in section 5, we evaluate its security in section 6. Finally, we 
conclude our findings in section 7. 

2. RELATED WORK 
We introduce current works in signature amortization in section 
2.1 and a signature amortization scheme with erasure codes 
(SAIDA) in section 2.2. We then give a description of distillation 
codes in section 2.3. 

2.1 Signature Amortization 
Computation and communication overhead is a significant 
consideration in many multicast authentication schemes based on 
digital signature. To reduce this overhead, signature amortization 
schemes generate a single signature over many packets. Based on 
different techniques, signature amortization schemes can be 
classified into several categories: hash chains, graphs, Merkle 
hash trees, and erasure codes. 

2.1.1 Hash Chains 
Gennaro and Rohatgi [22] have devised a signature amortization 
over hash chains. Each packet pi is augmented with verification 
information ai, which is recursively defined as the hash value of 
the concatenation of the next packet pi+1 and the next verification 
information ai+1. For example, ai=h(pi+1||ai+1) and 
ai+1=h(pi+2||ai+2), where h denotes a hash function. Since the 
verification information is used to authenticate the next packet 
recursively, only the first packet with its verification information 
needs to be signed with a digital signature to protect against 
tampering. This scheme has constant authentication overhead per 
packet but does not tolerate packet losses since the loss of one 
packet prevents authentication of the remaining packets. 

2.1.2 Graphs
A graph-based technique [15][16][18][19] generalizes the idea of 
amortizing a signature over a hash chain to tolerate packet loss. A 
single-sink directed acyclic graph (DAG) is defined such that 
each vertex corresponds to a packet. The edges in this graph 
indicate the authentication direction; thus, the source vertex is 
authenticated using the verification information of the destination 
vertex. Instead of augmenting the current packet with the next 
packet’s hash value, a packet pi is augmented with the hash value 
of the packet pj, which points to pi in a single-sink DAG. As with 
the hash chain approach, the first packet is also digitally signed. 
Graph-based schemes simply guarantee probabilistic security 
strength under random packet loss. In particular, they require that 
the digitally signed packets completely reach the receiver. 

2.1.3 Merkle Hash Trees 
A Merkle hash tree [6] is a mechanism for computing a single 
cryptographically secure hash digest over a set of data elements. 
It is a binary hash tree whose internal nodes are recursively 
defined as the hash value of the concatenation of its two children. 
Many signature amortization schemes build a Merkle hash tree on 
top of the packets’ hash values. 

Figure 2-1 shows a Merkle hash tree with each Si representing a 
packet. Each leaf node hi is calculated by hashing the 
corresponding Si, while each internal node hi,j is computed by 
hashing the concatenation of hi and hj. The verification sequence 
for a leaf node consists of the hash values of the sibling nodes on 
the path from the leaf node to the root. With a leaf node and its 
verification sequence, the receiver can compute the tree’s root 
value. For instance, (h4, h1,2, h5,8) represents the verification 
sequence of packet s3, as shown in Figure 2-1. Wong and Lam 
[20] utilize a Merkle hash tree to amortize a digital signature over 
n packets. First, the sender hashes each packet and treats each as a 
leaf node to the Merkle hash tree. Then, the sender augments each 
packet with verification information, which is comprised of the 
signed root hash value and the corresponding verification 
sequence of the leaf node. With this knowledge, the receiver can 
individually and independently verify each packet. This scheme 
also tolerates packet losses, but logarithmic communication 
overhead per packet exists since the verification sequence size 
grows logarithmically with the amount of leaf nodes. In contrast, 
our proposed scheme achieves constant per-packet 
communication overhead. 
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Figure 2-1. Merkle Hash Tree1

2.1.4 Erasure Codes 
An erasure code [7][8][9][12] consists of an encoder and decoder 
that use forward error correction to tolerate data loss. The encoder 
redundantly encodes information into a set of segments. If the 
decoder receives sufficient segments, it can reconstruct the 
original information. For example, an (n, t) erasure encoder 
generates a set S of n symbols (s1, s2,…, sn) from the data. The 
erasure decoder can tolerate a loss of up to t packets. In the next 
section, we detail a signature amortization scheme that employs 
the use of erasure codes. 

2.2 SAIDA
Park et al. [10][11] propose a signature amortization scheme for 
multicast authentication, SAIDA (Signature Amortization using 
the Information Dispersal Algorithm), which utilizes erasure 
codes to tolerate random packet loss. In this scheme, the sender 
first partitions the packet stream into blocks of n consecutive 
packets. Next, the sender concatenates the hash values of all 
packets in one block to form Hj, which it protects by generating a 
signature Sign(h(Hj)) for the hash value Hj. Then, the erasure 
encoder encodes the verification information VI, which includes 
Hj and Sign(h(Hj)), and appends the outputted segments to each 
packet in the block. Despite the lost of packets, an erasure 
decoder can successfully reconstruct VI as long as it receives a 
sufficient number of packets. The receiver can then verify Hj with 
Sign(h(Hj)); consequently, the hash values contained in Hj can 
authenticate all received packets in that block. 

2.2.1 Pollution Attacks in SAIDA 
During normal operation, the receiver validates a block of packets 
by using erasure codes to decode the verification information 
from the received packets. Injecting forged packets into the 
communication channel confuses the receiver, causing it to 
decode an incorrect Hj. Thus, the receiver is unable to 
successfully verify the signature Sign(h(Hj)) and must drop the 
received packets. If the receiver attempts to reconstruct the 
correct information during the pollution attack, it will expend 

                                                                
1  Each leaf node is calculated by hashing the corresponding 

packet Si, and each internal node is the hash value of the 
concatenation of its two children. The verification sequence, for 
example, of a leaf node h3 is (h4, h1,2, h5,8).

excessive computational power evaluating all possible 
combinations of the received packets. 

2.3 Distillation Codes 
Karlof et al. [1] propose distillation codes as a mechanism to 
defend against pollution attacks on a SAIDA-based signature 
amortization scheme by utilizing Merkle hash trees and one-way 
accumulators. First, the sender constructs a Merkle hash tree 
using the hash value of the multicast packets. Next, for each 
packet, the sender generates and appends a witness, the 
verification sequence of a leaf node in the Merkle hash tree. 
When the receiver accepts packets, it separates them into many 
groups according to each packet’s witness. Distillation codes 
ensure that a group contains all valid packets, allowing the 
receiver to successfully reconstruct the verification information of 
this group. 

Distillation codes consist of a distillation encoder and a decoder 
procedure. The distillation encoder first hashes the packets of a 
single block and concatenates them to form Hj. Then, the 
distillation encoder uses erasure codes to encode Hj and outputs 
the set of symbols S’=(s1’, s2’,…, sn’), with each symbol denoting 
a leaf node from which to build a Merkle hash tree. It also 
produces a set of distillation code symbols S=(s1, s2,…, sn), where 
si is the concatenation of si’ and the verification sequence of si’.
Before multicasting the packet, the sender augments each packet 
with its corresponding distillation code symbol si. Since the 
receiver can calculate the root hash value of the Merkle hash tree 
through the verification sequence, the receiver is able to partition 
the received packet by the calculated root value from the witness 
of the packet. Valid witnesses possess the same root hash value; 
thus, the receiver partitions packets with valid witnesses into the 
same group. As a result, the receiver can reconstruct correct 
verification information from the packets in the group. Therefore, 
distillation codes can defeat pollution attacks. 

Unfortunately, distillation codes induce logarithmic 
communication overhead since the witness size grows 
logarithmically with the number of packets per block. In addition, 
while suffering a pollution attack, the receiver will consume 
significant computation power from erasure decoding and 
signature verification. Furthermore, the receiver must buffer all 
packets, regardless of whether it is valid or invalid, until the 
correct information is reconstructed because it does not know the 
root of the Merkle hash tree in advance. Thus, the receiver 
requires a large buffer to temporarily store these packets. 

There is an additional weakness in distillation codes. An attacker 
can construct his own Merkle hash tree and transmit packets 
augmented with the corresponding witness. Since the witnesses 
are constructed from the same Merkle hash tree, the receiver will 
partition these packets into the same group. Because the receiver 
is unaware of the correct root of the Merkle hash tree beforehand, 
an attacker is able to inject a large number of forged packets into 
one group to exhaust the receiver’s computational power, 
dramatically downgrading the receiver’s performance. 

3. PROPOSED SCHEME 
We propose a lightweight and pollution attack resistant multicast 
authentication protocol (PARM) based upon SAIDA. In our 
scheme, each packet is appended with evidence containing the 
verification information that allows the receiver to judge the 
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scheme, each packet is appended with evidence containing the 
verification information that allows the receiver to judge the 

packet’s validity. PARM is fast and lightweight, which caters to 
time-sensitive multicast applications and computationally limited 
devices.

3.1 PARM
Our proposed scheme consists of four phases: initialization, 
evidence generation, evidence validation, and temporal key 
renewal. We describe the four phases in the next few sub-sections. 

3.1.1 Initialization Phase 
In this phase, we define how to generate a temporal key pair, 
which contains a temporal secret key (TSK) chain and a temporal 
public key (TPK), using a one-way hash function. The sender 
creates the evidence of a packet from a TSK chain, and the 
receiver validates the evidence of a received packet with the TPK. 

Before communicating with receivers, the sender must generate 
the TSK chain and TPK in advance. First, the sender generates k
n-bit random numbers (R0, R1,…, Rk-1) and denotes this set of 
numbers as TSK0 of the TSK chain. Then, the sender uses the one-
way hash function h to recursively generate the remaining TSKs 
of the TSK chain. By applying the hash function to each member 
of the previous TSK, the sender can produce the next TSK. For 
example, TSK1 is generated by hashing each element in TSK0 i.e. 
TSK1=(h(R0), h(R1),…, h(Rk-1)). The TSK chain has a length of L
and is represented as (TSK0, TSK1,…, TSKL-1). The temporal 
public key (TPK) is created by hashing every element of TSKL-1.

Figure 3-1 depicts the procedure for TSK and TPK generation. R0
denotes the randomly generated number, and the arrows specify 
the direction of the one-way hash function h. Thus, h(R0) is the 
hash result of R0, and h2(R0) is the hash result of h(R0). The set of 
the elements in the same row comprises a TSK elements array, 
e.g. TSK0=(R0, R1,…, Rk-1) and TSK1=(h(R0), h(R1),…, h(Rk-1)).
The elements of the last row form the TPK. 

Figure 3-1. Temporal Key Pair Generation 

After successful generation of the TSK chain and TPK, the sender 
provides receivers with the TPK. Since receivers will use the TPK 
to determine the validity of received packets, it is vital that the 

sender sign the TPK with a digital signature to protect it during 
distribution. Otherwise, an attacker can convince receivers to 
accept a forged TPK; consequently, all valid packets will fail to 
pass evidence validation. The receiver stores the TPK if it verifies 
the signature. 

3.1.2 Evidence Generation Phase 
Prior to broadcasting a message, the sender must generate for 
each packet the evidence, or verification information, which 
allows receivers to determine the validity of a packet. Since each 
packet is augmented with evidence, the evidence generation phase 
should be lightweight and fast. For a given temporal key pair, the 
sender needs to maintain a usage table, such as the one in Figure 
3-2, that tracks the number of times each column index of the 
TSK elements array is used. The row index denotes the column 
index of the TSK elements array, while the row usage tracks the 
number of uses of the corresponding index. 

Figure 3-2. Usage Table

Figure 3-3 illustrates the evidence generation phase. To generate 
evidence EM for a packet M, the sender first hashes the packet 
with a one-way hash function h. The hash value is divided into a 
set of p segments, denoted S=(i0, i1,…, ip-1), where each segment 
size is b-bits. Interpreted as an integer between 0 and 2b-1, each 
segment in the set S represents a column index of the TSK 
elements array. For each index i, the sender determines the TSK 
based upon the usage of i by selecting TSK(L-1)-ai, where ai denotes 
the usage of i. Thus, the sender chooses the last TSK of the chain, 
TSKL-1, if i has never been used. Once the sender determines the 
TSK, it chooses the i-th element of the selected TSK. For 
example, if i0 used L-1 TSK elements, then the sender chooses the 
i0-th element of TSK0, which is R0. Since each segment of S
corresponds to an index of the TSK elements array, the sender 
produces p elements, which constitutes the evidence of the packet. 
After appending the evidence to the packet, the sender can finally 
broadcast the packet to the receiver. 

Figure 3-3. Evidence Generation Phase 
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3.1.3 Evidence Validation Phase 
Upon receiving a packet, the receiver can use the TPK to 
immediately check the validity of the attached evidence. To forge 
a packet, the attacker must generate proper evidence for a packet, 
which is difficult without knowledge of the TSK chain. In section 
5, we will demonstrate the complexity of a successful attack. As 
with the sender, the receiver must also maintain a usage table for 
each column index of the TSK elements array based on received 
packets. 

Figure 3-4. Evidence Validation Phase 

The procedure of the evidence validation phase, depicted in 
Figure 3-4, is similar to that of the evidence generation phase. 
After receiving a packet containing evidence EM, the receiver 
separates the evidence, denoted EM=(e0, e1,…, ep-1), from the 
packet M. To validate the evidence for this packet, the receiver 
hashes M with the one-way hash function h, which is identical to 
the one-way hash function used by the sender in the evidence 
generation phase. Next, the receiver divides the hash value h(M)
into p b-bit segments, denoting these segments as the set (i0, i1,…, 
ip-1). By interpreting each segment as an integer between 0 and 2b-
1, each segment can represent a column index of the TSK 
elements array. Each index i, along with its usage ai, determines 
the number of times to hash the corresponding element ei of the 
evidence. Given an index and its usage, the receiver should 
perform ai+1 hashes on the corresponding element of the evidence. 
Thus, if index i has never been used before, the receiver need only 
hash ei once. The ensuing set of hash results from every element 
of the evidence is denoted by HR=(h0, h1,…, hp-1). The receiver 
selects the verification subset VS=(hL(Ri0), hL(Ri1),…, hL(Rip-1))
from the TPK, where hL(Ri) is the i-th element of the TPK. The 
receiver considers the evidence valid if the two sets, HR and VS,
contain identical elements, accepting the packet with valid 
evidence and dropping it otherwise. 

3.1.4 Temporal Key Renewal Phase 
In the previous three phases of PARM, the sender uses the TSK 
chain to generate the evidence of a packet, which the receiver 
validates with the TPK. Since the packet’s evidence prevents the 
receiver from accepting forged packets, our proposed scheme can 
thwart pollution attacks. Nevertheless, an attacker can still sniff 
various bits of the TSK chain because each piece of evidence 
contains elements of the TSK chain. When an attacker obtains 
enough portions of the TSK chain, the probability of forging valid 

evidence rises dramatically. Thus, periodic renewal of used TSK 
elements is necessary to ensure secure communications between 
the sender and its receivers. 

We define a threshold value T in our key renewal phase. UTSK0
represents the number of used elements in TSK0 (the first TSK of 
the TSK chain) since the last temporal key renewal, and the set 
(j0, j1,…, jt-1) denotes the indexes of the used elements. When 
UTSK0 exceeds the threshold T, new elements are required. First, 
the sender generates UTSK0 new random numbers for the used 
indexes of TSK0. Using these random numbers, the sender creates 
the partial TSK and the partial TPK with the one-way hash 
function h by following the temporal key generation procedure of 
the initialization phase. The sender then updates its copy of the 
TSK chain with the partial TSK elements. Since the receiver must 
also update its TPK, the sender concatenates the new partial TPK 
with its digital signature Sign(Partial TPK), which it then encodes 
with erasure codes and appends to outgoing packets. Figure 3-5 
illustrates the preparation required for sending the partial TPK to 
the receiver. Upon successful renewal of the TSK chain and TPK, 
the sender and receiver may resume evidence generation and 
verification of packets. 

Figure 3-5. Temporal Key Renewal Phase 

3.2 Practical Considerations 
In this section, we describe the features of our proposed scheme. 

3.2.1 Efficient Evidence Generation and Validation 
Instead of complicated cryptographic algorithms, PARM utilizes 
a simple one-way hash function to generate and validate evidence. 
Because of its lightweight operation, PARM is suitable for 
devices with limited computational power. 

3.2.2 Instant Validation 
Upon arrival, the receiver is able to validate each packet based on 
the evidence appended to the packet, allowing it to immediately 
discard invalid packets. Instant validation also mitigates the 
attacker’s ability to overwhelm the receiver’s storage space by 
sending large amounts of packets. 

3.2.3 Packet Loss Tolerant and Individual Validation 
In some mediums, such as the internet, packet loss occurs 
frequently. Since some multicast applications may not retransmit 
lost packets, we design our scheme to tolerate the loss of packets. 
Moreover, packet loss will not affect the validation of other 
packets because the receiver independently verifies each packet. 

3.2.4 Constant Verification Information Size 
To provide for individual packet validation, the sender augments 
every packet with its own evidence. If the evidence size grows too 
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large, the overhead will significantly affect performance. In our 
proposed scheme, the evidence size remains constant per packet. 

3.3 Attack Resistance 
There are various types of attacks that a robust multicast 
authentication scheme should be able to defend against. In this 
section, we describe how PARM resists common attacks. We 
assume it is infeasible for an adversary to successfully forge a 
packet’s evidence, and we detail the degree of difficulty of 
violating this assumption in section 5. 

3.3.1 Injection Attack 
An attacker injects random or pre-designed packets with the intent 
of inducing the receiver into performing illegal behavior. Because 
PARM requires that each packet provide evidence, the receiver 
simply rejects the injected packet as soon as the evidence 
validation fails. 

3.3.2 Modification Attack 
Due to the distributed nature of a multicast environment, an 
adversary may capture a sender’s packets, modifying its contents 
before retransmission to the receivers. As with injection, the 
receiver will attempt to verify the modified packet and drop it 
after an unsuccessful validation of the evidence. 

3.3.3 Signature Flooding Attack 
Most authentication mechanisms require additional verification 
information that allows a receiver to validate the received packets. 
If packet validation entails high operational overhead, an attacker 
may send a large amount of packets with invalid verification 
information in an attempt to exhaust the computational resources 
of a receiver. Because of its lightweight validation procedure, 
PARM is resistant to signature flooding attacks. 

3.3.4 Pollution Attack 
In this attack, an adversary injects forged packets to pollute the 
erasure decoding procedure. Since it is impractical for the 
adversary to generate legitimate evidence for a forged packet, the 
receiver refuses to accept the packet after evidence validation 
failure.

4. COMPARISON
In this section, we compare PARM with distillation codes. Karlof 
et al. [1] proposed distillation codes as a means to thwart 
pollution attacks against SAIDA. However, distillation codes 
require significant communication and computation overhead. 
Before we begin, we define several parameters in Table 4-1. 

4.1 Storage Overhead 
In the initial stage, distillation codes require no additional storage 
size, while PARM needs extra storage at both the sender and 
receiver. In our proposed scheme, the length of the TSK chain is 
L, and each TSK contains k elements. Thus, the sender’s TSK 
elements array contains L*k elements, while the receiver’s TPK 
has a size of k elements. A long TSK chain requires a large 
amount of storage; however, the sender of a multicast 
environment typically possesses the resources to cope with this 
overhead.

Table 4-1. Parameters 

CE computation overhead of operating erasure 
codes per time 

CH computation overhead of operating hash 
functions per time 

SG computation overhead of generating one 
digital signature in SAIDA 

SV computation overhead of verifying one digital 
signature in SAIDA 

NK number of packets in one SAIDA block 
NP verification information size of PARM 
NA number of attack packets in one block 
DG number of partitions for distillation codes 

During a pollution attack, PARM saves considerable storage 
space over distillation codes. Since our proposed scheme instantly 
checks the validity of received packets, the receiver only buffers 
valid packets. In contrast, distillation codes cannot immediately 
judge the validity of received packets. Consequently, the receiver 
is forced to buffer all packets, regardless of its validity. Because 
the typical receiver has limited resources, buffering many packets 
degrades the receiver’s performance. Therefore, PARM is more 
space efficient on the receiver end during a pollution attack than 
distillation codes.

4.2 Communication Overhead 
Both distillation codes and PARM append validation information 
to a packet. Because distillation codes utilize Merkle hash trees, 
the witness of a packet grows logarithmically with the number of 
packets per SAIDA block. On the contrary, our proposed scheme 
employs constant sized evidence for any number of packets per 
block. Therefore, the communication overhead of PARM scales 
better than that of distillation codes. 

4.3 Computation Overhead 
Likewise, the computational overhead of the receiver grows 
logarithmically in distillation codes, while our scheme’s overhead 
remains constant. We first show the computational overhead 
required by the sender or receiver to send or receive one block of 
packets, respectively, while operating normally. For distillation 
codes, the sender’s cost of transmitting one block of packets is  

GHK SCN )12( ,

while the receiver requires a computational overhead of 

VEHKK SCCNN )1(log2

to validate one block of packets. In contrast, PARM only needs a 
computational overhead of

GHK SCN



��� ���

by the sender to prepare a block of packets for broadcast, while 
the receiver’s cost of validating a block of packets is 

VEHPK SCCNN .

Because a pollution attack does not affect the computational 
overhead of the sender, we focus only on the analysis of the 
receiver.

During a pollution attack, the use of distillation codes requires a 
cost of

VGEGHKAK SNCNCNNN )1(log)( 2
.

Compared to our proposed scheme, the receiver’s overhead is 

VEHPAK SCCNNN )( .

Erasure codes and signature verification need significant 
computational power.  Unfortunately, distillation codes require 
even more calculations than either of these two computationally 
consuming operations. Thus, PARM is more lightweight than 
distillation codes. 

5. SECURITY ANALISYS 
In this section, we analyze the degree of difficulty of computing 
valid evidence for a packet without prior knowledge of the full 
TSK chain. 

For the first case, we assume the attacker does not possess any 
element of the TSK. On average, an adversary must guess (2b-1)p

hash values, where b represents the number of bits per element 
and p represents the number of elements in each piece of 
evidence. The complexity of finding valid evidence for a packet 
can be denoted as O(2bp).

In the second case, we derive the probability Pf of the adversary 
producing valid evidence for a packet given n TSK elements. 
Since each element in the TSK will not be reused, except those 
elements in the first TSK chain, TSK0, we can assume that only 
the reused elements of TSK0 will affect the security of PARM. 
The TSK has a chain length of L and k elements per TSK. If the 
known elements are distributed among each TSK, then n/L
denotes the number of these elements in TSK0. Without executing 
the temporal key renewal phase, we derive a tight upper bound for 
Pf.

pp
L
n

f Lk
n

k
P  (Equation 5.1) 

We define the security strength as 

p

f n
Lk

P
S 1  (Equation 5.2) 

Equation 5.2 shows that the security strength S increases in direct 
proportion to the number of TSK elements k or TSK chain length 
L and decreases with the number of used TSK elements n. The 
security strength S decreases if probability Pf increases too much. 

In the final case, we execute the temporal key renewal phase, 
rendering useless any evidence obtained by the attacker. With T

denoting the threshold value as defined in the temporal key 
renewal phase, the upper bound probability of forging evidence is 

T
L
n

k
P

p
L
n

f

 (Equation 5.3) 

and the security strength can be represented as 

T
L
n

n
Lk

P
S

p

f

1  (Equation 5.4) 

Since n/L denotes the number of used elements in TSK0, we reset 
n/L to zero if it exceeds the threshold T.

6. EVALUATION
In this section, we evaluate the security strength of our proposed 
scheme under different conditions. By adjusting the parameters of 
the equations derived in section 5, we can assess the security 
strength of PARM under various situations. 

Utilizing equation 5.2, we first discuss the security strength of our 
scheme without any key renewal. Figure 6-1 and Figure 6-2 
illustrate the change in security strength as a result of varying the 
evidence size and the number of TSK elements an attacker 
already possesses. We apply the following parameters to equation 
5.2: each TSK contains k=512 symbols, each TSK chain length is 
L=10, and each piece of evidence contains p TSK elements. For a 
small number of TSK elements known to the adversary, Figure 
6-1 demonstrates that security strength greatly increases as the 
evidence size increases. Figure 6-2 depicts a significant decrease 
in security strength when the adversary possesses a much larger 
collection of TSK elements. 

Figure 6-1.The Security Strength of Different Evidence Size 
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by the sender to prepare a block of packets for broadcast, while 
the receiver’s cost of validating a block of packets is 

VEHPK SCCNN .

Because a pollution attack does not affect the computational 
overhead of the sender, we focus only on the analysis of the 
receiver.

During a pollution attack, the use of distillation codes requires a 
cost of

VGEGHKAK SNCNCNNN )1(log)( 2
.

Compared to our proposed scheme, the receiver’s overhead is 

VEHPAK SCCNNN )( .

Erasure codes and signature verification need significant 
computational power.  Unfortunately, distillation codes require 
even more calculations than either of these two computationally 
consuming operations. Thus, PARM is more lightweight than 
distillation codes. 

5. SECURITY ANALISYS 
In this section, we analyze the degree of difficulty of computing 
valid evidence for a packet without prior knowledge of the full 
TSK chain. 

For the first case, we assume the attacker does not possess any 
element of the TSK. On average, an adversary must guess (2b-1)p

hash values, where b represents the number of bits per element 
and p represents the number of elements in each piece of 
evidence. The complexity of finding valid evidence for a packet 
can be denoted as O(2bp).

In the second case, we derive the probability Pf of the adversary 
producing valid evidence for a packet given n TSK elements. 
Since each element in the TSK will not be reused, except those 
elements in the first TSK chain, TSK0, we can assume that only 
the reused elements of TSK0 will affect the security of PARM. 
The TSK has a chain length of L and k elements per TSK. If the 
known elements are distributed among each TSK, then n/L
denotes the number of these elements in TSK0. Without executing 
the temporal key renewal phase, we derive a tight upper bound for 
Pf.

pp
L
n

f Lk
n

k
P  (Equation 5.1) 

We define the security strength as 
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f n
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S 1  (Equation 5.2) 

Equation 5.2 shows that the security strength S increases in direct 
proportion to the number of TSK elements k or TSK chain length 
L and decreases with the number of used TSK elements n. The 
security strength S decreases if probability Pf increases too much. 

In the final case, we execute the temporal key renewal phase, 
rendering useless any evidence obtained by the attacker. With T

denoting the threshold value as defined in the temporal key 
renewal phase, the upper bound probability of forging evidence is 
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and the security strength can be represented as 
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Since n/L denotes the number of used elements in TSK0, we reset 
n/L to zero if it exceeds the threshold T.

6. EVALUATION
In this section, we evaluate the security strength of our proposed 
scheme under different conditions. By adjusting the parameters of 
the equations derived in section 5, we can assess the security 
strength of PARM under various situations. 

Utilizing equation 5.2, we first discuss the security strength of our 
scheme without any key renewal. Figure 6-1 and Figure 6-2 
illustrate the change in security strength as a result of varying the 
evidence size and the number of TSK elements an attacker 
already possesses. We apply the following parameters to equation 
5.2: each TSK contains k=512 symbols, each TSK chain length is 
L=10, and each piece of evidence contains p TSK elements. For a 
small number of TSK elements known to the adversary, Figure 
6-1 demonstrates that security strength greatly increases as the 
evidence size increases. Figure 6-2 depicts a significant decrease 
in security strength when the adversary possesses a much larger 
collection of TSK elements. 

Figure 6-1.The Security Strength of Different Evidence Size 

Figure 6-2. The Security Strength of Different Evidence Size

TSK chain length L also influences the security strength of 
PARM. Applying equation 5.2, we set the evidence size p at 16 
and the number of elements k per TSK at 512. From Figure 6-3, 
we observe that longer TSK chains increase the security strength. 
Since we do not employ the key renewal mechanism in this test, 
the security strength significantly drops as the adversary obtains 
more TSK elements. 

Figure 6-3. The Security Strength of Different TSK Chain 
Length

Equation 5.4 models the security strength of our scheme with the 
temporal key renewal mechanism in effect. The key renewal 
phase occurs when the number of used TSK elements in TSK0
reaches a threshold T, forcing a partial renewal of the temporal 
key pair. Figure 6-4, depicts the security strength of PARM under 
different key renewal thresholds T. The x-axis represents the 
number of transmission rounds between sender and receivers. 
Because the first curve does not renew its key pair, its security 
strength monotonically decreases. In contrast, the other curves do 
renew their keys, and thus can maintain a minimum level of 
security. For example, a threshold of 200 induces a minimum 

security strength of E+11, while the security strength remains 
above E+19 for a threshold of 50. From the figure, we can 
conclude that a small threshold can sustain higher security 
strength than a large threshold; therefore, key renewal is essential 
to guarantee security. 

Figure 6-4. The Security Strength with Key Renewal

7. CONCLUSION
Pollution attack is a significant problem in multicast 
authentication. Despite past efforts, researchers have not been 
able to develop an efficient solution. This paper proposes a new 
approach to resisting pollution attack that not only offers 
lightweight computational overhead to the sender and receiver but 
also allows the receiver to instantly validate packets without the 
need to buffer invalid packets. The partial key renewal 
mechanism provides a guarantee on a lower bound of the security 
regardless of the amount of disclosed TSK elements. In addition 
to SAIDA, other signature amortization schemes that rely on 
fault-tolerant algorithms to defend against pollution attacks could 
benefit from our proposed approach. 

We provide an analysis on the storage, communication, and 
computational overhead, demonstrating that our proposed scheme 
is relatively lightweight to previous solutions. We also evaluate 
our scheme under various conditions to help senders define 
operating parameters suitable for its local network. 

Because the storage size of the TSK elements array is 
considerable, we aim to reduce the storage overhead in future 
work.
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