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ABSTRACT
The emanations of electronic and mechanical devices have
raised serious privacy concerns. It proves possible for an
attacker to recover the keystrokes by acoustic signal emana-
tions. Most existing malicious applications adopt context-
based approaches, which assume that the typed texts are
potentially correlated. Those approaches often incur a high
cost during the context learning stage, and can be limited
by randomly typed contents (e.g., passwords). Also, con-
text correlations can increase the risk of successive false
recognition. We present a context-free and geometry-based
approach to recover keystrokes. Using off-the-shelf smart-
phones to record acoustic emanations from keystrokes, this
design estimates keystrokes’ physical positions based on the
Time Difference of Arrival (TDoA) method. We conduct
extensive experiments and the results show that more than
72.2% of keystrokes can be successfully recovered.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access;
H.5.5 [Sound and Music Computing]: Signal analysis,
synthesis, and processing

General Terms
Security

Keywords
Context-free attack; Keystroke recovery; Acoustic emana-
tions

1. INTRODUCTION
The emanations of electronic and mechanical devices have

been a major topic of concern in the security and privacy
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communities. As early as the 1910s, German scientists eaves-
dropped on French field phone lines [5]. In 1943, an engi-
neer with Bell Telephone discovered electromagnetic signals
by means of an oscilloscope while using a Bell Telephone
model 131-B2, a top secret encrypted teletype terminal used
by the US army and navy to transmit wartime communica-
tions against German and Japanese cryptanalysis [26]. Re-
searchers eavesdrop on video display units by picking up
and decoding the electromagnetic interference produced by
the equipment [9]. Such eavesdropping can be achieved at
great distances and through significant obstacles (e.g., brick
walls). More recently, scientists recover sound by observing
the small vibrations of an object’s surface produced when
sound hits the object [8]. This kind of emanation detection
has been successful mainly due to the use of precise instru-
ments, which also increases the difficulty of deployment.

Mobile phones are becoming increasingly powerful devices.
In addition to being able to run applications ranging from
email clients to online banking, the phenomenal growth of
various sensors enable these devices to actively interact with
the world around them and to be used in unintended ways [21,
19, 20, 23, 27, 11, 4]. Indeed, malware could potentially gain
access to a smartphone’s camera and take photos or shoot
videos [31], or activate the microphones to record ambient
sounds [7]. In recent years, the issue of most concern is
that, contents typed via keyboard can be recovered from
the acoustic emanations [37, 6, 2] and vibrations perceived
by accelerometers [18]. The attackers plant malware into
the target’s smartphone. When the target user is typing the
keyboard, the malware automatically records the signal in-
formation. Through WiFi, 3G or other interfaces, the data
can be collected by the attackers to recover the keystrokes.

Most existing acoustic-based malicious applications as-
sume that the typed contents are correlated, and they in-
fer the content using machine learning technologies. The
main disadvantages of those context-based approaches are
three-fold. First, they suffer from the high cost at the con-
text learning stage (e.g., word spelling, word frequency and
language grammar). Second, the assumption is not valid
in many cases, e.g., passwords are usually a complicated
combination of random characters. Last but not least, any
mistype may significantly decrease the detection accuracy.
For instance, hitting the “delete” button on Mac keyboards
(the “backspace” button on other keyboards) does not input
any useful content, but deletes what was typed. Moreover,
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while context correlations are leveraged to infer typed text,
they also increase the risk of successive false recognitions.

We present a context-free and geometry-based approach
to recover the keystrokes even if they are randomly typed.
By collecting acoustic emanations from keyboard using two
or more smartphones, this approach analyzes acoustic sig-
nals, and determines the typed key’s physical position in a
geometrical way. Specifically, every keystroke is supposed
to generate an acoustic signal, which is recorded by micro-
phones on smartphones. For each pair of microphones, we
measure the difference of distance range from the key to
them. Therefore, a candidate set of key position can be esti-
mated in the plane. Intuitively, a candidate set is narrowed
by considering multiple pairs of microphones. To achieve
this work, however, two main challenges have to be over-
come. First, the deviation of distance estimation caused
by the low sampling rate of adopted microphones is non-
negligible, which significantly expands the candidate region
of typed key positions in the plane, and increases the diffi-
culty of recognition. Second, to make the approach generally
applicable, we do not assume that the relative locations of
the keyboard to the smartphones are known. Therefore, be-
fore recovering the typed content, we need to reconstruct
the keyboard location first.

To the best of our knowledge, this is the first context-
free and geometry-based approach to recover keystrokes by
means of acoustic emanations. Major contributions of this
work are as follows:

• We present a context-free and geometry-based approach
for keystroke localization. By extracting the acoustic
signals received by off-the-shelf phones, we estimate
the candidate area of a typed key with Time Differ-
ence of Arrival (TDoA) values.

• We logically reconstruct the keyboard by aligning the
keys and the maximum intersections, which are defined
in a heatmap after overlaying the candidate areas.

• We have tested this design on commodity smartphones,
and the experimental results show that more than 72.2%
of keystrokes can be accurately recovered.

The rest of this paper is structured as follows. In Sec-
tion 2, we describe an overview of this work, and introduce
background knowledge about keyboard acoustic emanations.
Section 3 presents the details of our technical contributions.
We discuss some related research issues in Section 4. Our
proposed approach is evaluated and validated in Section 5.
Section 6 describes the related work, and Section 7 concludes
the work.

2. OVERVIEW
In this section, we first give background information about

off-the-shelf devices to support our attack, including hard-
ware support and theoretical feasibility. We then introduce
the general idea of our attack.

2.1 Hardware Support
Nowadays smartphones usually have more than one mi-

crophones to support beam-forming direcctional audio tech-
niques and eliminate background noises. For example, iPhone
5 and iPhone 5s are equipped with three microphones: “front”,

“back” and “bottom” [1]. The sampling rate of the micro-
phone on smartphone is up to 44.1kHz. The high sampling
rate and the multi-microphone enable other novel appli-
cations, such as BeepBeep [22] (a pairwise acoustic rang-
ing system for COTS devices), phone-to-phone 3D localiza-
tion [24], ENSBox [12] (a distributed and self-calibrating
localization system for outdoor environments), and driver
detection [35, 34].

2.2 Theoretical Feasibility

2.2.1 Inevitable Error
In our attack, we record the acoustic signals caused by

keystrokes, and compute the physical positions of the keys
using a geometric method. Is it feasible to estimate such
a small key with acoustic signals? Generally, the distance
between the centers of two keys is 1.9 ∼ 2.2cm. Suppose
that the sampling rate of the microphone on smartphones
is 44.1kHz, then the minimal differential distance between
two sound signal points is (343m/s)/(44.1kHz) ≈ 0.77cm.
Because 0.77cm < 1.9cm, we conclude that it is theoretically
feasible to use the sound to measure distance between the
keystroke and the microphone, with an inevitable minimal
resolution of 0.77cm.

2.2.2 Keystroke Distinguish
A typical computer user types up to about 300 keystrokes

per minute. Each keystroke consists of a push and a re-
lease. Fig. 4 shows the acoustic signal with a push peak
and a release peak. We find that the period from push to
release is typically about 100 milliseconds, which is consis-
tent with that reported by Asonov and Agrawal [2]. This
observation implies that more than 100 milliseconds is left
between consecutive keystrokes, and this time gap is large
enough to distinguish the consecutive keystrokes. We design
an efficient signal segmentation algorithm to distinguish the
consecutive keystrokes in Section 3.

2.3 Our Attack

2.3.1 Attack Scenario
We consider the following attack scenario: in a public area

such as a library, a target is using his/her laptop. We sit
near to him/her, and try to reconstruct the user input, which
can be understandable (e.g., chat messages and documents),
or can be purely random keystrokes (e.g., passwords and ac-
count numbers). Our geometry-based approach uses two or
more mobile phones, and each phone is equipped with at
least two microphones with a 44.1kHz sampling rate. The
overall attack setting is illustrated in Figure 1.

2.3.2 Attack Work flow
The main observation to support our attack is that the

acoustic signal of a keystroke reach different microphones
asynchronously since the distances from the keystroke to
these microphones differ. We use m to denote the number
of smartphones and K to denote the location of the pressed
key. Suppose each smartphone has two microphones, we
use M1,M2, · · · ,M2m to denote the locations of 2m micro-
phones. When a key is pressed, we do not know its location
K, nor the absolute travel distances of its sound to the 2m
microphones. However for any two microphones, say i and j,
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Figure 1: Attack overview. Context-free attacks to recover random text using keyboard acoustic emanations.
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Mic2
Half hyperbola band 

Figure 2: For a pair of microphones, the
candidate set of typed key is a half hyper-
bola belt

Mic1

Mic2
Overlying of half hyperbola bands

Mic1
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Figure 3: With more pairs of microphones, the candidate set of
typed key can be narrowed.

Table 1: Summary of symbols
R The rectangle area of a keyboard
r The center location of the keyboard
α The rotation angle of the keyboard in

the 2D plane defined by smartphones
Ri The rectangle area of a key
K,Ki Key, or the center location of a key

(dependent on the context)
Pi Candidate area of a key
pi The gravity center of Pi
R′i A key region
Ii A maximum intersection
Mi The location of a microphone
W Width of a acoustic signal piece
Np Size of the excessive value set

KMi The distance from K to Mi

xi(t) Acoustic signal received on microphone i
Ei(t) The energy level of an acoustic signal xi(t)
Ai(t) Accumulated energy of an acoustic signal xi(t)

we can measure TDoA value, which can be further converted
into the distance by multiplying 343m/s:

∆dij = 343m/s×∆tij , (1)

and geometrically ∆dij is defined as

∆dij = |KMi −KMj |, (2)

where ∆tij refers to the TDoA result and KMi denotes
the distance from the location of the key to the location of
microphone i. Then the center location of the pressed key
K is on a half hyperbola geometrically: Mi and Mj are two
focal points, ∆dij is distance difference of the hyperbola, and
only the branch with the focal point closer to K is selected.
Ideally K can be pinpointed as the intersection of 2 half
hyperbolas, with at least three microphones. In practice,
due to the estimation deviation, ∆dij is in a range: ∆dij ∈

(lij , uij), where lij and uij denote the lower and upper bound
of difference, respectively. Therefore, K should be in a half
hyperbola band (as shown in Fig. 2). 2m microphones can
generate

(
2m
2

)
half hyperbola bands. By overlying the bands,

we can narrow the candidate area of the key’s position (as
shown in Fig. 3).

Table 1 lists the symbols used through the paper. We
summarize the four main steps as follows and the details are
given in the next section.

• Pre-Processing. In the pre-processing part, we seg-
ment the acoustic signal into small pieces. Each piece
represents exactly one keystroke. As we have multiple
microphones, we further group the signal pieces gener-
ated by the same keystroke together.

• TDoA Estimation. For every two signal pieces of the
same keystroke, we propose to use a generalized cross-
correlation(GCC) with PHAT weighting to calculate
the time difference of the keystroke acoustic signal’s
arrival at different microphones.

• Keystroke Pinpoint. A number of microphone pairs
have distance differences, this results in a number of
half hyperbola bands. We choose a proper width for
each hyperbola band, and overlay the bands to narrow
down the candidate area of a keystroke.

• Keyboard Reconstruction and Keystroke Recovery. To
make our attack more general, the relative location
of the keyboard to mobile phones is assumed to be
unknown. This assumption largely raises the diffi-
culty of keystroke localization. After collecting the
acoustic signals over a period of time, we draw a most
likely region for each keystroke. Then, we estimate the
keyboard location with an optimization algorithm by
matching those regions to their most likely keys. With
the location of keyboard and the pinpointed localiza-
tion of the key, the keystrokes can be recovered.
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Figure 4: Example of a keystroke acoustic signal and
its approximate energy signal.

3. TECHNICAL DETAILS

3.1 Pre-processing
In this part, we show how to segment the received acous-

tic signals into pieces so that each piece represents a key-
stroke. We use xi(t) to denote the acoustic signal, received
by microphone i, indexed by t. As shown in [37, 2], one
keystroke can be divided into two events: the press event
and the release event. From Fig. 4, we can find three peaks:
Touch Peak, Hit Peak and Release Peak. Among these three
peaks, the Touch Peak is unconspicuous and may sometimes
be ignored; the Release Peak may last for a long time and
therefore is hard to pinpoint; the Hit Peak is most suitable
to serve as a landmark of a keystroke. To search for the hit
peak, we transform the signal sequence xi(t) into its energy
level:

Ei(t) = kxi(t)
2, (3)

where Ei(t) is the energy level and k is a constant. The
lower part of Fig. 4 shows the energy level graph of the
signal. We use a sliding window of 10 samples to calculate
the accumulated energy:

Ai(t) =

t+10∑
n=t

Ei(n). (4)

The timing of a Hit Peak (denoted by thit) is formally de-
fined as follows:

thit = argmax
t

Ai(t), (5)

s.t. Ai(t) ≥ Ai(j) for t− 10ms ≤ j ≤ t+ 90ms,

and Ai(t) ≥ Aθ.

The search range is set to 100ms because the period of a
keystroke from push to release is typically more than 100
milliseconds and there is at most one Hit Peak during 100
milliseconds. Aθ is empirically set to 0.1. Algo. 1 shows the
details of how to find thit.

Finally, for each thit, we take 10ms before thit and 90ms
after thit to form a piece of a acoustic signal covering a
keystroke. We denote W as the width of the signal piece.
Each piece contains 44.1kHz×100ms = 4410 acoustic signal
points.

3.2 TDoA Estimation
After processing the received signals, we get acoustic sig-

nals for a keystroke from each microphone. Suppose we have
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Figure 5: The result of cross-correlation and gener-
alized cross-correlation of a1(t) and a2(t)

two acoustic signal pieces for the same keystroke, denoted
by a1(t) from the first microphone and a2(t) from the second
microphone. We let ∆t refers to TDoA result between the
two signals. A simple approach to estimate ∆t is to utilize a
landmark time stamp in both signals. Such a landmark time
stamp can be anytime when a signal point occurs. Our first
method leverages Hit Peak as the landmark to match the
two signals and calculate the difference. According to our
experimental results, hit peak matching approach, however,
causes a deviation in ∆t of over 0.44ms, which is equiva-
lent to an unacceptable deviation of over 15cm in distance.
This is caused by the multipath effect and aliasing in the
acoustic signal. Such an estimation deviation cannot be tol-
erated to pinpoint the keystroke. To address this issue, we
use cross-correlation between signal a1(t) and a2(t) for the
TDoA estimation.

Cross-correlation is a standard signal processing technique
for searching a best match position between a signal and
a pattern sample (The sharp peak of the cross-correlation
shows the best match, as shown in Fig. 5). It is widely
adopted in acoustic distance measurement [22, 36, 24]. With-
out loss of generality, the reference signal is the acoustic sig-
nal received by Mic 2, and the sliding signal is sampled in the
signal received by Mic 1. The normalized cross-correlation

Algorithm 1 Algorithm to find Hit Peaks

Input: The acoustic signal xi(t), width of signal piece W .
Output: Time of Hit Peaks.
1: foreach t in the signalxi(t) do
2: Ai(t) =

∑t+10
n=t kx

2
i (n).

3: if Ai(t) > Aθ then
4: for n > t and n < t+W do
5: if Ai(t) < Ai(n) then
6: break
7: n+ +
8: if n == t+W then
9: t is the time of a Hit Peaks

10: t = t+W
11: t+ +

456



is computed as:

CC(t0) =

∑
t

[
a1(t)− a1(t)

] [
a2(t− t0)− a2(t− t0)

]
√∑

t

[
a1(t)− a1(t)

]2∑
t

[
a2(t)− a2(t)

]2 , (6)

where a2(t) is the reference signal, and a1(t) =
∑

t a1(t)

W
, a2(t) =∑

t a2(t)

W
. We denote tcc as the sample offset that yields the

maximum cross correlation:

tcc = argmax
t0

CC(t0). (7)

Fig. 5 illustrates the cross-correlation of two signal piece.
Due to the reverberation effect, the peak of cross-correlation
is unconspicuous, or there may be several peaks. Therefore
the TDoA result is not accurate. To mitigate the deviation
caused by the reverberation effect, we propose to use gen-
eralized cross-correlation [16]. Generalized cross-correlation
improves cross-correlation (Equ. 6) by adding a weighting
function in front of the correlation in the frequency domain:

GCCPHAT (t0) = F−1 [Φ12(ω)A1(ω)[A2(ω)]∗] , (8)

where A1(ω) and A2(ω) are the Fourier transforms of the two
signals a1(t) and a2(t), and [·]∗ denotes the complex conju-
gate. A number of weighting functions have been investi-
gated in the existing literature. We use the heuristic-based
Phase Transform (PHAT) weighting [16], which is defined
as:

Φ12(ω) =
1

|A1(ω)[A2(ω)]∗| =
1

|A1(ω)||A2(ω)| . (9)

PHAT has been found to perform well under realistic acous-
tical conditions [32, 25]. We denote tgcc as the sample offset
that yields the maximum generalized cross correlation:

tgcc = argmax
t0

GCCPHAT (t0). (10)

GCC-PHAT has an advantage of making the peak distinct
and clear. As shown in Fig. 5, the result obtained by GCC-
PHAT has only one peak, while the result obtained by CC
has four peaks. In practice, however, GCC-PHAT can also
yield multiple peaks, which then introduce variances into the
estimation of ∆t because each peak in GCC-PHAT result
series indicates a possible ∆t. We now present an empirical
metric which can measure the deviation of ∆t: the number
of excessive values Np. It is defined as:

Np = |{t | GCCPHAT (t) ≥ β ·GCCPHAT (tgcc)}| , (11)

where GCCPHAT (tgcc) refers to the maximum value along
GCC-PHAT result series and β ∈ [0, 1] is a constant coef-
ficient. In our experimental results (Section 5.2), we will
show how Np affects the variance of ∆t.

3.3 Keystroke Pinpoint
Suppose the locations of the two microphones are Mi

and Mj respectively and the measured distance difference

is ˜∆dij , the possible positions of the pressed key K are then
along the half hyperbola defined by Eq. 2. Due to the un-
certainty of TDoA estimation, we use a half hyperbola band
to narrow down the keystroke in a region instead of the half
hyperbola. The challenge is to estimate the hyperbola band
width. A narrow band may lead to locating to a wrong key,
while a wide band will cover too much key regions which

Maximum intersections

Figure 6: The heatmap of the intersection of can-
didate areas and the illustration of maximum inter-
sections

cannot be distinguished. We propose a conservative method
to estimate the hyperbola band. According to the distri-
bution of measurement error, the third quantile w of the
distribution is used to estimate the band width. We denote
a lower bound of ∆dij as l = ˜∆dij − w, and a upper bound

of ∆dij as u = ˜∆dij +w. w is discussed in Section 5.2. The
candidate area of keystroke is now a hyperbola band:

lij ≤ KMi −KMj ≤ uij . (12)

Using m smartphones with 2m microphones, we can gen-
erate

(
2m
2

)
half hyperbola bands. We overlay those bands to

narrow the candidate area of a keystroke position. An illus-
tration is shown in Fig. 3 where two half hyperbola bands
are overlayed (only two of the

(
4
2

)
= 6 bands are drawn).

3.4 Keyboard Reconstruction and Keystroke
Recovery

In the previous section, we show that TDoA-based method
can determine the candidate area for one keystroke using
one or more smartphones. If the position and the layout of
keyboard are known, we can easily map the candidate area
onto the keyboard layout and find the pressed key. Though
the layout of the keyboard is standardized with only a few
variations, the position of a keyboard, such as its center po-
sition and relative angles to the smartphones, is not always
known. Next, we present an estimation algorithm to com-
pute the relative position of the keyboard with respect to
the phones.

First, we formulate the keyboard reconstruction problem.
The keyboard layout is a rectangular area R where there
are n keys. Each key is a small rectangular Ri with a center
point ri to be determined after keyboard mapping. After the
user has typed m keys K1,K2, . . . ,Km (the same key may
be typed for more than once), we apply TDoA algorithm
to find their corresponding candidate areas P1, P2, . . . , Pm
in the 2D plane, and calculate the m gravity centers of the
candidate areas p1, p2, . . . , pm. The goal is to map the actual
keyboard layout (a rectangle) onto the 2D plane defined by
the candidate areas, i.e., to find the center of the keyboard
r and the rotation angle of the keyboard α.

Given the 2D plane with m candidate areas identified,
there are infinite ways to map the keyboard layout onto
this plane. Most of them are simply invalid because all the
candidate areas should be within the boundary of the key-
board layout. Many of them are not good mappings, e.g.,
the centers of the candidate areas and the centers of the
mapped keys are not well aligned. We formulate the fol-
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lowing objective function to measure the goodness of the
mapping/aligning:

max
r,α

m∑
i=1

c(Pi), (13)

s.t. Pi(1 ≤ i ≤ m) is within the layout rectangular R,

where c(Pi) measures the coverage quality of the candidate
area Pi. Ideally each candidate area shall cover exactly one
key. But in practice a candidate area may cover more than
one key. Among all the covered keys, we expect the one
with the maximum coverage to be maximized. With this
heuristic, we denote the overlay area of a candidate area Pi
and the key Rj as C(Pi, Rj), and formally define c(Pi) as
follows:

c(Pi) = max
j
C(Pi, Rj).

The main challenge is to solve the optimization problem in
Eq. 13. We propose an enumeration-based algorithm that
optimizes the above objective function. At the first level,
pairs of the candidate areas are enumerated. At the second
level, two keys are enumerated to match the selected pair.
With these two matchings between candidate areas and keys,
the keyboard position can then be fixed on the 2D plane,
or proved to be infeasible for a particular matching (e.g.,
the distance between two candidate areas is much larger or
smaller than the distance between the two keys). However
the computational cost of this scheme is too high because
the number of possible matched candidate areas is as many
as
(
m
2

)
×
(
n
2

)
. We can reduce the search space by introduc-

ing heuristics to eliminate obviously wrong matchings. To
reduce the enumeration space, we calculate maximum inter-
sections of the candidate areas. A maximum intersection is
defined to be a candidate area or a sub-part of a candidate
area under the condition that all its neighbour areas have
less density than it, as shown in Fig. 6. The number of max-
imum intersections is bounded by the number of keys in the
keyboard, which is a small value compared to the number of
keystrokes in a typing session. Instead of matching candi-
date ares to keys, we now match the maximum intersections
to key regions, which are discrete regions of the keyboard. A
key region is a smaller unit than a key. We divide a key into
4 equally sized key regions. This division allows the max-
imum intersections to match the boundary areas between
keys. We use R′i to denote a key region. The detail of the
reconstruction algorithm is summarized in Algorithm 2.

Once r and α have been determined, all Ri are also de-
termined. We locate each keystroke in relation to Key Ri
which has maximum coverage by the polygon. Thus far, we
have made a mapping from each keystroke to its possible
key.

4. DISCUSSION

4.1 How Many Smartphones Should Be Used?
With more than one smartphone, more pairs of micro-

phones are available. By overlaying half hyperbolas, the
candidate region of the keystoke’s position can be narrowed.
Intuitively, the more smartphones used, the more half hy-
perbolas obtained, the smaller candidate set we get, and
the more precise position is estimated. Of course, it also
increases the computation time. In Fig. 7, the key ‘a’ is

a a

Two phones Three phones Four phones

a

Figure 7: The candidate set of key position is
well narrowed with more smartphones (i.e., micro-
phones).

typed, and we plot three heatmaps generated by exploit-
ing two, three and four microphones, respectively. In this
comparison, when only two microphones are used, six keys
are involved in the overlap region, the area of which occupies
four keys. When three phones are used, the area of the over-
lap region occupies only 1.4 keys, and most of the part covers
key ‘a’. As we can see, the result with four phones is even
better but still close to that obtained using three phones.
Generally speaking, the candidate area is also influenced by
the relative position and angle of phones (details in Section
5.5). We take a trade-off and exploit three smartphones to
introduce our design.

4.2 What If the Layout of the Keyboard Is Un-
known?

In most attack approaches using emanation information
[37, 6, 18], the layout of the keyboard is assumed to be
known to the attackers. The authors in [18] define a key
stroke as “far” or “near” to the accelerometer sensor, then
utilize the correlation of distance to infer the most likely
combination of characters. As we know, the relative dis-
tance varies with different keyboards. Such difference breaks
the distance correlation, and thus undermines the inference
accuracy.

How to adapt or even infer the exact layout of keyboard is
beyond scope of this work. Prior knowledge of keyboard lay-
out is critical to our approach, which is based on geometric

Algorithm 2 Algorithm for keyboard reconstruction

Input: Candidate areas {Pi}mi=1, an 2D plane defined by
smartphones O, the keyboard layout R

Output: Keyboard center position r, the rotation angle α
1: Calculate the intersection of the candidate areas, and

find the maximum intersections {I1, I2, . . . }
2: bestObj = 0
3: foreach pair of key regions R′i1 , R

′
i2 do

4: foreach pair of maximum intersections Ij1 , Ij2 do
5: Match the centers of the segment Ij1Ij2 and the

segment R′i1R
′
i2

6: Rotate the segment R′i1R
′
i2

around its center until

it coincides with Ij1Ij2
7: Calculate the center of the keyboard r0 and the ro-

tation angle α0

8: Calculate the objective function value of Eq. 13 as
obj

9: if obj > bestObj then
10: bestObj = obj
11: r = r0
12: α = α0
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crophone pairs. Samsung-diff describes the sam-
pling offset between two microphones in two Sam-
sung Galaxy Note 2 Smartphones, while Samsung-
same plots the sampling offset between two micro-
phones in one Samsung Galaxy Note 2 Smartphone.

computation and does not rely on the content correlation.
For example, there is a ‘fn’ button at the lower left position
in some notebook keyboards such as Mac Pro, but not in
HP notebooks. Our approach fails to distinguish these two
cases, but can detect that the keystroke at that position is
typed.

5. EVALUATION
In this section, we evaluate our approach through a series

of experiments. To show our context-free attack is accurate
and feasible in many scenarios, we test the detection accu-
racy for each key, and analyze the spatial correlations. In
addition, considering more or fewer mistypes and some spe-
cial characters exist in the text, we also try to identify three
keys: ‘space’, ‘enter’, and ‘backspace’ (i.e., ‘delete’ on the
Mac keyboard). Besides accuracy, robustness is also exam-
ined. Unlike the context-based attacks, our approach does
not require any learning stage. Finally, we discuss the details
in keyboard reconstruction.

5.1 Implementation

5.1.1 Overall Settings
We implement our primary acoustic localization program

on Android v4.3 operating system. In the experiments, we
use three Samsung Galaxy Note 2 smartphones, each of
which equips with two microphones, one on the top and
the other at the bottom. The sampling rate of microphone
is 44.1kHz. By default, three smartphones are placed as
shown like 1 − 3 − 5 in Fig. 17, being parallel to the short
edge of the keyboard. Our approach is evaluated for Apple
keyboard MB869LL/A and a mechanical keyboard Filco-87.

5.1.2 Synchronization
Accurate time synchronization between the microphones

is a critical precondition of applying TDoA in our approach.
To achieve this, we first synchronize the initial time differ-
ences, and then eliminate the clock drift of the microphones
with linear fitting algorithm.

Initial time synchronization. We apply the method in [10]
to synchronize the initial time among different microphones.
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Figure 9: Distance deviation vs. distance from mi-
crophone to key
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Figure 10: Distance deviation vs. Np

The main idea is leveraging a reference signal and known
ground truth of device locations to calculate the correspond-
ing time difference. To be more specific, we type key ‘a’ and
record the acoustic signals with three smartphones, respec-
tively. The expected time difference can be easily obtained
with the distance difference from microphones to key ‘a’.
By comparing this ground truth and measured result from
GCC-PHAT, all the smartphones are synchronized to this
reference acoustic signal. This method provides sample-level
synchronization accuracy which guarantees not to incur an
inconvertible error.

Clock drift elimination. After the initial timings are syn-
chronized, we need to eliminate the clock drift of the micro-
phones. Due to different oscillator frequencies, the build-in
clocks may trigger to sample more or less than 44.1k per
second. The synchronization issue imposed by the deviation
in microphone sampling rate is a complex research problem
studied by various researchers [30, 28, 15].

Figure 8 shows some observations on the sampling offset
distributions. For Galaxy Note 2 smartphone, clock drift
is not severe between two microphones in one smartphone.
Even for the microphones in two smartphones, linearity re-
lationship exists clearly and stably in 300s. In our experi-
ments, we adopt simple linear fitting algorithm which pro-
vides an offset of only several sample points in a short dura-
tion. In Fig. 8, we can also find that, iPhone5 is accurately
synchronized at sample-level even for two microphones not
in one smartphone. Unfortunately, Apple does not provide
the APIs to proactively access more than one microphone in
iPhone 5 or 5S. Besides Samsung and iPhone, other smart-
phones like Nexus 5 are also tested to show a linear rela-
tionship between the elapsed time and the number of offset
samples [30].

5.2 TDoA Deviation
In order to set a proper width for the hyperbola band,

we analyze the distribution of TDoA deviation. Our first
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Figure 11: Detection accuracy for each letter in-
volved in the text.

 0

 200

 400

 600

space enter delete

Number of keystrokes
Number of recoverd keystrokes

Figure 12: Detection accuracy for special characters
in a natural way to type.

hypothesis is that the deviation should be related with the
distance from key to microphone. We conduct several groups
of experiments on Mac MB869LL/A and Filco-87 keyboard
to estimate the TDoA for keystroke ‘a’, by varying the dis-
tance. Each group considers 100 repeated cases. As shown
in Fig. 9, the measured variance is irrelevant to the distance.
For Mac MB869LL/A keyboard, the average measure error
is the least (i.e. 2.2cm) when the smartphone is 25cm far
from the key. For Filco-87 keyboard, the distance of 20cm
achieves the minimum average measure error of 1.5cm.

We then explore the correlations between TDoA devia-
tion and the number of excessive values Np, the key fac-
tor in GCC-PHAT algorithm (detailed in Eq. 11, and β is
set to 0.8). For each key, we repeatedly press for 10 times
and count Np as well as its measurement errors. As shown
in Fig. 10, the deviation is strongly correlated to Np. For
experimental keyboards, a small value of Np usually leads
to little estimation deviation. This result confirms our in-
tuition that the number of excessive values generated by
GCC-PHAT algorithm influences the variance of estimated
TDoA. The boxplots in Fig. 10 present the 5th percentile,
the first quantiles, the median, the third quantiles and the
95th percentile for each range of Np. To draw the half hy-
perbola band for a pair of microphones i and j, we set the
lower and upper bound of the estimated distance difference
∆dij according to the third quantiles. For example, if Np is
no more than 4, we set a width of 1.8cm for the generated
hyperbola band.

5.3 Detection Accuracy
To evaluate the accuracy of our attack, we had two volun-

teers type text from Martin Luther King’s “I Have a Dream”
using only small letters, ‘space’, ’delete’ and ‘enter’, then
tried to recover the keystrokes, respectively. The key logger
tool is used to record the ground truth of each keystrokes. In
total there are 3372 keystrokes pressed by the first volunteer
and 3452 keystrokes pressed by the second volunteer, with
almost all the letters except letter ‘z’. Specifically, letter
‘e’ is the most frequently typed. As illustrated in Fig. 11,
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Figure 13: Character ranking according to detection
accuracy.

in 337 and 350 actual keystrokes of ‘e’, our approach suc-
cessfully recovers 268 and 269 of them in two traces. The
average recovery accuracy for letter ‘e’ is 78.1%. Besides,
as shown in Fig. 12, there are 597 instances of ‘space’ and
32 of ‘enter’ typed by the first volunteer, and our approach
recovers 85.8% of them. Moreover, 70 of the keystrokes for
‘delete’ are also distinguished in a total of 78 keystrokes.
Intuitively, ‘delete’ should not be contained in the text.
In practice, however, people type ‘delete’ eliminate the in-
evitable mistypes, which are usually ignored in existing ap-
proaches. We also noted that, typing rate has been proved
as a key factor in existing context-based approaches [18],
because the displayed signatures may be greatly different.
As recorded, the average typing speed is 577 and 321 char-
acters per minute to complete the task for two volunteers.
We know that top typists input around 600 - 700 characters
per minute which is slightly faster than our first volunteer;
hence the typing rate will not be a big challenge to our ap-
proach. In practice, our approach successfully recovers more
than 72.2% of keystrokes for both of them.

5.3.1 Spatial Correlations
We rank the characters according to the detection accu-

racy, as illustrated in Fig. 13. More than 70% of ‘space’,
‘enter’, ‘delete’, ‘n’, ‘e’, ‘o’, ‘a’ and ‘t’ are successfully distin-
guished. To find spatial correlations, we plot the detection
accuracy on the keyboard with 3 grey levels. The darker the
area, the more accurate the detection of this key. As we can
see, most of those characters with high detection accuracy
are located at the edges of the tested area (i.e., the white
keys in Fig. 13 are not tested in our experiments). This is
because when they are typed, the overlap area of generated
hyperbola bands and tested keyboard is small. That is, we
narrow the effective candidate areas by ignoring the part
outside of the keyboard. Take key ‘a’ as an example; the
generated candidate area often covers the key ‘CapsLock’,
which is presupposed not to be tested. In addition, fre-
quently typed characters are more likely to be exploited to

460



 0
 100
 200
 300
 400
 500
 600

 0  5  10  15  20

N
um

be
r o

f e
rro

r i
nt

er
va

ls p=0.4 
p=0.3
p=0.2
our result
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reconstruct the keyboard, and thus their maximum intersec-
tions are narrowed.

5.3.2 Misrecognition Interval
In context-based approaches, context correlations are lever-

aged to help infer typed text, and they also increase the risk
of successive false recognitions. For example, [37] presents
an attack based on the Hidden Markov Model(HMM), which
models the transition probability among the letters in a
word, and the words in a sentence. Once a letter is mis-
recognized, a domino effect probably occurs, which largely
decreases the detection accuracy. In our experiments, we
examine the intervals between any pair of consecutive faulty
recognitions in the second volunteer’s trace. There are 944
keystrokes not identified. Figure 14 shows the distribution
of intervals. Intuitively, if we consider that the identifica-
tions made in such a context-free way are independent, the
interval should follow a geometric distribution. The average
false negative rate (i.e., miss detection rate) in this trace is
28%. Therefore we plot three geometric distributions with
parameter p = 0.2, 0.3, 0.4, respectively. As we can see, they
show similar trends, which also verifies that the faulty recog-
nitions in our approach are almost independent.

5.4 Robustness with Respect to Ambient Noise
Generally, emanation detection degrades when a noisy

background is present, since the recorded signals may show
greatly different distributions with a random noise. Some at-
tacks recognize the pressed key based on fingerprint-based
schemes [37, 2]. These approaches mainly rely on pre-built
database or learning models, and identify the keystrokes
by matching the extracted signals with existing signatures.
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Figure 16: Efficiency of keyboard reconstruction us-
ing different number of keystrokes.

They may work well without any other background inter-
ference, but degrade when the sampled environment greatly
differs from that of the learning stage. In contrast, our ap-
proach is designed based on geometric methods, ignoring any
matching issues. In this group of experiments, we examine
the accuracy in three situations: 1) the quiet library; 2) the
office bustling with people and activity; 3) the noisy meet-
ing room. We type “hello world” 100 times in each situation,
and try to recover every keystroke. The results are shown in
Fig. 15. In all situations, our approach achieves a detection
accuracy of at least 64%. More than 83% of the character
‘space’ are recovered, even in a noisy meeting room.

5.5 Keyboard Reconstruction
In this section, we specifically discuss the stage of key-

board reconstruction, which is an essential part of keystroke
recovery. In other words, if the position of the keyboard is
incorrectly estimated, all the inferred text is totally mean-
ingless.

5.5.1 Efficiency of Keyboard Reconstruction
To make our approach available in more general scenar-

ios, the relative location and angle of the keyboard are sup-
posed to be unknown to the attackers. Before recovering
typed text, a number of keystrokes are exploited to recon-
struct the keyboard. Intuitively, the more signal informa-
tion collected, the higher the estimation achieved, but the
more computation costs incurred. To find a trade-off, we
estimate the keyboard location based on different numbers
of keystrokes, and then examine how accurate our approach
proves for text recovery. As illustrated in Fig. 16, processing
time cost in keyboard reconstruction increases in a linear-
like trend following the number of keystrokes. Varying with
processing time, the recovery accuracy shows two obvious
trends. Before we raise the number of keystrokes beyond
370, the accuracy monotonically increases from 18.1% to
72.2%. After that, it maintains around 72.2%, and even
occasionally decreases when more keystrokes are involved.
From this it can be understood that, the area of maximal
intersection for a key may expand if the nearby keys are
frequently typed during this period.

5.5.2 Relative Position of Smartphones
The location of the keys is narrowed down by overlaying

several half hyperbola bands. The shape and location of the
half hyperbola bands change as we put the detected device
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at different positions. We test the influence of the location
of smartphones on the detection accuracy, by considering
five possible positions as depicted in Fig. 17. These five po-
sitions are denoted by 1 ∼ 5 clockwise. Avoiding repetitive
or symmetrical cases, we tested six combination possibili-
ties for three smartphones (the three phones are assumed
to be put at different positions). In the results, when the
phones are positioned in 1− 3− 5, almost all the maximum
intersections tightly cover a single key or a part of one key.
This prevents a large range of the keyboard rotation which
greatly enhances the accuracy of keyboard reconstruction.
In contrast, when the phones are positioned in 1 − 2 − 3
and 2− 3− 4, more than half of maximum intersections are
close to each other or cover several keys, which degrades the
keystroke recovery accuracy.

5.5.3 Relative Angle of Smartphones
Besides the relative position, the relative angle of the

smartphones is also critical for keyboard reconstruction. It
is easy to imagine that, the generated half hyperbola rotates

while the smartphones spin around on the spot. In our ex-
periments, three angles are considered: 0◦, 45◦ and 90◦. As-
sume that three smartphones are put at positions 1− 3− 5.
Then, we modify the relative angle of the smartphone on
position 5. Fig. 18(a) and Fig. 18(b) show the heatmaps
when it rotates 45◦ and 90◦ clockwise, respectively. As we
can see, when we rotate the phone 90◦ clockwise, most of
the intersection areas are more concentrated. That is, even
if the error range is wide for the generated hyperbolas, their
overlap area effectively covers the typed key.

6. RELATED WORK

6.1 Keyboard Emanation
Previous attacks have always been conducted with com-

plicated devices and complex technical methods, which do
not threaten the general public. However, with the growing
popularity of personal electrical and mechanical devices [3],
emanations of those devices create more personal informa-
tion leakages, such as the keyboard emanations. Many ef-
forts have been made to recover keystrokes through acoustic
sources. The first concrete attack using keyboard acous-
tic emanations of which we are aware is made by Asonov
and Agrawal [2]. They extract FFT values as the features
of the keystrokes and use supervised learning with the la-
beled data including 100 clicks of each key. The drawback
of supervised leaning is that it works well on labeled data,
but fails on unlabeled data. That is, a model trained from
one keyboard cannot apply to others, because the signa-
tures generated from them are not ensured to be the same.
or have likely distributions. To overcome this problem, [37]
proposes a unsupervised learning method which cluster the
cepstrum features of keys and recover text by HMM model.
Though this method does not need pre-obtained data, they
are based on a HMM model trained from some particular
languages. Furthermore, some special characters are always
pressed during typing. The existences of those characters
will significantly reduce the performance of the HMM model.
The dictionary-based method proposed by [6] exploits the
similarity of keystrokes in a word and the constraints learned
from dictionaries to narrow the range of possible words. Be-
sides, the ability to recover typed text using the vibration
of desktop has been studied by [18]. They correlate consec-
utive keys and usage of dictionary information. Recently,
[33] exploits Amplitude Spectrum Density which measures
multi-path fading to localize keystrokes on conventional sur-
faces. All of these methods are based on some preliminaries,
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such as language knowledge or trained model. In contrast,
our method is context-free and geometry-based.

6.2 Phone Localization
There have been tremendous efforts to resolve localiza-

tion problems using different kinds of signals, such as acous-
tic signals, ultrasonic signals and radio signals [13, 17, 12,
29, 14]. Though some of them achieve high accuracy up to
several centimeters [13, 17], their methods are based on com-
plicated infrastructures and expensive equipment. A pair-
wise phone to phone acoustic distance measurement named
BeepBeep is proposed by [22]. Due to the uncertainty of
timestamping in the mobile phone, BeepBeep employs self-
recording and sample counting to reduce errors introduced
by local clock and receiving uncertainty. The local time is
determined by the cross-correlation of two known acoustic
signals. [24] and [36] aim to solve the problem of fast ac-
curate localization between two moving phones. Both of
them also are based on the traditional cross-correlation to
determine the exact local time when receiving the signal.
Different from previous work, our research is targeted at
determining the local time with unknown signals. It signifi-
cantly raises the uncertainty of local time estimation.

7. CONCLUSION
In this work, we present a new context-free and geometry-

based attack to recover keystrokes using smartphones. Our
geometry-based method utilizes TDoA techniques to calcu-
late the relative positions among keystrokes and the micro-
phones equipped in the smartphones. This approach is dif-
ferent from previous methods in two aspects. First, most
previous methods are based on the correlations between the
contexts of typing while our approach is a pure geometric
method to support context-free attack. Our experiments
show that the performance of our method does not degrade
for random typed contents; furthermore, the success rate of
correct key recognition is above 72.2%. Since our method
is which independent of the previous context-based meth-
ods, an interesting direction of future research would be
to combine these two methods together to achieve a better
recognition performance. Second, we choose the commodity
smartphones as our attaching hardware and show the via-
bility of a low-cost device for such an attack. We hope our
attack method will increase awareness of the need for mobile
security in computing environments.
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