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ABSTRACT
Single sign-on (SSO) systems, such as OpenID and OAuth, allow
web sites, so-called relying parties (RPs), to delegate user authen-
tication to identity providers (IdPs), such as Facebook or Google.
These systems are very popular, as they provide a convenient means
for users to log in at RPs and move much of the burden of user
authentication from RPs to IdPs.

There is, however, a downside to current systems, as they do not
respect users’ privacy: IdPs learn at which RP a user logs in. With
one exception, namely Mozilla’s BrowserID system (a.k.a. Mozilla
Persona), current SSO systems were not even designed with user
privacy in mind. Unfortunately, recently discovered attacks, which
exploit design flaws of BrowserID, show that BrowserID does not
provide user privacy either.

In this paper, we therefore propose the first privacy-respecting
SSO system for the web, called SPRESSO (for Secure Privacy-
REspecting Single Sign-On). The system is easy to use, decen-
tralized, and platform independent. It is based solely on standard
HTML5 and web features and uses no browser extensions, plug-ins,
or other executables.

Existing SSO systems and the numerous attacks on such systems
illustrate that the design of secure SSO systems is highly non-trivial.
We therefore also carry out a formal analysis of SPRESSO based
on an expressive model of the web in order to formally prove that
SPRESSO enjoys strong authentication and privacy properties.

1. INTRODUCTION
Web-based Single Sign-On (SSO) systems allow a user to iden-
tify herself to a so-called relying party (RP), which provides some
service, using an identity that is managed by an identity provider
(IdP), such as Facebook or Google. If an RP uses an SSO sys-
tem, a user does not need a password to log in at the RP. Instead,
she is authenticated by the IdP, which exchanges some data with
the RP so that the RP is convinced of the user’s identity. When
logged in at the IdP already, a user can even log in at the RP by one
click without providing any password. This makes SSO systems
very attractive for users. These systems are also very convenient
for RPs as much of the burden of user authentication, including,
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for example, the handling of user passwords and lost passwords, is
shifted to the IdPs. This is why SSO systems are very popular and
widely used on the web. Over the last years, many different SSO
systems have been developed, with OpenID [13] (used by Google,
Yahoo, AOL, and Wordpress, for example) and OAuth [14] (used
by Twitter, Facebook, PayPal, Microsoft, GitHub, and LinkedIn,
for example) being the most prominent of such systems; other SSO
systems include SAML/Shibboleth, CAS, and WebAuth.

There is, however, a downside to these systems: with one ex-
ception, none of the existing SSO systems have been designed to
respect users’ privacy. That is, the IdP always knows at which RP
the user logs in, and hence, which services the user uses. In fact,
exchanging user data between IdPs and RPs directly in every login
process is a key part of the protocols in OpenID and OAuth, for
example, and thus, IdPs can easily track users.

The first system so far which was designed with the intent to
respect users’ privacy was the BrowserID system [18, 19], which is
a relatively new system developed by Mozilla and is also known by
its marketing name Persona.

Unfortunately, in [11] severe attacks against BrowserID were
discovered, which show that the privacy of BrowserID is completely
broken: these attacks allow malicious IdPs and in some versions of
the attacks even arbitrary parties to check the login status of users
at any RP with little effort (see Section 2.1 for some more details
on these attacks). Even worse, these attacks exploit design flaws
of BrowserID that, as discussed in [11], cannot be fixed without
a major redesign of the system, and essentially require building a
new system. As further discussed in Section 2.4, besides the lack
of privacy there are also other issues that motivate the design of a
new system.

The goal of this work is therefore to design the (first) SSO sys-
tem which respects users’ privacy in the sense described above,
i.e., IdPs (even completely malicious ones) should not be able to
track at which RPs users log in. Moreover, the history of SSO
systems shows that it is highly non-trivial to design secure SSO
systems, not only w.r.t. privacy requirements, but even w.r.t. au-
thentication requirements. Attacks easily go unnoticed and in fact
numerous attacks on SSO systems, including attacks on OAuth,
OpenID, Google ID, Facebook Connect, SAML, and BrowserID
have been uncovered which compromise the security of many ser-
vices and users at once [4–6, 20, 21, 24–27]. Besides designing
and implementing a privacy-respecting SSO system, we therefore
also carry out a formal security analysis of the system based on
an expressive model of the web infrastructure in order to provide
formal security guarantees. More specifically, the contributions of
our work are as follows.

Contributions of this Paper. In this work, we propose the system
SPRESSO (for Secure Privacy-REspecting Single Sign-On). This
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is the first SSO system which respects user’s privacy. The system
allows users to log in to RPs with their email addresses. A user is
authenticated to an RP by the IdP hosting the user’s email address.
This is done in such a way that the IdP does not learn at which RP
the user wants to log in.

Besides strong authentication and privacy guarantees (see also be-
low), SPRESSO is designed in such a way that it can be used across
browsers, platforms, and devices. For this purpose, SPRESSO is
based solely on standard HTML5 and web features and uses no
browser extensions, plug-ins, or browser-independent executables.

Moreover, as further discussed in Section 2.1, SPRESSO is de-
signed as an open and decentralized system. For example, in con-
trast to OAuth, SPRESSO does not require any prior coordination
or setup between RPs and IdPs: users can log in at any RP with any
email address with SPRESSO support.

We formally prove that SPRESSO enjoys strong authentication
and privacy properties. Our analysis is based on an expressive
Dolev-Yao style model of the web infrastructure [10]. This web
model is designed independently of a specific web application and
closely mimics published (de-facto) standards and specifications
for the web, for instance, the HTTP/1.1 and HTML5 standards and
associated (proposed) standards. It is the most comprehensive web
model to date. Among others, HTTP(S) requests and responses,
including several headers, such as cookie, location, strict transport
security (STS), and origin headers, are modeled. The model of
web browsers captures the concepts of windows, documents, and
iframes, including the complex navigation rules, as well as new
technologies, such as web storage and cross-document messaging
(postMessages). JavaScript is modeled in an abstract way by so-
called scripting processes which can be sent around and, among
others, can create iframes and initiate XMLHTTPRequests (XHRs).
Browsers may be corrupted dynamically by the adversary.

So far, this web model has been employed to analyze trace-based
properties only, namely, authentication properties. In this work,
we formulate, for the first time, strong indistinguishability/privacy
properties for web applications. Our general definition is not tai-
lored to a specific web application, and hence, should be useful
beyond our analysis of SPRESSO. These properties require that an
adversary should not be able to distinguish two given systems. In
order to formulate these properties we slightly modify and extend
the web model.

Finally, we formalize SPRESSO in the web model and formally
state and prove strong authentication and privacy properties for
SPRESSO. The authentication properties we prove are central to
any SSO system, where our formulation of these properties follows
the one in [10]. As for the privacy property, we prove that a mali-
cious IdP cannot distinguish whether an honest user logs in at one
RP or another. The analysis we carry out in this work is also in-
teresting by itself, as web applications have rarely been analyzed
based on an expressive web model (see Section 8).

Structure of this Paper. In Section 2, we describe our system and
discuss and motivate design choices. We then, in Section 3, briefly
recall the general web model from [10] and explain the modifica-
tions and extensions we made. The mentioned strong but general
definition of indistinguishability/privacy for web applications is pre-
sented in Section 4. In Section 5, we provide the formal model of
SPRESSO, based on which we state and analyze privacy and au-
thentication of SPRESSO in Sections 6 and 7, respectively. Further
related work is discussed in Section 8. We conclude in Section 9.
All details and proofs are available in our technical report [12]. An
online demo and the source code of SPRESSO are available at [22].

2. DESCRIPTION OF SPRESSO
In this section, we first briefly describe the main features of

SPRESSO. We then provide a detailed description of the system
in Section 2.2, with further implementation details given in Sec-
tion 2.3. To provide additional intuition and motivation for the
design of SPRESSO, in Section 2.4 we discuss potential attacks
against SPRESSO and why they are prevented.

2.1 Main Features
SPRESSO enjoys the following key features:

Strong Authentication and Privacy. SPRESSO is designed to
satisfy strong authentication and privacy properties.

Authentication is the most fundamental security property of an
SSO system. That is, i) an adversary should not be able to log in to
an RP, and hence, use the service of the RP, as an honest user, and
ii) an adversary should not be able to log in the browser of an honest
user under an adversary’s identity (identity injection). Depending
on the service provided by the RP, a violation of ii) could allow
the adversary to track an honest user or to obtain user secrets. We
note that in the past, attacks on authentication have been found
in almost all deployed SSO systems (e.g., OAuth, OpenID, and
BrowserID [10, 11, 21, 23, 24, 26, 27]).

While authentication assumes the involved RP and IdP to be
honest, privacy is concerned with malicious IdPs. This property
requires that (malicious) IdPs should not be able to track at which
RPs specific users log in. As already mentioned, so far, except for
BrowserID, no other SSO system was designed to provide privacy.
(In fact, exchanging user data between IdPs and RPs directly is a
key part of the protocols in OpenID and OAuth, for example, and
hence, in such protocols, IdPs can easily track at which RP a user
logs in.) However, BrowserID failed to provide privacy: As shown
in [11], a subtle attack allowed IdPs (and in some versions of the
attack even arbitrary parties) to check the login status of users at
any RP. More specifically, by running a malicious JavaScript within
the user’s browser, an IdP can, for any RP, check whether the user is
logged in at that RP by triggering the (automatic) login process and
testing whether a certain iframe is created during this process or not.
The (non-)existence of this iframe immediately reveals the user’s
login status. Hence, a malicious IdP can track at which RP a user is
logged in. As we discuss in [11], this could not be fixed without a
major redesign of BrowserID. Our work could be considered such a
major redesign. While SPRESSO shares some basic concepts with
BrowserID, SPRESSO is, however, not based on BrowserID, but a
new system built from scratch (see the discussion in Section 2.4).

The above shows that the design of a secure SSO system is
non-trivial and that attacks are very easy to overlook. As already
mentioned in the introduction, we therefore not only designed and
implemented SPRESSO to meet strong authentication and privacy
properties, but also perform a formal analysis of SPRESSO in an
expressive model of the web infrastructure in order to show that
SPRESSO in fact meets these properties.

An Open and Decentralized System. We created SPRESSO as a
decentralized, open system. In SPRESSO, users are identified by
their email addresses, and email providers certify the users’ authen-
ticity. Compared to OpenID, users do not need to learn a new, com-
plicated identifier — an approach similar to that of BrowserID. But
unlike in BrowserID, there is no central authority in SPRESSO (see
also the discussion in Section 2.4). In contrast to OAuth, SPRESSO
does not require any prior coordination or setup between RPs and
IdPs: Users can log in at any RP with any email address with
SPRESSO support. For email addresses lacking SPRESSO sup-
port, a seamless fallback can be provided, as discussed later.
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RPdoc RP IdP FWD

user enters email address
and clicks “login”

rpNonce← N
iaKey← N
tagKey← N

loginSessionToken← N

tag = encs(〈RPDomain,rpNonce〉, tagKey)

RPRedirDoc

Redirect to IdPdoc with email, tag,
FWDDomain, iaKey in the URL

fragment identifier

user enters secret

check secret and email

ia := sig(〈tag,email,FWDDomain〉,kIdP)

eia = encs(ia, iaKey)

FWDdoc

〈r′,n′〉= decs(tag, tagKey)
(r′ = RPDomain)

ia′ := decs(eia, iaKey)
e := 〈tag,email,FWDDomain〉
checksig(e, ia′,pub(kIdP))?

serviceToken← N

/RPdoc /IdPdoc /FWDdoc /RP /IdP /FWD

1 GET /

2 user enters email address
and clicks “login”

3 POST /startLogin
email

4 GET /.well-known/spresso-info

5

rpNonce← N
iaKey← N
tagKey← N

loginSessionToken← N

6 tag = encs(〈RPDomain,rpNonce〉, tagKey)

7 HTTP Response
tagKey, FWDDomain, loginSessionToken

8 open
loginSessionToken

9 GET redirPath
loginSessionToken

10 HTTP Response
RPRedirDoc, email, tag, FWDDomain, iaKey

11
Redirect to IdPdoc with email, tag,
FWDDomain, iaKey in the URL

fragment identifier

12 GET /.well-known/spresso-login

13 user enters secret

14 POST /loginxhr
secret, email, tag, FWDDomain

15 check secret and email

16 ia := sig(〈tag,email,FWDDomain〉,kIdP)

17 HTTP Response
ia

18 eia = encs(ia, iaKey)

19 create
tag, eia

20 GET /.well-known/spresso-proxy

21 ready
parent.opener

22 tagKey
to origin: https : //FWDDomain

23 〈r′,n′〉= decs(tag, tagKey)
(r′ = RPDomain)

24 eia
to origin: https : //RPDomain

25 POST /login
eia, loginSessionToken

26
ia′ := decs(eia, iaKey)

e := 〈tag,email,FWDDomain〉
checksig(e, ia′,pub(kIdP))?

27 serviceToken← N

28 HTTP Response
login successful, serviceToken

HTTPS messages, XHRs (over HTTPS), postMessages, browser commands

Figure 1: SPRESSO Login Flow.
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Adherence to Web Standards. SPRESSO is based solely on stan-
dard HTML5 and web features and uses no browser extensions,
plug-ins, or other client-side executables. This guarantees that
SPRESSO can be used across browsers, platforms and devices, in-
cluding both desktop computers and mobile platforms, without in-
stalling any software (besides a browser). Note that on smartphones,
for example, browsers usually do no support extensions or plug-ins.

2.2 Login Flow
We now explain SPRESSO by a typical login flow in the system.

SPRESSO knows three distinct types of parties: relying parties
(RPs), i.e., web sites where a user wishes to log in, identity providers
(IdPs), providing to RPs a proof that the user owns an email address
(identity), and forwarders (FWDs), who forward messages from
IdPs to RPs within the browser. We start with a brief overview of
the login flow and then present the flow in detail.

Overview. On a high level, the login flow consists of the following
steps: First, on the RP web site, the user enters her email address.
RP then creates what we call a tag by encrypting its own domain
name and a nonce with a freshly generated symmetric key. This
tag along with the user’s email address is then forwarded to the IdP.
Due to the privacy requirement, this is done via the user’s browser in
such a way that the IdP does not learn from which RP this data was
received. Note also that the tag contains RP’s domain in encrypted
form only. The IdP then signs the tag and the user’s email address
(provided that the user is logged in at the IdP, otherwise the user first
has to log in). This signature is called the identity assertion (IA).
The IA is then transferred to the RP (again via the user’s browser),
which checks the signature and consistency of the data signed and
then considers the user with the given email address to be logged
in. We note that passing the IA to the RP is done using an FWD
(the RP determines which one is used) as it is important that the
IA is delivered to the correct RP (RP document). The IdP cannot
ensure this, because, again due to the privacy requirements, IdP is
not supposed to know the intended RP.

Detailed Flow. We now take a detailed look at the SPRESSO login
flow. We refer to the steps of the protocol as depicted in Figure 1.
We use the names RP, IdP, and FWD for the servers of the respec-
tive parties. We use RPdoc, RPRedirDoc, IdPdoc, and FWDdoc
as names for HTML documents delivered by the respective par-
ties. The login flow involves the servers RP, IdP, and FWD as
well as the user’s browser (gray background), in which different
windows/iframes are created: first, the window containing RPdoc
(which is present from the beginning), second, the login dialog cre-
ated by RPdoc (initially containing RPRedirDoc and later IdPdoc),
and third, an iframe inside the login dialog where the document
FWDdoc from FWD is loaded.

As the first step in the protocol, the user opens the login page
at RP 1 . The actual login then starts when the user enters her
email address 2 . RPdoc sends this address in a POST request to
RP 3 . RP identifies the IdP (from the domain in the email address)
and retrieves a support document from IdP 4 . This document is
retrieved from a fixed URL https://IdPdomain/.well-known/

spresso-info and contains a public (signature verification) key
of the IdP. RP now selects new nonces/symmetric keys rpNonce,
iaKey, tagKey, and loginSessionToken 5 and creates the tag tag by
encrypting RP’s domain RPDomain and the nonce rpNonce under
tagKey 6 . Using standard Dolev-Yao notation (see also Section 3),
we denote this term by

tag := encs(〈RPDomain,rpNonce〉, tagKey) .

RP further selects an FWD (e.g., a fixed one from its settings). Now,
RP stores tag, iaKey, the FWD domain, and the email address in
its session data store under the session key loginSessionToken and
sends tagKey, FWDDomain, and loginSessionToken as response to
the POST request by RPdoc 7 .

RPdoc now opens the login dialog. Ultimately, this window con-
tains the login dialog from IdP (IdPdoc) so that the user can log in
to IdP (if not logged in already). However, to preserve the user’s pri-
vacy (see the discussion in Section 2.4), RPdoc does not launch the
dialog with the URL of IdPdoc immediately. Instead, RPdoc opens
the login dialog with the URL of RPRedirDoc and attaches the
loginSessionToken 8 . RPRedirDoc is loaded from RP ( 9 and 10 )
and redirects the login dialog to IdPdoc ( 11 and 12 ), passing the
user’s email address, the tag, the FWD domain, and the iaKey from
RP, as stored under the session key loginSessionToken, to IdPdoc.1

After the browser loaded IdPdoc from IdP, the user enters her
password2 matching her email address 13 . The password, the email
address, the tag, and the FWD domain are now sent to IdP 14 . After
IdP verified the user credentials 15 , it creates the identity assertion
as the signature

ia := sig(〈tag,email,FWDDomain〉,kIdP)

using its private signing key kIdP 16 and then returns ia to IdPdoc 17 .
We note that ia contains the signature only, not the data that was
signed.

To avoid that the FWD learns the IA (we discuss this further in
Section 2.4), IdPdoc now encrypts the IA using the iaKey 18 :

eia := encs(ia, iaKey) .

Then, IdPdoc opens an iframe with the URL of FWDdoc, pass-
ing the tag and the encrypted IA to FWDdoc. After the iframe is
loaded 20 , FWDdoc sends a postMessage3 to its parent’s opener
window, which is RPdoc 21 . This postMessage with the sole con-
tent “ready” triggers RPdoc to send the tagKey to FWDdoc, where
in the postMessage the origin4 of FWD with HTTPS is declared to
be the only allowed receiver of this message 22 . FWDdoc uses the
key to decrypt the tag and thereby learns the intended receiver (RP)
of the IA 23 . As its last action, FWD forwards the encrypted IA eia
via postMessage to RPdoc (using RP’s HTTPS origin as the only
allowed receiver) 24 .

RPdoc receives eia and sends it along with the loginSessionToken
to RP 25 . RP then decrypts eia, retrieves ia′ and checks whether ia′

is a valid signature for 〈tag,email,FWDDomain〉 under the verifica-
tion key pub(kIdP) of the IdP, where tag, email, and FWDDomain
are taken from the session data identified by loginSessionToken 26 .

Now, the user identified by the email address is logged in. The
mechanism that is used to persist this logged-in state (if any) at this
point is out of the scope of SPRESSO. In our analysis, as a model for
a standard session-based login, we assume that RP creates a session
for the user’s browser, identified by some freshly chosen token (the
RP service token) 27 and sends this token to the browser 28 .

2.3 Implementation Details
We developed a proof-of-concept implementation of SPRESSO

in about 700 lines of JavaScript and HTML code. It contains all
1This data is passed to IdPdoc in the fragment identifier of the

URL (a.k.a. hash), and therefore, it is not necessarily sent to IdP.
2In fact, the IdP can as well offer any other form of authentica-

tion, e.g., TLS client authentication or two-factor authentication.
3postMessages are messages that are sent between different win-

dows in one browser.
4An origin is defined by a domain name plus the information

whether the connection to this domain is via HTTP or HTTPS.
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presented features of SPRESSO itself and a typical IdP. The imple-
mentation (source code and online demo) is available at [22]. Our
model presented in Section 5 closely follows this implementation.

The three servers (RP, IdP and FWD) are written in JavaScript
and are based on node.js and its built-in crypto API. On the client-
side we use the Web Cryptography API. For encryption we employ
AES-256 in GCM mode to provide authenticity. Signatures are
created/verified using RSA-SHA256.

2.4 Discussion
In order to provide more intuition and motivation for the design
of SPRESSO, and in particular its security and privacy properties,
we first informally discuss some potential attacks on our system
and what measures we took when designing and implementing
SPRESSO to prevent these attacks. These attacks also illustrate
the complexity and difficulty of designing a secure and privacy-
respecting web-based SSO system. In Sections 6 and 7, we formally
prove that SPRESSO provides strong authentication and privacy
properties in a detailed model of the web infrastructure. We also
discuss other aspects of SPRESSO, including usability and perfor-
mance. We conclude this section with a comparison of SPRESSO
and BrowserID.

Malicious RP: Impersonation Attack. An attacker could try to
launch a man in the middle attack against SPRESSO by playing the
role of an RP (RP server and RPdoc) to the user. Such an attacker
would run a malicious server at his RP domain, say, RPa, and also
deliver a malicious script (instead of the honest RPdoc script) to the
user’s browser. Now assume that the user wants to log in with her
email address at RPa and is logged in at the IdP corresponding to
the email address already. Then, the attacker (outside of the user’s
browser) could first initiate the login process at RPb using the user’s
email address. The attacker’s RP could then create a tag of the form
encs(〈RPb,rpNonce〉, tagKey) using the domain of an honest RP
RPb, instead of RPa. The IdP would hence create an IA for this tag
and the user’s email address and deliver this IA to the user’s browser.
If this IA were now indeed be delivered to the attacker’s RP window
(which is running a malicious RPdoc script), the attacker could use
the IA to finish the log in process at RPb (and obtain the service
token from RPb), and thus, log in at RPb as the honest user.

However, assuming that FWD is honest (see below for a discus-
sion of malicious FWDs), FWD prevents this kind of attack: FWD
forwards the (encrypted) IA via a postMessage only to the domain
listed in the tag (so, in this case, RPb), which in the attack above
is not the domain of the document loaded in the attacker’s RP win-
dow (RPa). The IA is therefore not transmitted to the attacker. The
same applies when the attacker tries to navigate the RP window to
its own domain, i.e., to RPa, before Step 24 . Our formal analysis
presented in the following sections indeed proves that such attacks
are excluded in SPRESSO. We note that in order to make sure that
the postMessage is delivered to the correct RP window (technically,
a window with the expected origin), FWD uses a standard feature
of the postMessage mechanism which allows to specify the origin
of the intended recipient of a postMessage.

Malicious IdP. A malicious IdP could try to log the user in under
an identity that is not her own. An attack of this kind on BrowserID
was shown in [10]. However, in SPRESSO, the IdP cannot select
or alter the identity with which the user is logged in. Instead, the
identity is fixed by RP after Step 6 and checked in Step 26 . Again,
our formal analysis shows that such attacks are indeed not possible
in SPRESSO.

The IdP could try to undermine the user’s privacy by trying to
find out which RP requests the IA. However, in SPRESSO, the IdP

cannot gather such information: From the information available
to it (email, tag, FWDDomain plus any information it can gather
from the browser’s state), it cannot infer the RP.5 It could further
try to corellate the sources and times of HTTPS requests for the
support document with user logins. To minimize this side channel,
we suggest caching the support document at each RP and automatic
refreshing of this cache (e.g., an RP could cache the document for
48 hours and after that period automatically refresh the cache). Ad-
ditionally, RPs should use the Tor network (or similar means) when
retrieving the support document in order to hide their IP addresses.
Assuming that support documents have been obtained from IdPs in-
dependently of specific login requests by users, our formal analysis
shows that SPRESSO in fact enjoys a very strong privacy property
(see Sections 4 and 6).

In BrowserID, malicious IdPs (in fact, any party who can run
malicious scripts in the user’s browser) can check the presence or
absence of certain iframes in the login process, leading to the pri-
vacy break mentioned earlier. Again, our formal analysis implies
that this is not possible for SPRESSO.

Malicious FWD. A malicious FWD could cooperate with or act
as a malicious RP and thereby enable the man in the middle attack
discussed above, undermining the authentication guarantees of the
system. Also, a malicious FWD could collaborate with a malicious
IdP and send information about the RP to the IdP, and hence, under-
mine privacy.

Therefore, for our system to provide authentication and privacy,
we require that FWDs behave honestly. Below we discuss ways to
force FWD to behave honestly. We suspect that there is no way to
avoid the use of FWDs or other honest components in a practical
SSO system which is supposed to provide not only authentication
but also privacy: In our system, after Step 17 of the flow, IdPdoc
must return the IA to the RP. There are two constraints: First, the
IA should only be forwarded to a document that in fact is RP’s doc-
ument. Otherwise, it could be misused to log in at RP under the
user’s identity by any other party, which would break authentica-
tion. Second, RP’s identity should not be revealed to IdP, which is
necessary for privacy. Currently, there is no browser mechanism to
securely forward the IA to RP without disclosing RP’s identity to
IdP (but see below).

Enforcing Honest FWDs. Before we discuss existing and upcom-
ing technologies to enforce honest behavior of FWDs, we first note
that in SPRESSO, an FWD is chosen by the RP to which a user
wants to log in. So the RP can choose the FWD it trusts. The RP
certainly has a great interest in the trustworthiness of the FWD: As
mentioned, a malicious FWD could allow an attacker to log in as
an honest user (and hence, misuse RP’s service and undermine con-
fidentiality and integrity of the user’s data stored at RP), something
an RP would definitely want to prevent. Second, we also note that
FWD does not learn a user’s email address: the IA, which is given
to FWD and which contains the user’s email address, is encrypted
with a symmetric key unknown to FWD.6 Therefore, SPRESSO
does not provide FWD with information to track at which RP a

5If only a few RPs use a specific FWD, FWDDomain would
reveal some information. However, this is easy to avoid in practice:
the set of FWDs all (or many) RPs trust should be big enough and
RPs could randomly choose one of these FWDs for every login
process.

6We note that IA is a signature anyway, so typically a signed
hash of a message. Hence, for common signature schemes, already
from the IA itself FWD is not able to extract the user’s email address.
In addition, SPRESSO even encrypts the IA to make sure that this
is the case no matter which signature scheme is used.
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specific user logs in. (A malicious FWD could try to set cookies
and do browser fingerprinting to the track the behavior of specific
browsers. Still it does not obtain the user’s email address.)

Now, as for enforcing honest FWDs, first note that an honest
FWD server is supposed to always deliver the same fixed JavaScript
to a user’s browsers. This JavaScript code is very short (about 50
lines of code). If this code is used, it is not only ensured that FWD
preserves authentication and privacy, but also that no tracking data
is sent back to the FWD server.

Using current technology, a user could use a browser extension
which again would be very simple and which would make sure that
in fact only this specific JavaScript is delivered by FWD (upon the
respective request). As a result, FWD would be forced to behave
honestly, without the user having to trust FWD. Another approach
would be an extension that replaces FWD completely, which could
also lead to a simplified protocol. In both cases, SPRESSO would
provide authentication and privacy without having to trust any FWD.
Both solutions have the common problem that they do not work
on all platforms, because not on all platforms browsers support
extensions. The first solution (i.e., the extension checks only that
correct JavaScript is loaded) would at least still work for users on
such platforms, albeit with reduced security and privacy guarantees.

A native web technology called subresource integrity (SRI)7 is
currently under development at the W3C. SRI allows a document
to create an iframe with an attribute integrity that takes a hash value.
The browser now would guarantee that the document loaded into
the iframe hashes to exactly the given value. So, essentially the
creator of the iframe can enforce the iframe to be loaded with a
specific document. This would enable SPRESSO to automatically
check the integrity of FWDdoc without any extensions.

Referer Header and Privacy. The Referer [sic!] header is set
by browsers to show which page caused a navigation to another
page. It is set by all common browsers. To preserve privacy, when
the loading of IdPdoc is initiated by RPdoc, it is important that the
Referer header is not set, because it would contain RP’s domain, and
consequently, IdP would be able to read off from the Referer header
to which RP the user wants to log in, and hence, privacy would
be broken. With HTML5, a special attribute for links in HTML
was introduced, which causes the Referer header to be suppressed
(rel="noreferrer"). However, when such a link is used to open
a new window, the new window does not have a handle on the
opening window (opener) anymore. But having a handle is essential
for SPRESSO, as the postMessage in Step 21 is sent to the opener
window of IdPdoc. To preserve the opener handle while at the
same time hiding the referer, we first open the new window with a
redirector document loaded from RP (Step 8 ) and then navigate this
window to IdPdoc (using a link with the noreferrer attribute set and
triggered by JavaScript in Step 11 ). This causes the Referer header
to be cleared, while the opener handle is preserved.8 Our formal
analysis implies that with this solution indeed privacy is preserved.

Cross-Site Request Forgery. Cross-site request forgery is particu-
larly critical at RP, where it could be used to log a user in under an
identity that is not her own. For RP, SPRESSO therefore employs
a session token that is not stored in a cookie, but only in the state
of the JavaScript, avoiding cross-origin and cross-domain cookie
attacks. Additionally, RP checks the Origin header of the login re-

7http://www.w3.org/TR/SRI/
8Another option would have been to use a data URI instead of

loading the redirector document from RPdoc and to use a Refresh
header contained in a meta tag for getting rid of the Referer header.
This however showed worse cross-browser compatibility, and the
Refresh header lacks standardization.

quest to make sure that no login can be triggered by a third party
(attacker) web page. Our formal analysis implies that cross-site
request forgery and related attacks are not possible in SPRESSO.

Phishing. It is important to notice that in SPRESSO the user can
verify the location and TLS certificate of IdPdoc’s window by check-
ing the location bar of her browser. The user can therefore check
where she enters her password, which would not be possible if IdP-
doc was loaded in an iframe. Setting strict transport security headers
can further help in avoiding phishing attacks.

Tag Length Side Channel. The length of the tag created in Step 6

depends on the length of RPDomain. Since the tag is given to IdP,
IdP might try to infer RPDomain from the length of the tag. How-
ever, according to RFC 1035, domain names may at most be 253
characters long. Therefore, by appropriate padding (e.g., encrypting
always nine 256 Bit plaintext blocks)9 the length of the tag will not
reveal any information about RPDomain.

Performance. SPRESSO uses only standard browser features, em-
ploys only symmetric encryption/decryption and signatures, and
requires (in a minimal implementation) eight HTTPS requests/re-
sponses — all of which pose no significant performance overhead
to any modern web application, neither for the browser nor for any
of the servers. In our prototypical and unoptimized implementation,
a login process takes less than 400 ms plus the time for entering
email address and password.

Usability. In SPRESSO, users are identified by their email ad-
dresses (an identifier many users easily memorize) and email pro-
viders serve as identity providers. Many web applications today
already use the email address as the primary identifier along with
a password for the specific web site: When a user signs up, a URL
with a secret token is sent to the user’s email address. The user has
to check her emails and click on the URL to confirm that she has
control over the email address. She also has to create a password
for this web site. SPRESSO could seamlessly be integrated into
this sign up scheme and greatly simplify it: If the email provider
(IdP) of the user supports SPRESSO, an SPRESSO login flow can
be launched directly once the user entered her email address and
clicked on the login button, avoiding the need for a new user pass-
word and the email confirmation; and if the user is logged in at the
IdP already, the user does not even have to enter a password. Other-
wise, or if a user has JavaScript disabled, an automatic and seamless
fallback to the classical token-based approach is possible (as RP can
detect whether the IdP supports SPRESSO in Step 4 of the proto-
col). In contrast to other login systems, such as Google ID, the user
would not even have to decide whether to log in with SPRESSO
or not due to the described seamless integration of SPRESSO. Due
to the privacy guarantees (which other SSO systems do not have),
using SPRESSO would not be disadvantageous for the user as her
IdPs cannot track to which RPs the user logs in.

The above illustrates that, using SPRESSO, signing up to a web
site is very convenient: The user just enters her email address at the
RP’s web site and presses the login button (if already logged in at
the respective IdP, no password is necessary). Also, with SPRESSO
the user is free to use any of her email addresses.

Extendability. SPRESSO could be extended to have the IdP sign
(in addition to the email address) further user attributes in the IA,
which then might be used by the RP.

9Eight 256 bit blocks are sufficient for all domain names. We
need an additional block for rpNonce.
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Operating FWD. Operating an FWD is very cheap, as the only
task is to serve one static file. Any party can act as an FWD. Users
and RPs might feel most confident if an FWD is operated by widely
trusted non-profit organizations, such as Mozilla or the EFF.

Comparison with BrowserID. BrowserID was the first and so far
only SSO system designed to provide privacy (IdPs should not be
able to tell at which RPs user’s log in). Nonetheless, as already
mentioned (see Section 2.1), severe attacks were discovered in [11]
which show that the privacy promise of BrowserID is broken: not
only IdPs but even other parties can track the login behavior of users.
Regaining privacy would have required a major redesign of the sys-
tem, resulting in essentially a completely new system, as pointed out
in [11]. Also, BrowserID has the disadvantage that it relies on a sin-
gle trusted server (login.persona.org) which is quite complex,
with several server interactions necessary in every login process,
and most importantly, by design, gets full information about the lo-
gin behavior of users (the user’s email address and the RP at which
the user wants to log in).10 Finally, BrowserID is a rather complex
SSO system (with at least 64 network and inter-frame messages in a
typical login flow11 compared to only 19 in SPRESSO). This com-
plexity implies that security vulnerability go unnoticed more easily.
In fact, several attacks on BrowserID breaking authentication and
privacy claims were discovered (see [10, 11]).

This is why we designed and built SPRESSO from scratch, rather
than trying to redesign BrowserID. The design of SPRESSO is in
fact very different to (and much slimmer than) the one of Brow-
serID. For example, except for HTTPS and signatures of IdPs,
SPRESSO uses only symmetric encryption, whereas in BrowserID,
users (user’s browsers) have to create public/private key pairs and
IdPs sign the user’s public keys. The entities in SPRESSO are dif-
ferent to those in BrowserID as well, e.g., SPRESSO does not rely
on the mentioned single, rather complex, and essentially omniscient
trusted party, resulting in a completely different protocol flow.

3. WEB MODEL
Our formal security analysis of SPRESSO (presented in the next

sections) is based on the general Dolev-Yao style web model in [10].
As mentioned in the introduction, we changed some details in
this model to facilitate the definition of indistinguishability/privacy
properties (see Section 4). In particular, we simplified the handling
of nonces and removed non-deterministic choices wherever possi-
ble. Also, we added the HTTP Referer header and the HTML5
noreferrer attribute for links.

We only present a very brief version of the web model here. The
full model, including our changes, is provided in our technical re-
port [12].

3.1 Communication Model
The main entities in the communication model are atomic pro-

cesses, which are used to model web browsers, web servers, DNS
servers as well as web and network attackers. Each atomic process
listens to one or more (IP) addresses. A set of atomic processes
forms what is called a system. Atomic processes can communicate

10In SPRESSO, we require that FWD behaves honestly. In a
login process, however, the FWD server needs to provide only a
fixed single and very simple JavaScript, no further server interaction
is necessary. Also, FWD does not get full information and RP
in every login process may choose any FWD it trusts. Moreover,
as discussed above, there are means to force FWD to provide the
expected JavaScript.

11Counting HTTP request and responses as well as postMes-
sages, leaving out any user requests for GUI elements or other
non-necessary resources.

via events, which consist of a message as well as a receiver and
a sender address. In every step of a run, one event is chosen non-
deterministically from the current “pool” of events and is delivered
to one of the atomic processes that listens to the receiver address
of that event. The atomic process can then process the event and
output new events, which are added to the pool of events, and so on.
More specifically, messages, processes, etc. are defined as follows.

Terms, Messages and Events. As usual in Dolev-Yao models (see,
e.g., [1]), messages are expressed as formal terms over a signature.
The signature Σ for the terms and messages considered in the web
model contains, among others, constants (such as (IP) addresses,
ASCII strings, and nonces), sequence and projection symbols, and
further function symbols, including those for (a)symmetric encryp-
tion/decryption and digital signatures. Messages are defined to be
ground terms (terms without variables). For example (see also
Section 2.2 where we already use the term notation to describe
messages), pub(k) denotes the public key which belongs to the
private key k. To provide another example of a message, in the
web model, an HTTP request is represented as a ground term con-
taining a nonce, a method (e.g., GET or POST), a domain name, a
path, URL parameters, request headers (such as Cookie), and a
message body. For instance, an HTTP GET request for the URL
http://example.com/show?p=1 is modeled as the term

r := 〈HTTPReq,n1,GET,example.com,/show,〈〈p,1〉〉,〈〉,〈〉〉 ,

where headers and body are empty. An HTTPS request for r is of the
form enca(〈r,k′〉,pub(kexample.com)), where k′ is a fresh symmetric
key (a nonce) generated by the sender of the request (typically a
browser); the responder is supposed to use this key to encrypt the
response.

Events are terms of the form 〈a, f ,m〉 where a and f are re-
ceiver/sender (IP) addresses, and m is a message, for example, an
HTTP(S) message as above or a DNS request/response.

The equational theory associated with the signature Σ is defined
as usual in Dolev-Yao models. The theory induces a congruence re-
lation ≡ on terms. It captures the meaning of the function symbols
in Σ. For instance, the equation in the equational theory which cap-
tures asymmetric decryption is deca(enca(x,pub(y)),y) = x. With
this, we have that, for example,

deca(enca(〈r,k′〉,pub(kexample.com)),kexample.com)≡ 〈r,k′〉 ,

i.e., these two terms are equivalent w.r.t. the equational theory.

Atomic Processes, Systems and Runs. Atomic Dolev-Yao pro-
cesses, systems, and runs of systems are defined as follows.

An atomic Dolev-Yao (DY) process is a tuple p = (Ip,Zp,Rp,sp
0)

where Ip is the set of addresses the process listens to, Zp is a
set of states (formally, terms), sp

0 ∈ Zp is an initial state, and Rp

is a relation that takes an event and a state as input and (non-
deterministically) returns a new state and a sequence of events. This
relation models a computation step of the process, which upon re-
ceiving an event in a given state non-deterministically moves to a
new state and outputs a set of events. It is required that the events
and states in the output can be computed (more formally, derived
in the usual Dolev-Yao style) from the current input event and state.
We note that in [10] the definition of an atomic process also con-
tained a set of nonces which the process may use. Instead of such
a set, we now consider a global sequence of (unused) nonces and
new nonces chosen by an atomic process are taken from this global
sequence.

The so-called attacker process is an atomic DY process which
records all messages it receives and outputs all events it can possibly
derive from its recorded messages. Hence, an attacker process is
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the maximally powerful DY process. It carries out all attacks any
DY process could possibly perform and is parametrized by the set
of sender addresses it may use. Attackers may corrupt other DY
processes (e.g., a browser).

A system is a set of atomic processes. A configuration (S,E,N)
of this system consists of the current states of all atomic processes in
the system (S), the pool of waiting events (E, here formally modeled
as a sequence of events; in [10], the pool was modeled as a multiset),
and the mentioned sequence of unused nonces (N).

A run of a system for an initial sequence of events E0 is a se-
quence of configurations, where each configuration (except for the
initial one) is obtained by delivering one of the waiting events of the
preceding configuration to an atomic process p (which listens to the
receiver address of the event), which in turn performs a computation
step according to its relation Rp. The initial configuration consists
of the initial states of the atomic processes, the sequence E0, and an
initial infinite sequence of unused nonces.

Scripting Processes. The web model also defines scripting pro-
cesses, which model client-side scripting such as JavaScript.

A scripting process (or simply, a script) is defined similarly to a
DY process. It is called by the browser in which it runs. The browser
provides it with state information s, and the script then, according
to its computation relation, outputs a term s′, which represents the
new internal state and some command which is interpreted by the
browser (see also below). Again, it is required that a script’s output
is derivable from its input.

Similarly to an attacker process, the so-called attacker script Ratt

may output everything that is derivable from the input.

3.2 Web System
A web system formalizes the web infrastructure and web appli-

cations. Formally, a web system is a tuple (W ,S ,script,E0) with
the following components:

• The first component, W , denotes a system (a set of DY processes
as defined above) and contains honest processes, web attacker,
and network attacker processes. While a web attacker can listen
to and send messages from its own addresses only, a network
attacker may listen to and spoof all addresses (and therefore is
the maximally powerful attacker). Attackers may corrupt other
parties. In the analysis of a concrete web system, we typically
have one network attacker only and no web attackers (as they are
subsumed by the network attacker), or one or more web attack-
ers but then no network attacker. Honest processes can either
be web browsers, web servers, or DNS servers. The modeling
of web servers heavily depends on the specific application. The
web browser model, which is independent of a specific web ap-
plication, is outlined below.

• The second component, S , is a finite set of scripts, including the
attacker script Ratt. In a concrete model, such as our SPRESSO
model, the set S \{Ratt} describes the set of honest scripts used in
the web application under consideration while malicious scripts
are modeled by the “worst-case” malicious script, Ratt.

• The third component, script, is an injective mapping from a
script in S to its string representation script(s) (a constant in Σ)
so that it can be part of a messages, e.g., an HTTP response.

• Finally, E0 is a sequence of events, which always contains an
infinite number of events of the form 〈a,a,TRIGGER〉 for every
IP address a in the web system.

A run of the web system is a run of W initiated by E0.

3.3 Web Browsers
We now sketch the model of the web browser, with full details

provided in [12]. A web browser is modeled as a DY process
(Ip,Zp,Rp,sp

0).
An honest browser is thought to be used by one honest user, who

is modeled as part of the browser. User actions are modeled as non-
deterministic actions of the web browser. For example, the browser
itself non-deterministically follows the links in a web page. User
data (i.e., passwords and identities) is stored in the initial state of
the browser and is given to a web page when needed, similar to the
AutoFill feature in browsers.

Besides the user identities and passwords, the state of a web
browser (modeled as a term) contains a tree of open windows and
documents, lists of cookies, localStorage and sessionStorage data,
a DNS server address, and other data.

In the browser state, the windows subterm is the most complex
one. It contains a window subterm for every open window (of
which there may be many at a time), and inside each window, a list
of documents, which represent the history of documents that have
been opened in that window, with one of these documents being
active, i.e., this document is presented to the user and ready for
interaction. A document contains a script loaded from a web server
and represents one loaded HTML page. A document also contains a
list of windows itself, modeling iframes. Scripts may, for example,
navigate or create windows, send XHRs and postMessages, submit
forms, set/change cookies, localStorage, and sessionStorage data,
and create iframes. When activated, the browser provides a script
with all data it has access to, such as a (limited) view on other
documents and windows, certain cookies as well as localStorage
and sessionStorage.

Figure 2 shows a brief overview of the browser relation Rp which
defines how browsers behave. For example, when a TRIGGER mes-
sage is delivered to the browser, the browser non-deterministically
choses an action. If, for instance, this action is 1, then an active doc-
ument is selected non-deterministically, and its script is triggered.
The script (with inputs as outlined above), can now output a com-
mand, for example, to follow a hyperlink (HREF). In this case, the
browser will follow this link by first creating a new DNS request.
Once a response to that DNS request arrives, the actual HTTP re-
quest (for the URL defined by the script) will be sent out. After a
response to that HTTP request arrives, the browser creates a new
document from the contents of the response. Complex navigation
and security rules ensure that scripts can only manipulate specific
aspects of the browser’s state. Browsers can become corrupted, i.e.,
be taken over by web and network attackers. The browser model
comprises two types of corruption: close-corruption, modeling that
a browser is closed by the user, and hence, certain data is removed
(e.g., session cookies and opened windows), before it is taken over
by the attacker, and full corruption, where no data is removed in
advance. Once corrupted, the browser behaves like an attacker pro-
cess.

4. INDISTINGUISHABILITY OF
WEB SYSTEMS

We now define the indistinguishability of web systems. This
definition is not tailored towards a specific web application, and
hence, is of independent interest.

Our definition follows the idea of trace equivalence in Dolev-
Yao models (see, e.g., [9]), which in turn is an abstract version of
cryptographic indistinguishability.

Intuitively, two web systems are indistinguishable if the follow-
ing is true: whenever the attacker performs the same actions in both
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PROCESSING INPUT MESSAGE m
m = FULLCORRUPT: isCorrupted := FULLCORRUPT

m = CLOSECORRUPT: isCorrupted := CLOSECORRUPT

m = TRIGGER: non-deterministically choose action from {1,2,3}
action = 1: Call script of some active document.

Outputs new state and command.
command = HREF: → Initiate request
command = IFRAME: Create subwindow,→ Initiate request
command = FORM: → Initiate request
command = SETSCRIPT: Change script in given document.
command = SETSCRIPTSTATE: Change state of script

in given document.
command = XMLHTTPREQUEST: → Initiate request
command = BACK or FORWARD: Navigate given window.
command = CLOSE: Close given window.
command = POSTMESSAGE: Send postMessage to

specified document.
action = 2: → Initiate request to some URL in new window
action = 3: → Reload some document

m = DNS response: send corresponding HTTP request
m = HTTP(S) response: (decrypt,) find reference.

reference to window: create document in window
reference to document: add response body to document’s

script input

Figure 2: The basic structure of the web browser relation Rp

with an extract of the most important processing steps, in the
case that the browser is not already corrupted.

systems, then the sequence of messages he obtains in both runs look
the same from the attacker’s point of view, where, as usual in Dolev-
Yao models, two sequences are said to “look the same” when they
are statically equivalent [1] (see below). More specifically, since, in
general, web systems allow for non-deterministic actions (also of
honest parties), the sequence of actions of the attacker might induce
a set of runs. Then indistinguishability says that for all actions of
the attacker and for every run induced by such actions in one system,
there exists a run in the other system, induced by the same attacker
actions, such that the sequences of messages the attacker obtains in
both runs look the same to the attacker.

Defining the actions of attackers in web systems requires care
because the attacker can control different components of such a
system, but some only partially: A web attacker (unlike a net-
work attacker) controls only part of the network. Also an attacker
might control certain servers (web servers and DNS servers) and
browsers. Moreover, he might control certain scripts running in hon-
est browsers, namely all attacker scripts Ratt running in browsers;
dishonest browsers are completely controlled by the attacker any-
way.

We model a single action of the attacker by what we call a (web
system) command; not to be confused with commands output by a
script to the browser. A command is of the form

〈i, j,τprocess,cmdswitch,cmdwindow,τscript,url〉 .

The first component i ∈ N determines which event from the pool
of events is processed. If this event could be delivered to several
processes (recall that a network attacker, if present, can listen to
all addresses), then j determines the process which actually gets
to process the event. Now, there are different cases depending on
the process to which the event is delivered and depending on the
event itself. We denote the process by p and the event by e: i) If p
is corrupted (it is a web attacker, network attacker, some corrupted

browser or server), then the new state of this process and its output
are determined by the term τprocess, i.e., this term is evaluated with
the current state of the process and the input e. ii) If p is an honest
browser and e is not a trigger message (e.g., a DNS or HTTP(S)
response), then the browser processes e as usual (in a deterministic
way). iii) If p is an honest browser and e is a trigger message, then
there are three actions a browser can (non-deterministically) choose
from: open a new window, reload a document, or run a script. The
term cmdswitch ∈ {1,2,3} selects one of these actions. If it chooses
to open a new window, a document will be loaded from the URL
url. In the remaining two cases, cmdwindow determines the win-
dow which should be reloaded or in which a script is executed. If
a script is executed and this script is the attacker script, then the
output of this script is derived (deterministically) by the term τscript,
i.e., this term is evaluated with the data provided by the browser.
The resulting command, if any, is processed (deterministically) by
the browser. If the script to be executed is an honest script (i.e.,
not Ratt), then this script is evaluated and the resulting command
is processed by the browser. (Note that the script might perform
non-deterministic actions.) iv) If p is an honest process (but not a
browser), then the process evaluates e as usual. (Again, the com-
putation might be non-deterministic, as honest processes might be
non-deterministic.)

We call a finite sequence of commands a schedule. Given a
web system WS = (W ,S ,script,E0), a schedule σ induces a set
of (finite) runs in the obvious way. We denote this set by σ(WS).
Intuitively, a schedule models the attacker actions in a run. Note
that we consider a very strong attacker. He not only determines
the actions of all dishonest processes and all attacker scripts, but
also schedules all events, not only events intended for the attacker;
clearly, the attacker does not get to see explicitly events not intended
for him.

Before we can define indistinguishability of two web systems,
we need to, as mentioned above, recall the definition of static equiv-
alence of two messages t1 and t2. We say that the messages t1 and
t2 are statically equivalent, written t1 ≈ t2, if and only if, for all
terms M(x) and N(x) which contain one variable x and do not use
nonces, we have that M(t1)≡ N(t1) iff M(t2)≡ N(t2). That is, ev-
ery test performed by the attacker yields the same result for t1 and
t2, respectively. For example, if k and k′ are nonces, and r and r′

are different constants, then

enca(〈r,k′〉,pub(k))≈ enca(〈r′,k′〉,pub(k)) .

Intuitively, this is the case because the attacker does not know the
private key k.

We also need the following terminology. If (W ,S ,script,E0) is
a web system and p is an attacker process in W , then we say that
(W ,S ,script,E0, p) is a web system with a distinguished attacker
process p. If ρ is a finite run of this system, we denote by ρ(p)
the state of p at the end of this run. In our indistinguishability
definition, we will consider the state of the distinguished attacker
process only. This is sufficient since the attacker can send all its
data to this process.

Now, we are ready to define indistinguishability of web systems
in a natural way.

DEFINITION 1. Let WS0 and WS1 be two web system each
with a distinguished attacker process p0 and p1, respectively. We
say that these systems are indistinguishable, written WS0 ≈WS1,
iff for every schedule σ and every i ∈ {0,1}, we have that for every
run ρ∈ σ(WS i) there exists a run ρ′ ∈ σ(WS1−i) such that ρ(pi)≈
ρ′(p1−i).
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5. FORMAL MODEL OF SPRESSO
We now present the formal model of SPRESSO, which closely

follows the description in Section 2 and the implementation of the
system. This model is the basis for our formal analysis of privacy
and authentication properties presented in Sections 6 and 7.

We model SPRESSO as a web system (in the sense of Sec-
tion 3.2). We call SWS = (W ,S ,script,E0) an SPRESSO web sys-
tem if it is of the form described in what follows.

The set W = Hon∪Web∪Net consists of a finite set of web at-
tacker processes (in Web), at most one network attacker process (in
Net), a finite set FWD of forwarders, a finite set B of web browsers,
a finite set RP of web servers for the relying parties, a finite set IDP
of web servers for the identity providers, and a finite set DNS of
DNS servers, with Hon :=B∪RP∪ IDP∪FWD∪DNS. The set of
scripts S is {Ratt,script_rp,script_rp_redir,script_idp,script_fwd}.
Their respective string representations are defined by the mapping
script. The set E0 contains only the trigger events as specified in
Section 3.2.

We now sketch the processes and the scripts in W and S (see [12]
for full details). As mentioned, our modeling closely follows the
description in Section 2 and the implementation of the system:

• Browsers (in B) are defined as described in Section 3.3.

• A relying party (in RP) is a web server. RP knows four dis-
tinct paths: /, where it serves the index web page (script_rp),
/startLogin, where it only accepts POST requests and mainly
issues a fresh RP nonce, /redir, where it only accepts requests
with a valid login session token and serves script_rp_redir
to redirect the browser to the IdP, and /login, where it also only
accepts POST requests with login data obtained during the login
process by script_rp running in the browser. It checks this
data and, if the data is considered to be valid, it issues a service
token. The RP keeps a list of such tokens in its state. Intuitively,
a client having such a token can use the service of the RP.

• Each IdP (in IDP) is a web server. It knows three distinct paths:
/.well-known/spresso-login, where it serves the login dia-
log web page (script_idp), /sign, where it issues a (signed)
identity assertion, and the path /.well-known/spresso-info,
where it serves the support document containing its public key.
Users can authenticate to the IdP with their credentials and IdP
tracks the state of the users with sessions. Only authenticated
users can receive IAs from the IdP.

• Forwarders (in FWD) are web servers that have only one state
(i.e., they are stateless) and serve only the script script_fwd,
except if they become corrupted.

• Each DNS server (in DNS) contains the assignment of domain
names to IP addresses and answers DNS requests accordingly.

Besides the browser, RPs, IdPs, and FWDs can become corrupted:
If they receive the message CORRUPT, they start collecting all in-
coming messages in their state and when triggered send out some
message that is derivable from their state and collected input mes-
sages, just like an attacker process.

6. PRIVACY OF SPRESSO
In our privacy analysis, we show that an identity provider in

SPRESSO cannot learn where its users log in. We formalize this
property as an indistinguishability property: an identity provider
(modeled as a web attacker) cannot distinguish between a user log-
ging in at one relying party and the same user logging in at a differ-
ent relying party.

Definition of Privacy of SPRESSO. The web systems considered
for the privacy of SPRESSO are the web systems SWS defined
in Section 5 which now contain one or more web attackers, no
network attackers, one honest DNS server, one honest forwarder,
one browser, and two honest relying parties r1 and r2. All honest
parties may not become corrupted and use the honest DNS server for
address resolving. Identity providers are assumed to be dishonest,
and hence, are subsumed by the web attackers (which govern all
identities). The web attacker subsumes also potentially dishonest
forwarders, DNS servers, relying parties, and other servers. The
honest relying parties are set up such that they already contain the
public signing keys (used to verify identity assertions) for each
domain registered at the DNS server, modeling that these have been
cached by the relying parties, as discussed in Section 2.2.

In order to state the privacy property, we replace the (only) honest
browser in the above described web systems by a slightly extended
browser, which we call a challenge browser: This browser may not
become corrupted and is parameterized by a domain r of a relying
party. When it is to assemble an HTTP(S) request for the special
domain CHALLENGE, then instead of putting together and sending
out the request for CHALLENGE it takes the domain r. However,
this is done only for the first request to CHALLENGE. Further re-
quests to this domain are not altered (and would fail, as the domain
CHALLENGE is not listed in the honest DNS server).

We denote web systems as described above by SWS priv(r), where
r is the domain of the relying party given to the challenge browser
in this system.

We can now define privacy of SPRESSO. We note that it is not
important which attacker process in SWS priv(·) is the distinguished
one (in the sense of Section 4).

DEFINITION 2. We say that SPRESSO is IdP-private iff for ev-
ery web system SWS priv(·) and domains r1 and r2 of relying parties
as described above, we have that SWS priv(r1) ≈ SWS priv(r2), i.e.,
SWS priv(r1) and SWS priv(r2) are indistinguishable.

Note that there are many different situations where the honest brow-
ser in SWS priv(·) could be triggered to send an HTTP(S) request to
CHALLENGE. This could, for example, be triggered by the user who
enters a URL in the location bar of the browser, a location header
(e.g., determined by the adversary), an (attacker) script telling the
browser to follow a link or create an iframe, etc.

Now, the above definition requires that in every stage of a run and
no matter how and by whom the CHALLENGE request was triggered,
no (malicious) IdP can tell whether CHALLENGE was replaced by r1
or r2, i.e., whether this resulted in a login request for r1 or r2. Recall
that the CHALLENGE request is replaced by the honest browser only
once. This is the only place in a run where the adversary does not
know whether this is a request to r1 or r2. Other requests in a run,
even to both r1 and r2, the adversary can determine. Still, he should
not be able to figure out what happened in the CHALLENGE request.
Hence, this definition captures in a strong sense the intuition that a
malicious IdP should not be able to distinguish whether a user logs
in/has logged in at r1 or r2.

Analyzing Privacy of SPRESSO. The following theorem says that
SPRESSO enjoys the described privacy definition.

THEOREM 1. SPRESSO is IdP-private.

The full proof is provided in our technical report [12]. In the
proof, we define an equivalence relation between configurations of
SWS priv(r1) and SWS priv(r2), comprising equivalences between
states and equivalences between events (in the pool of waiting
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events). For the states, for each (type of an) atomic DY process in
the web system, we define how their states are related. For example,
the state of the FWD server must be identical in both configura-
tions. As another example, roughly speaking, the attacker’s state
is the same up to subterms the attacker cannot decrypt. Regarding
(waiting) events, we distinguish between messages that result (di-
rectly or indirectly) from a CHALLENGE request by the browser and
other messages. While the challenged messages may differ in cer-
tain ways, other messages may only differ in parts that the attacker
cannot decrypt.

Given these equivalences, we then show by induction and an
exhaustive case distinction that, starting from equivalent config-
urations, every schedule leads to equivalent configurations. (We
note that in SWS priv(·) a schedule induces a single run because in
SWS priv(·) we do not have non-deterministic actions that are not
determined by a schedule: honest servers and scripts perform only
deterministic actions.) As an example, we distinguish between the
potential receivers of an event. If, e.g., FWD is a receiver of a
message, given its identical state in both configurations (as per the
equivalence definition) and the equivalence on the input event, we
can immediately show that the equivalence holds on the output mes-
sage and state. For other atomic DY processes, such as browsers
and RPs, this is much harder to show. For example, for browsers,
we need to distinguish between the different scripts that can poten-
tially run in the browser (including the attacker script), the origins
under which these scripts run, and the actions they can perform.

For equivalent configurations of SWS priv(r1) and SWS priv(r2),
we show that the attacker’s views are indistinguishable. Given that
for all SWS priv(r1) and SWS priv(r2) every schedule leads to equiv-
alent configurations, we have that SPRESSO is IdP-private.

7. AUTHENTICATION OF SPRESSO
We show that SPRESSO satisfies two fundamental authentication

properties.

Formal Model of SPRESSO for Authentication. For the authen-
tication analysis, we consider web systems as defined in Section 5
which now contain one network attacker, a finite set of browsers,
a finite set of relying parties, a finite set of identity providers, and
a finite set of forwarders. Browsers, forwarders, and relying par-
ties can become corrupted by the network attacker. The network
attacker subsumes all web attackers and also acts as a (dishonest)
DNS server to all other parties. We denote a web system in this
class of web systems by SWSauth.

Defining Authentication for SPRESSO. We state two fundamen-
tal authentication properties every SSO system should satisfy. These
properties are adapted from [10].

Informally, these properties can be stated as follows: (A) The
attacker should not be able to use a service of an honest RP as an
honest user. In other words, the attacker should not get hold of (be
able to derive from his current knowledge) a service token issued
by an honest RP for an ID of an honest user (browser), even if the
browser was closed and then later used by a malicious user, i.e.,
after a CLOSECORRUPT (see Section 3.3). (B) The attacker should
not be able to authenticate an honest browser to an honest RP with
an ID that is not owned by the browser (identity injection). For both
properties, we clearly have to require that the forwarder used by the
honest RP is honest as well.

We call a web system SWSauth secure w.r.t. authentication if the
above conditions are satisfied in all runs of the system. We refer the
reader to our technical report [12] for the formal definition of (A)
and (B).

Analyzing Authentication of SPRESSO. We prove the following
theorem:

THEOREM 2. Let SWSauth be an SPRESSO web system as de-
fined above. Then SWSauth is secure w.r.t. authentication.

In other words, the authentication properties (A) and (B) are
fulfilled for every SPRESSO web system.

For the proof, we first show some general properties of SWSauth.
In particular, we show that encrypted communication over HTTPS
between an honest relying party and an honest IdP cannot be altered
by the (network) attacker, and, based on that, any honest relying
party always retrieves the “correct” public signature verification
key from honest IdPs. We then proceed to show that for a service
token to be issued by an honest RP, a request of a specific form has
to be received by the RP.

We then use these properties and the general web system proper-
ties shown in the full version of [11] to prove properties (A) and (B)
separately. In both cases, we assume that the respective property is
not satisfied and lead this to a contradiction. Again, the full proof
is provided in our technical report [12].

8. FURTHER RELATED WORK
As mentioned in the introduction, many SSO systems have been

developed. However, unlike SPRESSO, none of them is privacy-
respecting.

Besides the design and implementation of SPRESSO, the formal
analysis of this system based on an expressive web model is an
important part of our work. The formal treatment of the security
of web applications is a young discipline. Of the few works in this
area even less are based on a general model that incorporates essen-
tial mechanisms of the web. Early works in formal web security
analysis (see, e.g., [3, 8, 15, 16, 24]) are based on very limited mod-
els developed specifically for the application under scrutiny. The
first work to consider a general model of the web, written in the
finite-state model checker Alloy, is the work by Akhawe et al. [2].
Inspired by this work, Bansal et al. [5, 6] built a more expressive
model, called WebSpi, in ProVerif [7], a tool for symbolic cryp-
tographic protocol analysis. These models have successfully been
applied to web standards and applications. Recently, Kumar [17]
presented a high-level Alloy model and applied it to SAML single
sign-on. The web model presented in [10], which we further extend
and refine here, is the most comprehensive web model to date (see
also the discussion in [10]). In fact, this is the only model in which
we can analyze SPRESSO. For example, other models do not in-
corporate a precise handling of windows, documents, or iframes;
cross-document messaging (postMessages) are not included at all.

9. CONCLUSION
In this paper, we proposed the first privacy-respecting (web-

based) SSO system, where the IdP cannot track at which RP a
user logs in. Our system, SPRESSO, is open and decentralized.
Users can log in at any RP with any email address with SPRESSO
support, allowing for seamless and convenient integration into the
usual login process. Being solely based on standard HTML5 and
web features, SPRESSO can be used across browsers, platforms,
and devices.

We formally prove that SPRESSO indeed enjoys strong authenti-
cation and privacy properties. This is important since, as discussed
in the paper, numerous attacks on other SSO systems have been
discovered. These attacks demonstrate that designing a secure SSO
system is non-trivial and security flaws can easily go undetected
when no rigorous analysis is carried out.
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As mentioned in Section 8, there have been only very few anal-
ysis efforts, based on expressive models of the web infrastructure,
on web applications in general and SSO systems in particular in the
literature so far. Therefore, the analysis carried out in this paper is
also of independent interest.

Our work is the first to analyze privacy properties based on an ex-
pressive web model, in fact the most expressive model to date. The
general indistinguishability/privacy definition we propose, which is
not tailored to any specific web application, will be useful beyond
the analysis performed in this paper.
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