
��� ���

Lightweight, Pollution-Attack Resistant Multicast
Authentication Scheme

Ya-Jeng Lin
jglin@csie.nctu.edu.tw

Shiuhpyng Shieh
National Chiao Tung University /
University of California Berkeley*

1001 Ta Hsueh Road
Hsinchu, Taiwan 300, ROC
886-3-571-2121 ext 54705

ssp@csie.nctu.edu.tw

Warren W. Lin
warren@csie.nctu.edu.tw

ABSTRACT
Authentication is an important security measure for multicast
applications, providing receivers with confidence that the packets
they receive are valid. Simply signing every multicast packet with
a digital signature incurs high overhead; therefore, a scheme such
as signature amortization helps reduce this overhead. To tolerate
packet loss, erasure codes are employed to enhance signature
amortization. However, the use of erasure codes introduces
pollution attack, an attack in which the adversary injects packets
to disrupt the erasure decoding procedure and consequently
denies the authentication service to the receiver. Unfortunately,
current solutions to pollution attack are computationally intensive
and inefficient. To cope with this problem, we propose a new
lightweight, pollution-attack resistant multicast authentication
scheme (PARM), which generates evidence that receivers can
validate on a fast, per-packet basis. This approach effectively
resists pollution attacks and has better performance than
previously proposed solutions.

Keywords
Authentication, multicast, pollution-attack, erasure code,
signature amortization.

1. INTRODUCTION
A multicast protocol enables a sender to efficiently disseminate
digital media data to many receivers. Due to the time-sensitive
requirement of some applications, reliable transmission protocol
like TCP (Transmission Control Protocol) is impractical for
multicast. Therefore, unreliable transmission protocol such as
UDP (User Datagram Protocol) is generally adopted for multicast

applications. Multicast protocol is suitable for many applications,
e.g. video transmissions, live broadcasts, stock quotes, or news
feeds. These applications may have many receivers or distribute
time-sensitive data. To ensure secure communications between a
sender and its receivers, it is important to implement security
measures in a multicast environment.

An attacker may impersonate a sender to transmit malicious
packets to receivers, causing disruptions in the communications.
Multicast authentication is used to defend against forged packets
injected by the attackers by enabling a receiver to authenticate the
packet source and discard malicious packets. There have been
many multicast authentication approaches, which can be roughly
divided into two categories: symmetric cryptographic primitives
and asymmetric cryptographic primitives. Symmetric
cryptographic primitives, such as MAC (Message Authentication
Code), generally use a symmetric key to authenticate a data
source. In MAC, an identical secret key is maintained by the
sender and receiver. The sender uses the secret key to generate a
MAC for a packet, and the receiver is able to authenticate the
packet source by verifying the MAC of the packet with the secret
key. Asymmetric cryptographic primitives, such as digital
signatures, use an asymmetric key pair to authenticate a data
source. In general, an asymmetric key pair consists of two keys;
one key is used to generate the signature, while the other key is
used to verify the signature. Using digital signatures, like RSA,
for authentication is popular and believed to be secure;
nevertheless, digital signature generation and verification incur
significant computation overhead.

Signature amortization [10][11][15][16][17][18][19][20]
addresses this concern by generating a single digital signature for
a block of packets. After verifying the signature, a receiver can
consider this block of packets authentic. Signature amortization
makes a tradeoff between security and computation overhead. An
elaborate signature amortization scheme should still work well
despite packet loss in a multicast protocol. For this reason,
signature amortization schemes utilize fault-tolerant coding
algorithms to encode and decode packets. Fault-tolerant coding
algorithms, like erasure codes [7][8][9][12] or diversity codes
[21], partition information into many segments and can correctly
reconstruct the original information even though a number of
segments, up to a threshold, may be lost.

Although signature amortization with a fault-tolerant coding
algorithm reduces computation overhead and tolerates packet loss,
it suffers from pollution attacks [1]. Pollution attacks occur when
an adversary injects a large quantity of forged packets into a

This work is supported in part by the National Science Council (NSC),
the Institute for Information Industry (III), the Taiwan Information
Security Center at NCTU (TWISC@NCTU), and the Team for Research
in Ubiquitous Secure Technology at UC Berkeley (TRUST).

* Shiuhpyng Shieh is currently a visiting professor of the University of
California, Berkeley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASIACCS’06, March 21–24, 2006, Taipei, Taiwan.
Copyright 2006 ACM 1-59593-272-0/06/0003…$5.00.

��� ���

Lightweight, Pollution-Attack Resistant Multicast
Authentication Scheme

Ya-Jeng Lin
jglin@csie.nctu.edu.tw

Shiuhpyng Shieh
National Chiao Tung University /
University of California Berkeley*

1001 Ta Hsueh Road
Hsinchu, Taiwan 300, ROC
886-3-571-2121 ext 54705

ssp@csie.nctu.edu.tw

Warren W. Lin
warren@csie.nctu.edu.tw

ABSTRACT
Authentication is an important security measure for multicast
applications, providing receivers with confidence that the packets
they receive are valid. Simply signing every multicast packet with
a digital signature incurs high overhead; therefore, a scheme such
as signature amortization helps reduce this overhead. To tolerate
packet loss, erasure codes are employed to enhance signature
amortization. However, the use of erasure codes introduces
pollution attack, an attack in which the adversary injects packets
to disrupt the erasure decoding procedure and consequently
denies the authentication service to the receiver. Unfortunately,
current solutions to pollution attack are computationally intensive
and inefficient. To cope with this problem, we propose a new
lightweight, pollution-attack resistant multicast authentication
scheme (PARM), which generates evidence that receivers can
validate on a fast, per-packet basis. This approach effectively
resists pollution attacks and has better performance than
previously proposed solutions.

Keywords
Authentication, multicast, pollution-attack, erasure code,
signature amortization.

1. INTRODUCTION
A multicast protocol enables a sender to efficiently disseminate
digital media data to many receivers. Due to the time-sensitive
requirement of some applications, reliable transmission protocol
like TCP (Transmission Control Protocol) is impractical for
multicast. Therefore, unreliable transmission protocol such as
UDP (User Datagram Protocol) is generally adopted for multicast

applications. Multicast protocol is suitable for many applications,
e.g. video transmissions, live broadcasts, stock quotes, or news
feeds. These applications may have many receivers or distribute
time-sensitive data. To ensure secure communications between a
sender and its receivers, it is important to implement security
measures in a multicast environment.

An attacker may impersonate a sender to transmit malicious
packets to receivers, causing disruptions in the communications.
Multicast authentication is used to defend against forged packets
injected by the attackers by enabling a receiver to authenticate the
packet source and discard malicious packets. There have been
many multicast authentication approaches, which can be roughly
divided into two categories: symmetric cryptographic primitives
and asymmetric cryptographic primitives. Symmetric
cryptographic primitives, such as MAC (Message Authentication
Code), generally use a symmetric key to authenticate a data
source. In MAC, an identical secret key is maintained by the
sender and receiver. The sender uses the secret key to generate a
MAC for a packet, and the receiver is able to authenticate the
packet source by verifying the MAC of the packet with the secret
key. Asymmetric cryptographic primitives, such as digital
signatures, use an asymmetric key pair to authenticate a data
source. In general, an asymmetric key pair consists of two keys;
one key is used to generate the signature, while the other key is
used to verify the signature. Using digital signatures, like RSA,
for authentication is popular and believed to be secure;
nevertheless, digital signature generation and verification incur
significant computation overhead.

Signature amortization [10][11][15][16][17][18][19][20]
addresses this concern by generating a single digital signature for
a block of packets. After verifying the signature, a receiver can
consider this block of packets authentic. Signature amortization
makes a tradeoff between security and computation overhead. An
elaborate signature amortization scheme should still work well
despite packet loss in a multicast protocol. For this reason,
signature amortization schemes utilize fault-tolerant coding
algorithms to encode and decode packets. Fault-tolerant coding
algorithms, like erasure codes [7][8][9][12] or diversity codes
[21], partition information into many segments and can correctly
reconstruct the original information even though a number of
segments, up to a threshold, may be lost.

Although signature amortization with a fault-tolerant coding
algorithm reduces computation overhead and tolerates packet loss,
it suffers from pollution attacks [1]. Pollution attacks occur when
an adversary injects a large quantity of forged packets into a

This work is supported in part by the National Science Council (NSC),
the Institute for Information Industry (III), the Taiwan Information
Security Center at NCTU (TWISC@NCTU), and the Team for Research
in Ubiquitous Secure Technology at UC Berkeley (TRUST).

* Shiuhpyng Shieh is currently a visiting professor of the University of
California, Berkeley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASIACCS’06, March 21–24, 2006, Taipei, Taiwan.
Copyright 2006 ACM 1-59593-272-0/06/0003…$5.00.

block of valid packets. The receiver fails to decode a correct
signature using the fault-tolerant coding algorithm, forcing the
receiver to drop the entire block of packets, which may include
valid packets.

Distillation codes [1] have been proposed for signature
amortization to defend against pollution attack. In distillation
codes, the sender augments each packet with a witness. Upon
receipt, the receiver separates packets into groups by witness.
Distillation codes guarantee that all valid packets are partitioned
into groups that do not contain forged packets, allowing the
receiver to decode the correct signature from the packets in this
group. Unfortunately, the receiver cannot realize in advance
which group contains valid packets; therefore, it must attempt to
decode a valid signature from each group. Furthermore, the
receiver cannot immediately distinguish between valid and invalid
packets, making it necessary to first buffer all received packets.
Distillation codes incur high computation overhead, storage
space, and verification delay.

To summarize, authentication in multicast applications is an
important security measure that cannot be neglected. However,
signing every multicast packet with a digital signature incurs high
overhead, which may be impractical for many resource-limited
devices. Signature amortization can reduce the computation and
communication overhead, and a fault-tolerance coding algorithm
can help tolerate packet loss. Despite these countermeasures, a
signature amortization scheme still suffers pollution attack. To
solve this problem, we have designed a lightweight and pollution
attack resistant multicast authentication protocol (PARM). Our
proposed scheme is fast and lightweight, which is ideal for
multicast applications with time-sensitive requirements or devices
with limited computational power. In contrast to distillation
codes, our proposed scheme requires less computation overhead
and storage space.

In the next section, we briefly discuss work related to signature
amortization, an overview of the SAIDA signature amortization
scheme, and distillation codes. We describe our proposed scheme
in section 3 and provide an analysis of PARM against distillation
codes in section 4. After deriving the security strength of PARM
in section 5, we evaluate its security in section 6. Finally, we
conclude our findings in section 7.

2. RELATED WORK
We introduce current works in signature amortization in section
2.1 and a signature amortization scheme with erasure codes
(SAIDA) in section 2.2. We then give a description of distillation
codes in section 2.3.

2.1 Signature Amortization
Computation and communication overhead is a significant
consideration in many multicast authentication schemes based on
digital signature. To reduce this overhead, signature amortization
schemes generate a single signature over many packets. Based on
different techniques, signature amortization schemes can be
classified into several categories: hash chains, graphs, Merkle
hash trees, and erasure codes.

2.1.1 Hash Chains
Gennaro and Rohatgi [22] have devised a signature amortization
over hash chains. Each packet pi is augmented with verification
information ai, which is recursively defined as the hash value of
the concatenation of the next packet pi+1 and the next verification
information ai+1. For example, ai=h(pi+1||ai+1) and
ai+1=h(pi+2||ai+2), where h denotes a hash function. Since the
verification information is used to authenticate the next packet
recursively, only the first packet with its verification information
needs to be signed with a digital signature to protect against
tampering. This scheme has constant authentication overhead per
packet but does not tolerate packet losses since the loss of one
packet prevents authentication of the remaining packets.

2.1.2 Graphs
A graph-based technique [15][16][18][19] generalizes the idea of
amortizing a signature over a hash chain to tolerate packet loss. A
single-sink directed acyclic graph (DAG) is defined such that
each vertex corresponds to a packet. The edges in this graph
indicate the authentication direction; thus, the source vertex is
authenticated using the verification information of the destination
vertex. Instead of augmenting the current packet with the next
packet’s hash value, a packet pi is augmented with the hash value
of the packet pj, which points to pi in a single-sink DAG. As with
the hash chain approach, the first packet is also digitally signed.
Graph-based schemes simply guarantee probabilistic security
strength under random packet loss. In particular, they require that
the digitally signed packets completely reach the receiver.

2.1.3 Merkle Hash Trees
A Merkle hash tree [6] is a mechanism for computing a single
cryptographically secure hash digest over a set of data elements.
It is a binary hash tree whose internal nodes are recursively
defined as the hash value of the concatenation of its two children.
Many signature amortization schemes build a Merkle hash tree on
top of the packets’ hash values.

Figure 2-1 shows a Merkle hash tree with each Si representing a
packet. Each leaf node hi is calculated by hashing the
corresponding Si, while each internal node hi,j is computed by
hashing the concatenation of hi and hj. The verification sequence
for a leaf node consists of the hash values of the sibling nodes on
the path from the leaf node to the root. With a leaf node and its
verification sequence, the receiver can compute the tree’s root
value. For instance, (h4, h1,2, h5,8) represents the verification
sequence of packet s3, as shown in Figure 2-1. Wong and Lam
[20] utilize a Merkle hash tree to amortize a digital signature over
n packets. First, the sender hashes each packet and treats each as a
leaf node to the Merkle hash tree. Then, the sender augments each
packet with verification information, which is comprised of the
signed root hash value and the corresponding verification
sequence of the leaf node. With this knowledge, the receiver can
individually and independently verify each packet. This scheme
also tolerates packet losses, but logarithmic communication
overhead per packet exists since the verification sequence size
grows logarithmically with the amount of leaf nodes. In contrast,
our proposed scheme achieves constant per-packet
communication overhead.

��0 ���

Figure 2-1. Merkle Hash Tree1

2.1.4 Erasure Codes
An erasure code [7][8][9][12] consists of an encoder and decoder
that use forward error correction to tolerate data loss. The encoder
redundantly encodes information into a set of segments. If the
decoder receives sufficient segments, it can reconstruct the
original information. For example, an (n, t) erasure encoder
generates a set S of n symbols (s1, s2,…, sn) from the data. The
erasure decoder can tolerate a loss of up to t packets. In the next
section, we detail a signature amortization scheme that employs
the use of erasure codes.

2.2 SAIDA
Park et al. [10][11] propose a signature amortization scheme for
multicast authentication, SAIDA (Signature Amortization using
the Information Dispersal Algorithm), which utilizes erasure
codes to tolerate random packet loss. In this scheme, the sender
first partitions the packet stream into blocks of n consecutive
packets. Next, the sender concatenates the hash values of all
packets in one block to form Hj, which it protects by generating a
signature Sign(h(Hj)) for the hash value Hj. Then, the erasure
encoder encodes the verification information VI, which includes
Hj and Sign(h(Hj)), and appends the outputted segments to each
packet in the block. Despite the lost of packets, an erasure
decoder can successfully reconstruct VI as long as it receives a
sufficient number of packets. The receiver can then verify Hj with
Sign(h(Hj)); consequently, the hash values contained in Hj can
authenticate all received packets in that block.

2.2.1 Pollution Attacks in SAIDA
During normal operation, the receiver validates a block of packets
by using erasure codes to decode the verification information
from the received packets. Injecting forged packets into the
communication channel confuses the receiver, causing it to
decode an incorrect Hj. Thus, the receiver is unable to
successfully verify the signature Sign(h(Hj)) and must drop the
received packets. If the receiver attempts to reconstruct the
correct information during the pollution attack, it will expend

1 Each leaf node is calculated by hashing the corresponding

packet Si, and each internal node is the hash value of the
concatenation of its two children. The verification sequence, for
example, of a leaf node h3 is (h4, h1,2, h5,8).

excessive computational power evaluating all possible
combinations of the received packets.

2.3 Distillation Codes
Karlof et al. [1] propose distillation codes as a mechanism to
defend against pollution attacks on a SAIDA-based signature
amortization scheme by utilizing Merkle hash trees and one-way
accumulators. First, the sender constructs a Merkle hash tree
using the hash value of the multicast packets. Next, for each
packet, the sender generates and appends a witness, the
verification sequence of a leaf node in the Merkle hash tree.
When the receiver accepts packets, it separates them into many
groups according to each packet’s witness. Distillation codes
ensure that a group contains all valid packets, allowing the
receiver to successfully reconstruct the verification information of
this group.

Distillation codes consist of a distillation encoder and a decoder
procedure. The distillation encoder first hashes the packets of a
single block and concatenates them to form Hj. Then, the
distillation encoder uses erasure codes to encode Hj and outputs
the set of symbols S’=(s1’, s2’,…, sn’), with each symbol denoting
a leaf node from which to build a Merkle hash tree. It also
produces a set of distillation code symbols S=(s1, s2,…, sn), where
si is the concatenation of si’ and the verification sequence of si’.
Before multicasting the packet, the sender augments each packet
with its corresponding distillation code symbol si. Since the
receiver can calculate the root hash value of the Merkle hash tree
through the verification sequence, the receiver is able to partition
the received packet by the calculated root value from the witness
of the packet. Valid witnesses possess the same root hash value;
thus, the receiver partitions packets with valid witnesses into the
same group. As a result, the receiver can reconstruct correct
verification information from the packets in the group. Therefore,
distillation codes can defeat pollution attacks.

Unfortunately, distillation codes induce logarithmic
communication overhead since the witness size grows
logarithmically with the number of packets per block. In addition,
while suffering a pollution attack, the receiver will consume
significant computation power from erasure decoding and
signature verification. Furthermore, the receiver must buffer all
packets, regardless of whether it is valid or invalid, until the
correct information is reconstructed because it does not know the
root of the Merkle hash tree in advance. Thus, the receiver
requires a large buffer to temporarily store these packets.

There is an additional weakness in distillation codes. An attacker
can construct his own Merkle hash tree and transmit packets
augmented with the corresponding witness. Since the witnesses
are constructed from the same Merkle hash tree, the receiver will
partition these packets into the same group. Because the receiver
is unaware of the correct root of the Merkle hash tree beforehand,
an attacker is able to inject a large number of forged packets into
one group to exhaust the receiver’s computational power,
dramatically downgrading the receiver’s performance.

3. PROPOSED SCHEME
We propose a lightweight and pollution attack resistant multicast
authentication protocol (PARM) based upon SAIDA. In our
scheme, each packet is appended with evidence containing the
verification information that allows the receiver to judge the

��0 ���

Figure 2-1. Merkle Hash Tree1

2.1.4 Erasure Codes
An erasure code [7][8][9][12] consists of an encoder and decoder
that use forward error correction to tolerate data loss. The encoder
redundantly encodes information into a set of segments. If the
decoder receives sufficient segments, it can reconstruct the
original information. For example, an (n, t) erasure encoder
generates a set S of n symbols (s1, s2,…, sn) from the data. The
erasure decoder can tolerate a loss of up to t packets. In the next
section, we detail a signature amortization scheme that employs
the use of erasure codes.

2.2 SAIDA
Park et al. [10][11] propose a signature amortization scheme for
multicast authentication, SAIDA (Signature Amortization using
the Information Dispersal Algorithm), which utilizes erasure
codes to tolerate random packet loss. In this scheme, the sender
first partitions the packet stream into blocks of n consecutive
packets. Next, the sender concatenates the hash values of all
packets in one block to form Hj, which it protects by generating a
signature Sign(h(Hj)) for the hash value Hj. Then, the erasure
encoder encodes the verification information VI, which includes
Hj and Sign(h(Hj)), and appends the outputted segments to each
packet in the block. Despite the lost of packets, an erasure
decoder can successfully reconstruct VI as long as it receives a
sufficient number of packets. The receiver can then verify Hj with
Sign(h(Hj)); consequently, the hash values contained in Hj can
authenticate all received packets in that block.

2.2.1 Pollution Attacks in SAIDA
During normal operation, the receiver validates a block of packets
by using erasure codes to decode the verification information
from the received packets. Injecting forged packets into the
communication channel confuses the receiver, causing it to
decode an incorrect Hj. Thus, the receiver is unable to
successfully verify the signature Sign(h(Hj)) and must drop the
received packets. If the receiver attempts to reconstruct the
correct information during the pollution attack, it will expend

1 Each leaf node is calculated by hashing the corresponding

packet Si, and each internal node is the hash value of the
concatenation of its two children. The verification sequence, for
example, of a leaf node h3 is (h4, h1,2, h5,8).

excessive computational power evaluating all possible
combinations of the received packets.

2.3 Distillation Codes
Karlof et al. [1] propose distillation codes as a mechanism to
defend against pollution attacks on a SAIDA-based signature
amortization scheme by utilizing Merkle hash trees and one-way
accumulators. First, the sender constructs a Merkle hash tree
using the hash value of the multicast packets. Next, for each
packet, the sender generates and appends a witness, the
verification sequence of a leaf node in the Merkle hash tree.
When the receiver accepts packets, it separates them into many
groups according to each packet’s witness. Distillation codes
ensure that a group contains all valid packets, allowing the
receiver to successfully reconstruct the verification information of
this group.

Distillation codes consist of a distillation encoder and a decoder
procedure. The distillation encoder first hashes the packets of a
single block and concatenates them to form Hj. Then, the
distillation encoder uses erasure codes to encode Hj and outputs
the set of symbols S’=(s1’, s2’,…, sn’), with each symbol denoting
a leaf node from which to build a Merkle hash tree. It also
produces a set of distillation code symbols S=(s1, s2,…, sn), where
si is the concatenation of si’ and the verification sequence of si’.
Before multicasting the packet, the sender augments each packet
with its corresponding distillation code symbol si. Since the
receiver can calculate the root hash value of the Merkle hash tree
through the verification sequence, the receiver is able to partition
the received packet by the calculated root value from the witness
of the packet. Valid witnesses possess the same root hash value;
thus, the receiver partitions packets with valid witnesses into the
same group. As a result, the receiver can reconstruct correct
verification information from the packets in the group. Therefore,
distillation codes can defeat pollution attacks.

Unfortunately, distillation codes induce logarithmic
communication overhead since the witness size grows
logarithmically with the number of packets per block. In addition,
while suffering a pollution attack, the receiver will consume
significant computation power from erasure decoding and
signature verification. Furthermore, the receiver must buffer all
packets, regardless of whether it is valid or invalid, until the
correct information is reconstructed because it does not know the
root of the Merkle hash tree in advance. Thus, the receiver
requires a large buffer to temporarily store these packets.

There is an additional weakness in distillation codes. An attacker
can construct his own Merkle hash tree and transmit packets
augmented with the corresponding witness. Since the witnesses
are constructed from the same Merkle hash tree, the receiver will
partition these packets into the same group. Because the receiver
is unaware of the correct root of the Merkle hash tree beforehand,
an attacker is able to inject a large number of forged packets into
one group to exhaust the receiver’s computational power,
dramatically downgrading the receiver’s performance.

3. PROPOSED SCHEME
We propose a lightweight and pollution attack resistant multicast
authentication protocol (PARM) based upon SAIDA. In our
scheme, each packet is appended with evidence containing the
verification information that allows the receiver to judge the

packet’s validity. PARM is fast and lightweight, which caters to
time-sensitive multicast applications and computationally limited
devices.

3.1 PARM
Our proposed scheme consists of four phases: initialization,
evidence generation, evidence validation, and temporal key
renewal. We describe the four phases in the next few sub-sections.

3.1.1 Initialization Phase
In this phase, we define how to generate a temporal key pair,
which contains a temporal secret key (TSK) chain and a temporal
public key (TPK), using a one-way hash function. The sender
creates the evidence of a packet from a TSK chain, and the
receiver validates the evidence of a received packet with the TPK.

Before communicating with receivers, the sender must generate
the TSK chain and TPK in advance. First, the sender generates k
n-bit random numbers (R0, R1,…, Rk-1) and denotes this set of
numbers as TSK0 of the TSK chain. Then, the sender uses the one-
way hash function h to recursively generate the remaining TSKs
of the TSK chain. By applying the hash function to each member
of the previous TSK, the sender can produce the next TSK. For
example, TSK1 is generated by hashing each element in TSK0 i.e.
TSK1=(h(R0), h(R1),…, h(Rk-1)). The TSK chain has a length of L
and is represented as (TSK0, TSK1,…, TSKL-1). The temporal
public key (TPK) is created by hashing every element of TSKL-1.

Figure 3-1 depicts the procedure for TSK and TPK generation. R0
denotes the randomly generated number, and the arrows specify
the direction of the one-way hash function h. Thus, h(R0) is the
hash result of R0, and h2(R0) is the hash result of h(R0). The set of
the elements in the same row comprises a TSK elements array,
e.g. TSK0=(R0, R1,…, Rk-1) and TSK1=(h(R0), h(R1),…, h(Rk-1)).
The elements of the last row form the TPK.

Figure 3-1. Temporal Key Pair Generation

After successful generation of the TSK chain and TPK, the sender
provides receivers with the TPK. Since receivers will use the TPK
to determine the validity of received packets, it is vital that the

sender sign the TPK with a digital signature to protect it during
distribution. Otherwise, an attacker can convince receivers to
accept a forged TPK; consequently, all valid packets will fail to
pass evidence validation. The receiver stores the TPK if it verifies
the signature.

3.1.2 Evidence Generation Phase
Prior to broadcasting a message, the sender must generate for
each packet the evidence, or verification information, which
allows receivers to determine the validity of a packet. Since each
packet is augmented with evidence, the evidence generation phase
should be lightweight and fast. For a given temporal key pair, the
sender needs to maintain a usage table, such as the one in Figure
3-2, that tracks the number of times each column index of the
TSK elements array is used. The row index denotes the column
index of the TSK elements array, while the row usage tracks the
number of uses of the corresponding index.

Figure 3-2. Usage Table

Figure 3-3 illustrates the evidence generation phase. To generate
evidence EM for a packet M, the sender first hashes the packet
with a one-way hash function h. The hash value is divided into a
set of p segments, denoted S=(i0, i1,…, ip-1), where each segment
size is b-bits. Interpreted as an integer between 0 and 2b-1, each
segment in the set S represents a column index of the TSK
elements array. For each index i, the sender determines the TSK
based upon the usage of i by selecting TSK(L-1)-ai, where ai denotes
the usage of i. Thus, the sender chooses the last TSK of the chain,
TSKL-1, if i has never been used. Once the sender determines the
TSK, it chooses the i-th element of the selected TSK. For
example, if i0 used L-1 TSK elements, then the sender chooses the
i0-th element of TSK0, which is R0. Since each segment of S
corresponds to an index of the TSK elements array, the sender
produces p elements, which constitutes the evidence of the packet.
After appending the evidence to the packet, the sender can finally
broadcast the packet to the receiver.

Figure 3-3. Evidence Generation Phase

��� ���

3.1.3 Evidence Validation Phase
Upon receiving a packet, the receiver can use the TPK to
immediately check the validity of the attached evidence. To forge
a packet, the attacker must generate proper evidence for a packet,
which is difficult without knowledge of the TSK chain. In section
5, we will demonstrate the complexity of a successful attack. As
with the sender, the receiver must also maintain a usage table for
each column index of the TSK elements array based on received
packets.

Figure 3-4. Evidence Validation Phase

The procedure of the evidence validation phase, depicted in
Figure 3-4, is similar to that of the evidence generation phase.
After receiving a packet containing evidence EM, the receiver
separates the evidence, denoted EM=(e0, e1,…, ep-1), from the
packet M. To validate the evidence for this packet, the receiver
hashes M with the one-way hash function h, which is identical to
the one-way hash function used by the sender in the evidence
generation phase. Next, the receiver divides the hash value h(M)
into p b-bit segments, denoting these segments as the set (i0, i1,…,
ip-1). By interpreting each segment as an integer between 0 and 2b-
1, each segment can represent a column index of the TSK
elements array. Each index i, along with its usage ai, determines
the number of times to hash the corresponding element ei of the
evidence. Given an index and its usage, the receiver should
perform ai+1 hashes on the corresponding element of the evidence.
Thus, if index i has never been used before, the receiver need only
hash ei once. The ensuing set of hash results from every element
of the evidence is denoted by HR=(h0, h1,…, hp-1). The receiver
selects the verification subset VS=(hL(Ri0), hL(Ri1),…, hL(Rip-1))
from the TPK, where hL(Ri) is the i-th element of the TPK. The
receiver considers the evidence valid if the two sets, HR and VS,
contain identical elements, accepting the packet with valid
evidence and dropping it otherwise.

3.1.4 Temporal Key Renewal Phase
In the previous three phases of PARM, the sender uses the TSK
chain to generate the evidence of a packet, which the receiver
validates with the TPK. Since the packet’s evidence prevents the
receiver from accepting forged packets, our proposed scheme can
thwart pollution attacks. Nevertheless, an attacker can still sniff
various bits of the TSK chain because each piece of evidence
contains elements of the TSK chain. When an attacker obtains
enough portions of the TSK chain, the probability of forging valid

evidence rises dramatically. Thus, periodic renewal of used TSK
elements is necessary to ensure secure communications between
the sender and its receivers.

We define a threshold value T in our key renewal phase. UTSK0
represents the number of used elements in TSK0 (the first TSK of
the TSK chain) since the last temporal key renewal, and the set
(j0, j1,…, jt-1) denotes the indexes of the used elements. When
UTSK0 exceeds the threshold T, new elements are required. First,
the sender generates UTSK0 new random numbers for the used
indexes of TSK0. Using these random numbers, the sender creates
the partial TSK and the partial TPK with the one-way hash
function h by following the temporal key generation procedure of
the initialization phase. The sender then updates its copy of the
TSK chain with the partial TSK elements. Since the receiver must
also update its TPK, the sender concatenates the new partial TPK
with its digital signature Sign(Partial TPK), which it then encodes
with erasure codes and appends to outgoing packets. Figure 3-5
illustrates the preparation required for sending the partial TPK to
the receiver. Upon successful renewal of the TSK chain and TPK,
the sender and receiver may resume evidence generation and
verification of packets.

Figure 3-5. Temporal Key Renewal Phase

3.2 Practical Considerations
In this section, we describe the features of our proposed scheme.

3.2.1 Efficient Evidence Generation and Validation
Instead of complicated cryptographic algorithms, PARM utilizes
a simple one-way hash function to generate and validate evidence.
Because of its lightweight operation, PARM is suitable for
devices with limited computational power.

3.2.2 Instant Validation
Upon arrival, the receiver is able to validate each packet based on
the evidence appended to the packet, allowing it to immediately
discard invalid packets. Instant validation also mitigates the
attacker’s ability to overwhelm the receiver’s storage space by
sending large amounts of packets.

3.2.3 Packet Loss Tolerant and Individual Validation
In some mediums, such as the internet, packet loss occurs
frequently. Since some multicast applications may not retransmit
lost packets, we design our scheme to tolerate the loss of packets.
Moreover, packet loss will not affect the validation of other
packets because the receiver independently verifies each packet.

3.2.4 Constant Verification Information Size
To provide for individual packet validation, the sender augments
every packet with its own evidence. If the evidence size grows too

��� ���

large, the overhead will significantly affect performance. In our
proposed scheme, the evidence size remains constant per packet.

3.3 Attack Resistance
There are various types of attacks that a robust multicast
authentication scheme should be able to defend against. In this
section, we describe how PARM resists common attacks. We
assume it is infeasible for an adversary to successfully forge a
packet’s evidence, and we detail the degree of difficulty of
violating this assumption in section 5.

3.3.1 Injection Attack
An attacker injects random or pre-designed packets with the intent
of inducing the receiver into performing illegal behavior. Because
PARM requires that each packet provide evidence, the receiver
simply rejects the injected packet as soon as the evidence
validation fails.

3.3.2 Modification Attack
Due to the distributed nature of a multicast environment, an
adversary may capture a sender’s packets, modifying its contents
before retransmission to the receivers. As with injection, the
receiver will attempt to verify the modified packet and drop it
after an unsuccessful validation of the evidence.

3.3.3 Signature Flooding Attack
Most authentication mechanisms require additional verification
information that allows a receiver to validate the received packets.
If packet validation entails high operational overhead, an attacker
may send a large amount of packets with invalid verification
information in an attempt to exhaust the computational resources
of a receiver. Because of its lightweight validation procedure,
PARM is resistant to signature flooding attacks.

3.3.4 Pollution Attack
In this attack, an adversary injects forged packets to pollute the
erasure decoding procedure. Since it is impractical for the
adversary to generate legitimate evidence for a forged packet, the
receiver refuses to accept the packet after evidence validation
failure.

4. COMPARISON
In this section, we compare PARM with distillation codes. Karlof
et al. [1] proposed distillation codes as a means to thwart
pollution attacks against SAIDA. However, distillation codes
require significant communication and computation overhead.
Before we begin, we define several parameters in Table 4-1.

4.1 Storage Overhead
In the initial stage, distillation codes require no additional storage
size, while PARM needs extra storage at both the sender and
receiver. In our proposed scheme, the length of the TSK chain is
L, and each TSK contains k elements. Thus, the sender’s TSK
elements array contains L*k elements, while the receiver’s TPK
has a size of k elements. A long TSK chain requires a large
amount of storage; however, the sender of a multicast
environment typically possesses the resources to cope with this
overhead.

Table 4-1. Parameters

CE computation overhead of operating erasure
codes per time

CH computation overhead of operating hash
functions per time

SG computation overhead of generating one
digital signature in SAIDA

SV computation overhead of verifying one digital
signature in SAIDA

NK number of packets in one SAIDA block
NP verification information size of PARM
NA number of attack packets in one block
DG number of partitions for distillation codes

During a pollution attack, PARM saves considerable storage
space over distillation codes. Since our proposed scheme instantly
checks the validity of received packets, the receiver only buffers
valid packets. In contrast, distillation codes cannot immediately
judge the validity of received packets. Consequently, the receiver
is forced to buffer all packets, regardless of its validity. Because
the typical receiver has limited resources, buffering many packets
degrades the receiver’s performance. Therefore, PARM is more
space efficient on the receiver end during a pollution attack than
distillation codes.

4.2 Communication Overhead
Both distillation codes and PARM append validation information
to a packet. Because distillation codes utilize Merkle hash trees,
the witness of a packet grows logarithmically with the number of
packets per SAIDA block. On the contrary, our proposed scheme
employs constant sized evidence for any number of packets per
block. Therefore, the communication overhead of PARM scales
better than that of distillation codes.

4.3 Computation Overhead
Likewise, the computational overhead of the receiver grows
logarithmically in distillation codes, while our scheme’s overhead
remains constant. We first show the computational overhead
required by the sender or receiver to send or receive one block of
packets, respectively, while operating normally. For distillation
codes, the sender’s cost of transmitting one block of packets is

GHK SCN)12(,

while the receiver requires a computational overhead of

VEHKK SCCNN)1(log2

to validate one block of packets. In contrast, PARM only needs a
computational overhead of

GHK SCN

��� ���

by the sender to prepare a block of packets for broadcast, while
the receiver’s cost of validating a block of packets is

VEHPK SCCNN .

Because a pollution attack does not affect the computational
overhead of the sender, we focus only on the analysis of the
receiver.

During a pollution attack, the use of distillation codes requires a
cost of

VGEGHKAK SNCNCNNN)1(log)(2
.

Compared to our proposed scheme, the receiver’s overhead is

VEHPAK SCCNNN)(.

Erasure codes and signature verification need significant
computational power. Unfortunately, distillation codes require
even more calculations than either of these two computationally
consuming operations. Thus, PARM is more lightweight than
distillation codes.

5. SECURITY ANALISYS
In this section, we analyze the degree of difficulty of computing
valid evidence for a packet without prior knowledge of the full
TSK chain.

For the first case, we assume the attacker does not possess any
element of the TSK. On average, an adversary must guess (2b-1)p

hash values, where b represents the number of bits per element
and p represents the number of elements in each piece of
evidence. The complexity of finding valid evidence for a packet
can be denoted as O(2bp).

In the second case, we derive the probability Pf of the adversary
producing valid evidence for a packet given n TSK elements.
Since each element in the TSK will not be reused, except those
elements in the first TSK chain, TSK0, we can assume that only
the reused elements of TSK0 will affect the security of PARM.
The TSK has a chain length of L and k elements per TSK. If the
known elements are distributed among each TSK, then n/L
denotes the number of these elements in TSK0. Without executing
the temporal key renewal phase, we derive a tight upper bound for
Pf.

pp
L
n

f Lk
n

k
P (Equation 5.1)

We define the security strength as

p

f n
Lk

P
S 1 (Equation 5.2)

Equation 5.2 shows that the security strength S increases in direct
proportion to the number of TSK elements k or TSK chain length
L and decreases with the number of used TSK elements n. The
security strength S decreases if probability Pf increases too much.

In the final case, we execute the temporal key renewal phase,
rendering useless any evidence obtained by the attacker. With T

denoting the threshold value as defined in the temporal key
renewal phase, the upper bound probability of forging evidence is

T
L
n

k
P

p
L
n

f

 (Equation 5.3)

and the security strength can be represented as

T
L
n

n
Lk

P
S

p

f

1 (Equation 5.4)

Since n/L denotes the number of used elements in TSK0, we reset
n/L to zero if it exceeds the threshold T.

6. EVALUATION
In this section, we evaluate the security strength of our proposed
scheme under different conditions. By adjusting the parameters of
the equations derived in section 5, we can assess the security
strength of PARM under various situations.

Utilizing equation 5.2, we first discuss the security strength of our
scheme without any key renewal. Figure 6-1 and Figure 6-2
illustrate the change in security strength as a result of varying the
evidence size and the number of TSK elements an attacker
already possesses. We apply the following parameters to equation
5.2: each TSK contains k=512 symbols, each TSK chain length is
L=10, and each piece of evidence contains p TSK elements. For a
small number of TSK elements known to the adversary, Figure
6-1 demonstrates that security strength greatly increases as the
evidence size increases. Figure 6-2 depicts a significant decrease
in security strength when the adversary possesses a much larger
collection of TSK elements.

Figure 6-1.The Security Strength of Different Evidence Size

��� ���

by the sender to prepare a block of packets for broadcast, while
the receiver’s cost of validating a block of packets is

VEHPK SCCNN .

Because a pollution attack does not affect the computational
overhead of the sender, we focus only on the analysis of the
receiver.

During a pollution attack, the use of distillation codes requires a
cost of

VGEGHKAK SNCNCNNN)1(log)(2
.

Compared to our proposed scheme, the receiver’s overhead is

VEHPAK SCCNNN)(.

Erasure codes and signature verification need significant
computational power. Unfortunately, distillation codes require
even more calculations than either of these two computationally
consuming operations. Thus, PARM is more lightweight than
distillation codes.

5. SECURITY ANALISYS
In this section, we analyze the degree of difficulty of computing
valid evidence for a packet without prior knowledge of the full
TSK chain.

For the first case, we assume the attacker does not possess any
element of the TSK. On average, an adversary must guess (2b-1)p

hash values, where b represents the number of bits per element
and p represents the number of elements in each piece of
evidence. The complexity of finding valid evidence for a packet
can be denoted as O(2bp).

In the second case, we derive the probability Pf of the adversary
producing valid evidence for a packet given n TSK elements.
Since each element in the TSK will not be reused, except those
elements in the first TSK chain, TSK0, we can assume that only
the reused elements of TSK0 will affect the security of PARM.
The TSK has a chain length of L and k elements per TSK. If the
known elements are distributed among each TSK, then n/L
denotes the number of these elements in TSK0. Without executing
the temporal key renewal phase, we derive a tight upper bound for
Pf.

pp
L
n

f Lk
n

k
P (Equation 5.1)

We define the security strength as

p

f n
Lk

P
S 1 (Equation 5.2)

Equation 5.2 shows that the security strength S increases in direct
proportion to the number of TSK elements k or TSK chain length
L and decreases with the number of used TSK elements n. The
security strength S decreases if probability Pf increases too much.

In the final case, we execute the temporal key renewal phase,
rendering useless any evidence obtained by the attacker. With T

denoting the threshold value as defined in the temporal key
renewal phase, the upper bound probability of forging evidence is

T
L
n

k
P

p
L
n

f

 (Equation 5.3)

and the security strength can be represented as

T
L
n

n
Lk

P
S

p

f

1 (Equation 5.4)

Since n/L denotes the number of used elements in TSK0, we reset
n/L to zero if it exceeds the threshold T.

6. EVALUATION
In this section, we evaluate the security strength of our proposed
scheme under different conditions. By adjusting the parameters of
the equations derived in section 5, we can assess the security
strength of PARM under various situations.

Utilizing equation 5.2, we first discuss the security strength of our
scheme without any key renewal. Figure 6-1 and Figure 6-2
illustrate the change in security strength as a result of varying the
evidence size and the number of TSK elements an attacker
already possesses. We apply the following parameters to equation
5.2: each TSK contains k=512 symbols, each TSK chain length is
L=10, and each piece of evidence contains p TSK elements. For a
small number of TSK elements known to the adversary, Figure
6-1 demonstrates that security strength greatly increases as the
evidence size increases. Figure 6-2 depicts a significant decrease
in security strength when the adversary possesses a much larger
collection of TSK elements.

Figure 6-1.The Security Strength of Different Evidence Size

Figure 6-2. The Security Strength of Different Evidence Size

TSK chain length L also influences the security strength of
PARM. Applying equation 5.2, we set the evidence size p at 16
and the number of elements k per TSK at 512. From Figure 6-3,
we observe that longer TSK chains increase the security strength.
Since we do not employ the key renewal mechanism in this test,
the security strength significantly drops as the adversary obtains
more TSK elements.

Figure 6-3. The Security Strength of Different TSK Chain
Length

Equation 5.4 models the security strength of our scheme with the
temporal key renewal mechanism in effect. The key renewal
phase occurs when the number of used TSK elements in TSK0
reaches a threshold T, forcing a partial renewal of the temporal
key pair. Figure 6-4, depicts the security strength of PARM under
different key renewal thresholds T. The x-axis represents the
number of transmission rounds between sender and receivers.
Because the first curve does not renew its key pair, its security
strength monotonically decreases. In contrast, the other curves do
renew their keys, and thus can maintain a minimum level of
security. For example, a threshold of 200 induces a minimum

security strength of E+11, while the security strength remains
above E+19 for a threshold of 50. From the figure, we can
conclude that a small threshold can sustain higher security
strength than a large threshold; therefore, key renewal is essential
to guarantee security.

Figure 6-4. The Security Strength with Key Renewal

7. CONCLUSION
Pollution attack is a significant problem in multicast
authentication. Despite past efforts, researchers have not been
able to develop an efficient solution. This paper proposes a new
approach to resisting pollution attack that not only offers
lightweight computational overhead to the sender and receiver but
also allows the receiver to instantly validate packets without the
need to buffer invalid packets. The partial key renewal
mechanism provides a guarantee on a lower bound of the security
regardless of the amount of disclosed TSK elements. In addition
to SAIDA, other signature amortization schemes that rely on
fault-tolerant algorithms to defend against pollution attacks could
benefit from our proposed approach.

We provide an analysis on the storage, communication, and
computational overhead, demonstrating that our proposed scheme
is relatively lightweight to previous solutions. We also evaluate
our scheme under various conditions to help senders define
operating parameters suitable for its local network.

Because the storage size of the TSK elements array is
considerable, we aim to reduce the storage overhead in future
work.

8. REFERENCES
[1] Chris Karlof, Naveen Sastry, Yaping Li, Adrian Perrig, and

J.D. Tygar, "Distillation Codes and Applications to DoS
Resistant Multicast Authentication", In Proceedings of the
11th Annual Network and Distributed System Security
Symposium (NDSS '04), February 2004.

[2] J. M. Park, E. Chong, and H. J. Siegel. Efficient multicast
packet authentication using erasure codes. ACM
Transactions on Information and System Security (TISSEC),
6(2):258–285, May 2003.

��� ���

[3] J. M. Park, E. K. Chong, and H. J. Siegel. Efficient multicast
packet authentication using signature amortization. In
Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 227–240, May 2002.

[4] A. Perrig. The BiBa one-time signature and broadcast
authentication protocol. In Proceedings of the Eighth ACM
Conference on Computer and Communications Security
(CCS-8), pages 28–37, Philadelphia PA, USA, Nov. 2001.

[5] L. Reyzin and N. Reyzin. Better than BiBa: Short onetime
signatures with fast signing and verifying. In Seventh
Australasian Conference on Information Security and
Privacy (ACISP 2002), July 2002.

[6] R. Merkle. Protocols for public key cryptosystems. In
Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 122–134, Apr. 1980.

[7] M. Luby. LT codes. In 43rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’02), 2002.

[8] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.
Spielman. Efficient erasure correcting codes. IEEE
Transactions on Information Theory, 47(2):569–584,
February 2001.

[9] M. O. Rabin. Efficient dispersal of information for security,
load balancing, and fault tolerance. Journal of ACM,
36(2):335–348, 1989.

[10] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient
multicast packet authentication using signature amortization.
In IEEE Symposium on Security and Privacy, pages 227–
240, 2002.

[11] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient
multicast packet authentication using erasure codes. ACM
Transactions on Information and System Security, pages
6(2):258–285, May 2003.

[12] I. Reed and G. Solomon. Polynomial codes over certain
finite fields. Journal of the Society for Industrial and Applied
Mathematics, 8(2):300–304, 1960.

[13] H. Krawczyk. Distributed fingerprints and secure
information dispersal. In 13th ACM Symposium on

Principles of Distributed Computing, pages 207–218. ACM,
1993.

[14] R. Merkle. Protocols for public key cryptosystems. In
Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 122–134, Apr. 1980.

[15] P. Golle and N. Modadugu. Authenticating streamed data in
the presence of random packet loss. In Proceedings of the
Symposium on Network and Distributed Systems Security
(NDSS 2001), pages 13–22. Internet Society, Feb. 2001.

[16] S. Miner and J. Staddon. Graph-based authentication of
digital streams. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 232–246, May
2001.

[17] A. Pannetrat and R. Molva. Efficient multicast packet
authentication. In Proceedings of the Symposium on
Network and Distributed System Security Symposium
(NDSS 2003). Internet Society, Feb. 2003.

[18] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient
authentication and signature of multicast streams over lossy
channels. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 56–73, May 2000.

[19] D. Song, D. Zuckerman, and J. D. Tygar. Expander graphs
for digital stream authentication and robust overlay
networks. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 258–270, May
2002.

[20] C. Wong and S. Lam. Digital signatures for flows and
multicasts. In Proceedings on the 6th International
Conference on Network Protocols (ICNP ‘98), pages 198–
209. IEEE, October 1998.

[21] E. Ayanoglu, I. Chih-Lin, R.D. Gitlin, J.E. Mazo. Diversity
Coding for Transparent Self-Healing and Fault-Tolerant
Communication Networks. IEEE Transactions on
Communications, 41(11), 1993.

[22] R. Gennaro and P. Rohatgi. How to sign digital streams. In
Advances in Cryptology, volume 1294 of Lecture Notes in
Computer Science, pages 180--197. Springer, 1997.

