
Demo: High-Throughput Secure Three-Party Computation
of Kerberos Ticket Generation

Toshinori Araki
NEC Corporation, Japan

t-araki@ek.jp.nec.com

Assaf Barak
Bar-Ilan University, Israel
assaf.barak@biu.ac.il

Jun Furukawa
NEC Corporation, Japan

j-furukawa@ay.jp.nec.com
Yehuda Lindell∗

Dept. of Computer Science
Bar-Ilan University, Israel

lindell@biu.ac.il

Ariel Nof∗
Dept. of Computer Science
Bar-Ilan University, Israel
nofdinar@gmail.com

Kazuma Ohara
NEC Corporation, Japan

k-ohara@ax.jp.nec.com

ABSTRACT
Secure multi-party computation (SMPC) is a cryptographic
tool that enables a set of parties to jointly compute any func-
tion of their inputs while keeping the privacy of inputs. The
paper “High Throughput Semi-Honest Secure Three-Party
Computation with an Honest Majority” in this ACM CCS
2016 [4] presents a new protocol which its implementation
carried out over 1,300,000 AESs per second and was able
to support 35,000 login queries of Kerberos authentication
per second. This poster/demo presents the design of the im-
plementation and demonstrates the Kerberos authentication
over here. The design will show how this high-throughput
three-party computation can be done using simple servers.
The demonstration proves that secure multiparty compu-
tation of Kerberos authentications in large organizations is
now practical.

1. INTRODUCTION
The authors of this poster proposed, in their paper [4] at

this ACM CCS 2016, a novel provably secure three-party
computation protocol with honest majority. This paper fo-
cused on the throughput of multiparty computation and
achieved over 1,300,000 AES encryptions per second, which
is 14 times faster than the latest optimized version [3] of
Sharemind protocol. The paper also reports that, under
this capability, 35,000 login queries of Kerberos authentica-
tion were processed per second.

In this poster, we are going to present the detail design
of our implementation which enabled this high throughput
and demonstrate the Kerberos authentication application.

∗
Supported by the European Research Council under the ERC con-

solidators grant agreement n. 615172 (HIPS) and under the European
Union’s Seventh Framework Program (FP7/2007-2013) grant agree-
ment n. 609611 (PRACTICE), and by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction with the
Israel National Cyber Bureau in the Prime Minister’s Office.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).

CCS’16, October 24-28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4139-4/16/10.

DOI: http://dx.doi.org/10.1145/2976749.2989035

Figure 1: The Kerberos authentication using MPC

Although the protocol presented in the paper itself requires
small communication, it does not immediately imply high
throughput. Our design of the implementation leveraged
the simple structure of the protocol so as to continuously
produce the stream of bits necessary to carry out the high
throughput multiparty computation. We also show that this
design is suitable for being applied to Kerberos authentica-
tion. We present how the stream of login queries are con-
verted to the stream of multiparty computation and then
re-converted to the stream of responses to the login queries.
This description of design and the demo complement our
paper at this ACM CCS 2016.

2. DESIGN FOR PARALLEL AES
We have implemented our SMPC protocol and applied

it to Kerberos authentication server, which issues Ticket-
Granting-Ticket (TGT) by AES encryption. The system
view is shown in Figure 1. The “Secure KDC server” is
the Kerberos server which accepts requests of issuing tickets
from the clients. This secure KDC server generates tickets
with the help of new SMPC-proxy process within that server
instead of simply calling AES encryption functionality. Ac-
cording to our design, although the server sends a request
to the SMPC-proxy for each encryption, it does not receive
the encrypted messages one-by-one. Instead, it receives a

1841

http://dx.doi.org/10.1145/2976749.2989035


Figure 2: The data flow of our inplementation

batch of encrypted messages only after a while. Hence the
encryptions are done in parallel for multiple messages. We
have modified Kerberos server to process ticket generation
in such a way.

The SMPC-proxy keeps receiving requests for encrypting
message for a certain small period of time. We consider only
the AES counter mode, and hence each request is a pair of
principal identifier and counter. After the proxy received a
sequence of these messages, it generates shares of them, and
sends each share to the corresponding MPC server.

Each of three MPC servers, upon receiving a request from
the SMPC-proxy, first loads the share of the key of the speci-
fied principal. The shared key is that of the expanded round
keys. Then, to achieve very high throughput, MPC servers
process the conversion of the data structure which is called
as “bit-slice” (described in Sect. 2.2). MPC server applies
bit-slice the shared keys and counters. These bit-sliced coun-
ters are encrypted by bit-sliced keys according to our SMPC
protocol. Finally, the obtained bit-sliced ciphertexts are bit-
desliced to a sequence of ciphertexts and returned to the
SMPC-proxy. SMPC-proxy now returns the results to the
KDC server, which assembles them to generate tickets.

2.1 Architecture
Our system is composed of KDC server, SMPC-proxy,

MPC servers, and clients. Each component is implemented
as in the following.

KDC server It works as a KDC server for Kerberos 5. The
encryption mode of operation for ticket generation is
128-bit AES-CTR, where all principal keys are secret-
shared by 3 MPC servers. The KDC server has a new
function that, when received a pair of principal identity
and message, dissolves into a sequence of pairs of the
same principal identifier and 128 bit counter. This
function converts a request for encrypting a message of
arbitrary size into a sequence of requests for encrypting
a 128 bit blocks. This sequence is implemented in the
following structure and transferred to SMPC-proxy.

struct AES_MPC_REQ {

uint32 numAES;

uint32 *principalID;

uint32 *counter; //4 unit32 for one counter.

};

Note that a sequence of the same principal identifier
may appears in *principalID if they are from the
same request for encrypting a message.

The result is returned by structure AES_MPC_REQ which
is defined similarly without principal identifier. This
will be reconstructed into ciphertexts of AES-counter
mode.

SMPC-Proxy SMPC-proxy is implemented by Class SMPCProxy.
Its major methods are simply, to be given data (struct
AES_MPC_REQ) from KDC service, converts data into
shares, sending these shares (struct MPC_PROXY_REQ)
to MPC servers, receiving the shares (struct MPC_PROXY_REP)
of ciphertexts from MPC servers, recover the cipher-
texts from shares, and returning ciphertexts (struct
AES_MPC_REQ) to KDC server.

MPC server MPC servers are implemented by
Class MPCServer{}. Each MPC server receives struct
MPC_Proxy_REQ which is defined as

struct MPC_Proxy_REQ {

uint32 numAES;

uint32 *prncipalID;

struct SharedPlain plMsgShare; //shares

};

MPC server loads the shares of the expanded secret
key of each principal by method LoadKeyShare. The
result is struct MPC_SERVERS_REQ defined below.

struct MPC_SERVERS_REQ {

uint32 numAES;

struct SharedPlain plKeyShare;

struct SharedPlain plMsgShare;

};

As the number of shares of both secret keys and mes-
sages are the same and they are ordered in the same
manner, we can apply bit-slicing theme sequentially to
obtain struct CIRCUIT_REQ.

struct CIRCUIT_REQ {

uint32 numAES;

/* bit-sliced input */

struct SharedSlices slMsgShare;

};

Note that there is only one array in this structure. This
sliced data will be given to Class MPCCircuit to MPC.
The result of this MPC is sent to SMPC-Proxy. How
bit-slicing and bit-deslicing is implemented is described
later.

An instance of Class MPCCircuit is constructed by
giving a circuit description. In our case it is of AES.
This class is general in that it runs MPC of any func-
tion in bit-sliced manner if its appropriate description
is given.

Client Nothing is special about our clients except we re-
quire them to use AES-counter mode.

1842



2.2 SIMD Bit-Slicing and PRNG
To highly parallelize MPC for high throughput, we used

the technique called by ”bit-slice”. The detail of bit-slice
procedure is described in our paper [4]. The bit-sliced data
structure allows us to compute multiple operations for bit
value as the operation for one vector, and it is compatible
with Intel SIMD instructions. We assumed that the number
of plain data is very large in case of our application since
it corresponds to the number of users. This paper shows
more detail about the data structure and how to apply bit-
slicing/SIMD technique for our protocol, which is omitted
from the conference paper [4].

XOR/AND operation for bit-sliced data
The computation/communication costs of all MPC in-

struction used in our protocol is very simple and light. For
1-bit secret information, each party has 2-bit as a share of
1-bit. 1-bit XOR instruction for MPC requires 2-bit (or-
dinary) XOR operation and no communication, and 1-bit
AND instruction requires 2-bit (ordinary) AND operation,
3-bit XOR operation, 1-bit random number generation and
1-bit communication with other parties (For the detail of
the protocol, see the proceedings of CCS’16 [4]).

In our protocol, the sliced vector m′i for the inputs consist
of i-th bit’s shares of all inputs which are parallely entered,
as like follows

m′i = (s0,0, s1,0, . . . , sl,0||s0,1, s1,1, . . . , sl,1) (i ∈ [n])

where n corresponds to the index of wires of the circuit,
and l corresponds to the number of parallel inputs. Each of
the share of secret bit is represented as (s0,k, s1,k), i.e., the
former half bits of m′i are the first elements of the shares,
and latter half is second elements of the shares.

If we want to evaluate XOR/AND instruction for the
i-th bit and the j-th bit by MPC, we need to compute
XOR/AND for the shares of i-th and j-th bit. It can be
realized by the vector-wise XOR/AND operation of m′i and
m′j , and this operation can be made more faster by SIMD
instruction.

In addition, for the random number generation used in
AND instruction of MPC, we use AES counter mode by
AES-NI, which has very useful property that we can use it
to perform up to 8 encryptions in one instruction.

We stress that this optimization is very effective since
the local XOR/AND gate computations take possession of
49.82% of whole computation time (see also [4]).

2.3 AES Circuit
We made our AES circuit description based on the AES

circuit suitable for MPC [5]. This description has no de-
limiters of round. So, we add the delimiters. The policy of
adding delimiters is simple. When no more gates compute
without finishing AND computation, a round change delim-
iter is add to that point. The properties of derived circuit
are summarized as follows.

Table 1: The properties of our circuit

The number of round 40
The number of gate 27692

The max number of AND gate in a round 288
The min number of AND gate in a round 48

In this description, a gate is represented by following con-
tents.

• Number of input
• Number of output
• Indexes of input wires
• Index of output wire
• Gate type (XOR = 1, AND = 2, INV = 3)
• Index of buffer used for sending data. (−1 means the

outout doesn’t be sent.)
Some example of our circuit description is as follows. The
delimiter of round is represented by 000000.

2 1 28491 28258 28383 1 -1 // XOR gate

1 1 28240 28457 3 -1 // INV gate

2 1 28512 28513 28494 2 32 // AND gate

0 0 0 0 0 0 // Change round delimiter

3. CONTENTS OF THE DEMO
We will demonstrate our Kerberos authentication server

by showing the performance of it in real environment. The
hardware construction of the experiments is 3 server ma-
chines where each has two Intel Xeon E5-2650 v3 2.3GHz
CPUs with a total of 20 cores, and these are connected via
10Gbps LAN.

First, we simulate the three party computation for issu-
ing Kerberos TGT tickets by these server machines where
the JMeter load test tool simulates clients. You can see the
detailed performance of our implementation in this demon-
stration, for example on the following items.

• Throughput
• Latency
• Rate of CPU utilization
• Rate of network utilization

This experiments will be done while changing the param-
eters, i.e., the number of cores and the number of clients.

Second, we also demonstrate with the client as Kinit which
is a command for obtaining/renewing TGT ticket in an or-
dinary Kerberos system. These experiments show that the
users of our implementation can be authenticated by same
manner as usual Kerberos authentication. It is very impor-
tant feature since the usability of the system for users does
not compromised and it lowers the barrier of using this sys-
tem.

4. REFERENCES
[1] D. Bogdanov, S. Laur and J. Willemson. Sharemind: A

framework for fast privacy-preserving computations. In
ESORICS 2008, Springer (LNCS 5283), 192–206, 2008.

[2] D. Bogdanov, M. Niitsoo, T. Toft, J. Willemson.
High-performance secure multi-party computation for
data mining applications. Int. J. Inf. Sec. 11(6):
403-418, 2012.

[3] L. Kerik, P. Laud and J. Randmets. Optimizing MPC
for robust and scalable integer and floating-point
arithmetic. In 4th WAHC, 2016.

[4] T. Araki, J. Furukara, Y .Lindell, A. Nof, K. Ohara.
High-Throughput Semi-Honest Secure Three-Party
Computation with an Honest Majority. In ACM CCS
2016, to be appeared, 2016.

[5] ”Circuits of Basic Functions Suitable For MPC and
FHE.” http://www.cs.bris.ac.uk/Research/
CryptographySecurity/MPC/

[6] ”Intel Architecture Instruction Set Extensions
Programming Reference.” http://www.naic.edu/˜phil/
software/intel/319433-014.pdf

1843


	Introduction
	Design for Parallel AES
	Architecture
	SIMD Bit-Slicing and PRNG
	AES Circuit

	Contents of the Demo
	References



