
Mystique: Evolving Android Malware for Auditing
Anti-Malware Tools

Guozhu Meng*, Yinxing Xue*, Chandramohan Mahinthan*, Annamalai Narayanan*,
Yang Liu*, Jie Zhang* and Tieming Chen†

*School of Computer Engineering, Nanyang Technological University, Singapore
†Department of Computer Science and Technology, Zhejiang University Of Technology, China

ABSTRACT
In the arms race of attackers and defenders, the defense is usually
more challenging than the attack due to the unpredicted vulnera-
bilities and newly emerging attacks every day. Currently, most of
existing malware detection solutions are individually proposed to
address certain types of attacks or certain evasion techniques. Thus,
it is desired to conduct a systematic investigation and evaluation
of anti-malware solutions and tools based on different attacks and
evasion techniques. In this paper, we first propose a meta model for
Android malware to capture the common attack features and evasion
features in the malware. Based on this model, we develop a frame-
work, MYSTIQUE, to automatically generate malware covering four
attack features and two evasion features, by adopting the software
product line engineering approach. With the help of MYSTIQUE,
we conduct experiments to 1) understand Android malware and the
associated attack features as well as evasion techniques; 2) evaluate
and compare the 57 off-the-shelf anti-malware tools, 9 academic
solutions and 4 App market vetting processes in terms of accuracy in
detecting attack features and capability in addressing evasion. Last
but not least, we provide a benchmark of Android malware with
proper labeling of contained attack and evasion features.

Keywords
Android Feature Model, Defense Capability, Malware Generation,
Evolutionary Algorithm

1. INTRODUCTION
Malware detection is always one of the central topics in cyber-

security. Anti-malware tools (AMTs) are getting more advanced,
but as a result surviving malware is getting increasingly sophisti-
cated. Generally speaking, the development of AMTs usually lags
behind the advance of new malware, since new malware variants
(similar malware generated by software obfuscation or configuration
techniques) and zero-day vulnerabilities (a weakness that allows an
attacker to exploit the target system) keep emerging every day.

In retrospect, Android malware undergoes a stunningly rapid
increase in a short time of last five years. In 2010, we witness the
industrial age of mobile malware, and also in that year Geinimi was
one of the first found malware that attacked the Android platform

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China
c© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897856

and used the infected phone as part of a mobile botnet [3]. Ever
since then, a larger number of sophisticated mobile malware is
created by attackers due to the prevalence of Android phones. With
regard to the defence side, traditional approaches relying on textual
or hexadecimal signatures [46] are incapable of detecting variants
of existing malware and new ones. To catch up the trend, in research
community, machine learning based approaches [5, 7, 9, 52] and
information-flow analysis based approaches [8, 27, 34] are proposed
to detect obfuscated malware and their variants. Recently, new
attacks (transformation attacks [41, 42] and collusion attacks [28,
46]) are revealed, and they fail the existing detection approaches.
Thus the similar arms race between malware and anti-malware is
unexceptionally observed on Android platform.

Recently, Android malware exhibits a variety of attack behaviors,
including leaking user privacy, escalating privilege without permis-
sion, conducting unknown financial charge, and abusing application
functionality. In real malware, these attack behaviors may coex-
ist in order to increase the damage and success probability of the
attack. Even worse, evasion techniques (e.g., multiple-level obfusca-
tion [41, 42]) are further applied on the code or deployment package
to evade the scanning of AMTs. Hence, the combination of different
attack behaviors and evasion techniques indeed exist in real-world
Android malware [55] — such a fact hinders the understanding of
the reason why AMTs fail in detection.

The main challenge in auditing the AMTs is the lack of the eval-
uation criteria and well labeled benchmark such that we cannot
evaluate and the strength and weakness of AMTs systematically. To
our best knowledge, existing AMT evaluation is based on bench-
marks like GENOME [55] and DREBIN [7], which classify malware
based on families only. GENOME and DREBIN are not suitable for
auditing AMTs due to three reasons: 1) the malware are old and
well recorded in malware repository of AV tools, 2) there is no a
comprehensive coverage of different attacking and evasion tech-
niques, 3) there is no index (or label) to different malware attributes
(e.g., attack behaviors, obfuscation techniques and anti-debugging
techniques), except for (inaccurate) family names. By far, only
one existing work [41] discusses the resilience of different Defence
strategys (DS) against obfuscation techniques.

In this paper, we propose to separate different attack behaviors
and evasion techniques into basic reusable features — to summarize
the attack features and evasion features of malware on Android.
Here, attack feature (AF) means malicious behavior of a certain
attack, which links to implementation of the functional requirements
(intention) of malware. Evasion feature (EF) means the ability of
malware to evade the scanning of AMTs, including a variety of
code complication and transformation techniques that change no
functional requirements of malware. In this way, we can develop a
meta model for Android malware by modularizing various attack

365

http://dx.doi.org/10.1145/2897845.2897856

features into the various building blocks. Hence this meta model
allows us to generate malware variants to cover different AFs and
EFs, and evaluate how different DSs react to each individual feature
as well as their different combinations.

Technically, we start with detecting and analyzing the malicious
code among the similar yet different malware variants in an Android
malware sample. We then modularize the malicious code from
different malware families into different AFs, and identify evasion
techniques into EFs. Once features are modularized, we adopt the
concept of Software Product Line Engineering (SPLE) and build
a feature-oriented architecture [31] as the malware meta model to
capture the different features and their constraints inside malware.

With the malware meta model, we apply a multiple-objective
evolutionary algorithm (MOEA) to mimic the evolution of the mal-
ware. MOEA performs gene crossover (i.e., exchanging features of
two samples) and mutations (i.e., selecting or deselecting feature
under mutation) on the current malware generation to produce next
malware generation. To guide the evolution to generate better mal-
ware, we define the fitness function for selecting next generation by
maximizing the number of attack behaviors, minimizing of evasion
techniques needed and the expected detection rate.

Finally, we develop the proposed malware generation process into
a tool called MYSTIQUE, and use it to audit 57 off-the-shelf anti-
malware tools and 9 academic solutions in terms of detection ratio
and capability with 10,000 generated malware. With the experiment
results, we test four commonsense hypothesis of AMTs. To check
the capability of online vetting of app stores, we upload 12 generated
malicious apps onto 4 mainstream app stores. In most cases, our
malware passes the online vetting process. Furthermore, we propose
some possible enhancements for the existing malware detection
approaches.

To sum up, we make the following contributions:
• We recognize the Android malware as AFs and EFs and present

them in a meta model. We consider and maintain the traceability
between the features and their corresponding code in MYSTIQUE.

• Based on the meta model, we develop an SPL architecture to
generate new Android malware by an MOEA. Our approach is
implemented in an automated framework named MYSTIQUE.

• We survey and evaluate the state-of-the-art AMTs using our gener-
ated malware. The experiments show that the existing AMTs are
quite weak at detecting these new malware — a detection ratio
of less than 30% on average. We propose the countermeasures in
order to detect the malware generated by MYSTIQUE.

• We have generated over 10,000 samples of Android malware by
combining different attack and evasion features. They can serve
as a benchmark to assess detection capabilities of AMTs, as they
cover different representative combinations of features, which
are missing in the current malware benchmarks.

2. BACKGROUND

2.1 Software Product Line Engineering
Software product line engineering (SPLE) is a paradigm of de-

veloping a set of similar software. SPLE adopts feature-oriented
domain analysis [31] for requirement analysis and builds core asset
architecture for reuse [17]. Here, features are attributes of system
and requirements of end-users. Technically, SPLE is a two-phase
approach composed of domain engineering and application engi-
neering. The task of domain engineering is to build the software
product line (SPL) architecture consisting of a common program
base and various variant features, while the application engineering
focuses on derivation of new products by different customizations
of variant features applied onto the common program base.

The concept of feature model in domain engineering is to repre-
sent the features within the product family as well as the structural
and semantic (require or exclude) relationships between those fea-
tures [31]. Since the proposal of SPL, feature model has even been
characterized as “the greatest contribution of domain engineering to
software engineering” [18].

A feature model is a tree-like hierarchy of features. The structural
and semantic relationships between a super (or compound) feature
and its subfeatures can be specified as:
• Mandatory – A mandatory feature must be selected if its super

feature is selected,
• Optional – An optional feature is optional to be selected,
• Or – If the super feature is selected, at least one of the subfeatures

must be selected,
• Alternative – If the super feature is selected, exactly one among

the exclusive subfeatures should be selected.
Besides the above tree-structure constraints (TCs) between features,
cross-tree constraints (CTCs) are also often adopted to represent the
mutual relationship for features across the feature model. There are
three types of common CTCs:

• f1 requires f2 – The inclusion of feature f1 implies the inclusion
of feature f2 in the same product.

• f1 excludes f2 – The inclusion of feature f1 implies the exclusion
of feature f2 in the same product, and vice versa.

• f1 iff f2 – The inclusion of feature f1 implies the inclusion of
feature f2 in the same product, and vice versa.

In SPLE, a feature model (e.g., that of Linux kernel [48]) may
even contain thousands of features. Selecting an optional set of
features, which satisfies the constraints (i.e., TCs and CTCs) among
features and attains the optimisation of product attributes, is not
a trivial problem. Basically, selecting such an optional set is a
searching problem, to address which, in SPLE community, the
multiple objective evolutionary algorithms (MOEAs) are commonly
adopted. In SPLE, the desired products have a set of attributes (e.g.,
performance, costs and defects) to be optimized, which means multi-
objective optimization is needed in product design when competing
features exist. IBEA (Indicator-Based Evolutionary Algorithm), has
been proved to the best MOEA for solving the problem of optimal
feature selection [44, 50].

2.2 Overview of Android Attacks
Application cloning has been observed in Android application

market by industrial developers and the academic community [13,
54]. In GENOME [55] and DREBIN [7], many malware samples
share the common attack behaviors. We identify five types of threats
from GENOME malware, namely privacy leakage, privilege escala-
tion, financial charge, abuse of functionality, and ransomware. In
this study, we focus on the modeling and generation of the malware
of privacy leakage. The rationale is that this type of malware consti-
tutes 78.7% in GENOME, and most of existing academic prototypes
(e.g., FLOWDROID [8], DROIDSAFE [27]) are proposed to address
privacy leakage.
Privacy Leakage. A damage of this type of attack is the possibility
of exposing users’ sensitive information such as account credentials,
preferences and contacts. In Android, specifically, sensitive informa-
tion that can be leaked is twofold — contacts, messages, personal
information available on social networks, and financial information
directly accessible by malicious users. These are examples of ex-
plicit privacy, which is mentioned in [47]. Another kind of privacy
is implicit privacy. Implicit privacy denotes the information that
malicious users cannot directly use — the attacker has to analyze
it in order to reveal valuable information. For example, Schlegel

366

DroidKungFu

attack IMEI

Packaging

PHN_NUM INS_APP HTTP_POST READ_PHN_STE INTERNET DATA_FLOW

LOCATION ACC_LOCATION INTERNET DATA_FLOW

M1 M2

Code
Assembly

Evasion
Application

evasion

source sink perm DATA_FLOW

IMEI

PHN_NUM

INS_APP

INS_APP HTTP_POST

INTERNET

READ_PHN_STE

ACC_LOCATION HTTP_POST LOCATION

Step 1. Step 2.

Step 3.

Figure 1: A running example to illustrate the generation of new variant of DroidKungFu

malware

attack

configuration

source sink

trigger

main listener observer broadcast mandatory

optional

alternative

or

requires

excludes

evasion

data control Transformation behavior

permission Intent filter

Figure 2: The partial feature model of privacy leakage malware

et al. [45] present an approach that can gather audio data from
on-board sensors and use it to recognize commercial credentials.

As introduced above, the same type of attacks may have various
implementations or adopt different channels to conduct the attacks.
We regard these different implementations of the same type of at-
tacks as attack features. For example, the attack features of privacy
leakage include a mandatory information source, an optional flow of
information, and a mandatory sink of information. The implementa-
tion of accessing information source may refer to some finer-grained
attack features, e.g., getting the phone number by calling method
getLine1Number. Details and more examples can be found in Section
3 and Fig. 1. To sum up, various attack features serve as the basic
building blocks for constructing malware.

In Section 7, we evaluate the state-of-the-art AMTs, including
academic prototypes and anti-virus tools, with our generated mal-
ware of privacy leakage. Note that our approach works for all types
of Android malware, as long as attack and evasion features of a
certain attack type are identified and modularized.

2.3 Adopting SPLE for Malware Generation
Identifying common attack features among Android malware

enables feature-oriented domain analysis (FODA) [31], which is a
domain analysis method to decouple and model software systems
for better reuse and reconstruction. FODA adopts the feature model
(§ 2.1) to analyze the commonality and variability inside a software
family, and guide the variant generation for the family.

Malicious apps in an Android malware family usually share much
of source code. To better understand the behaviors of Android
malware, we perform the feature-oriented domain analysis on each
malware family to identify and model their attack features (§ 4.1).
Once the attack features are identified and modularized, the state-
of-the-art development paradigm, SPLE, naturally comes into the
picture for large-scale and flexible malware generation.

With the generated malware via SPLE, we can systematically
evaluate how and to what extent AMTs and the associated evidences
can help detect different attack or evasion features. Beyond that, we
can audit these AMTs and their detection mechanisms behind.

3. MYSTIQUE OVERVIEW
This section explains the high-level idea of our approach MYS-

TIQUE and depicts the major steps of our approach with a running
example. In addition, we present the potential challenges in this
study.

3.1 Mystique Overview
We show the overview of the malware generation using Fig. 3.

The input of MYSTIQUE includes the original malware collection
(i.e., GENOME [55] in this work), and the identified meta model
with the code snippets of features. The output is a collection of
generated malware samples that are labeled with features inside.

Here, we briefly describe the work flow. First, the attack features
(AF) and evasion features (EF) used in the original malware collec-
tion should be identified and modularised (§ 4.1). Attack features
are the requirements of malware from the prospective of attackers,
and atomic functionalities from the prospective of SPL. They are the
fundamental composition of activities (i.e., behaviors) of apps. Af-
ter finishing the feature-oriented domain analysis (FODA) for the 49
malware families in GENOME, we remove the duplicated AFs and
add the remaining AFs in the feature model shown in Fig. 2. Mean-
while, the corresponding code of these AFs are also modularised in
separated methods or classes, in such a way that the architecture of
our malware product line is built up. EFs are mainly from evasion
techniques in flow and code. EFs in flow include multiple ways
from source to sink, such as Lifecycle [8] and ICC [38], and EFs in
code are inspired by the transformation of code [41, 42]. Once the
features in our FODA are available and the corresponding feature
code are modularized, we adopt the Indicator-Based Evolutionary
Algorithm [44, 50] to generate malware with the three objectives:
aggressiveness, evasiveness and detectability (§ 5).
Running Example We take DroidKungFu in GENOME as an ex-
ample. DroidKungFu belongs to malware of privacy leakage, which
steals sensitive information (e.g., IMEI code, phone number). Fig. 1
shows the feature model for malicious behaviors contained in Droid-
KungFu. The feature model consists of necessary features for launch-
ing attacks as well as their relationship in between. For example,
DroidKungFu obtains IMEI code and phone number, which belong
to the feature Source. Feature Source has 4 optional sub-features,
among which feature IMEI and PHN NUM require permission feature
READ PHN STE that relates to permission (§ 4.1).

After obtaining the feature model, we encode the attack features
(malicious behaviors) as chromosome in gene. Specifically, each bit
of the chromosome represents the existence of an attack feature —
1 for existent and 0 for non-existent. The crossover operation and
mutation operations are performed on the chromosome during the
evolution. In step 2 of Fig. 1, we mutate features IMEI and PHN NUM
to feature LOCATION. According to feature dependency, the original
permission feature READ PHN STE for IMEI is not required any more,
while feature LOCATION acquires permission feature ACC LOCATION.
After that, the gene of a new malware variant is produced.

In step 3 of Fig. 1, the code of each feature in gene will be
assembled. Details on assembling triggers and manifest file are
in Section 5. In addition, to audit the capabilities of AMTs, we
also employ obfuscation to evade the detection, then one malware
variant is created and can be used for auditing AMTs. Owing to the
gene of the generated malware variant, we can evaluate what feature
combinations can evade what defence strategies.

367

3.2 Technical Challenge
To generate the sound and workable malware, we face the follow-

ing technical challenges:

• C1: Construction of feature model. A variety of features are
contained in malware, and used in different ways. It is difficult
to identify and extract the representative features in malware.
Section 4.1 addresses this challenge.
• C2: Malware measurement. With the feature model (i.e., the

meta-model of malware), we still need some goals to guide au-
tomated malware generation. Thus, we define three objectives:
aggressiveness, evasiveness and detectability for measuring mal-
ware (§ 5). Since these objectives are competing (e.g., highly
offensive malware is generally more detectable), we use a MOEA
to select feature from feature model in Section 5.

• C3: Validation of generated malware. As the malware is gen-
erated according to the feature model, we want to prove their
maliciousness — whether malicious behaviors can be triggered
and carried out on real Android devices. To address this chal-
lenge, in Section 7, we conduct the following experiments. For
the attack of privacy leakage, we set up a dummy server or device
to receive the sensitive information sent from malware.

4. FEATURE-ORIENTED DOMAIN ANAL-
YSIS OF ANDROID MALWARE

We identify the common building blocks for Android malware
as attack features and evasion features, and propose to use feature
model as the meta model to capture the malware. Different from
focusing on requirements in malware ontology analysis [37], we
consider and maintain the traceability between the features and their
corresponding code in our model. One partial feature model of
malware of privacy leakage in GENOME is shown in Fig. 21. Note
that feature-oriented domain analysis relies much on the domain
knowledge of security experts, and only feature and their code
relevant to attacks are manually modularized. We totally identify
266 attack features and 14 evasion features. Note that our feature
model is not a complete one, but can be extended to covering new
attack behaviors and evasion methods.

4.1 Attack Feature
Attack features refer to features that are generally relevant to the

malicious behaviors of a certain type of attack. They can be further
categorized into the following three types:
Trigger Feature. Trigger defines the entry points for malicious
attack behaviors. Triggers are roughly categorized into GUI-based
and non GUI-based [51, 52]. Since non GUI-based triggers are not
easy to be discovered by users, thereby more suspicious, we only
consider non GUI-based triggers without the interaction with end
users. There are four kinds of non GUI-based trigger features are
mainly identified in GENOME: main, broadcast, listener and observer.
The trigger main denotes that malicious behaviors are triggered from
the startup; malicious behaviors can be triggered from a broadcast
message by registering a BroadcastReceiver; malware can also register
a listener to listen the changes on states (e.g., location); malware can
register an observer on a ContentProvider to listen to its changes.
Configuration Feature. Two kinds of configuration features are
relevant to malicious attack behaviors in malware: permission and
intent filter. Android provides a permission-based mechanism
to avoid the abuse of system sensitive operations, e.g., invoking
sensitive Android APIs. Many malicious behaviors in malware
1The complete feature model of Android malware is available in our web-
site [1].

require certain permissions to attain attack goals. For example,
it needs the permission android.permission.READ PHONE STATE to
obtain the IMEI code of the device. Feature Intent Filter defines
the acceptable Intent that can be captured by Android components.
For example, if one BroadcastReceiver is assigned with intent filter
android.provider.Telephony.SMS RECEIVED, it can capture broadcast
messages indicating an incoming SMS.
Behavior Feature. Attack trigger and configuration features are all
assistant to the core attack features — behavior features. In an attack
of privacy leakage, there are mainly two types of features: Source
and Sink. Source is responsible for stealing sensitive information of
device, and sink is responsible for sending out sensitive information.
Based on the manual domain analysis of GENOME, 11 kinds of
source features and 2 kinds of sink features are identified [1].

Note that the partial feature model in Fig. 2 mainly illustrates the
high-level organization of these features. Each leaf feature in Fig.
2 may have several subfeatures, e.g., feature Source has 11 variant
sub-features in an Or relationship, and each variant feature may
also have several implementation features (modularized code) in an
Alternative relationship. Interested readers can refer to Section 5
and our tool website [1] for more details.

4.2 Evasion Feature
Information flows from source to sink in privacy leakage attack

can be obfuscated in three different ways as follows:
Control based Evasion. Malicious behaviors can be obfuscated
by complicating the control flow of the attack. Android provides
an amount of callback functions to guarantee implicit control flow.
Besides, each component in Android has its own lifecycle together
with a set of built-in APIs for lifecycle management. In an attack of
privacy leakage, the control flow usually involves the interactions
between different components in Android. Thus, it is feasible for
the attacker to hide the malicious code into the different stages of
components and trigger it under certain scenarios. For example,
each Android component has a life cycle, the method invocation
sequence of which is defined in the framework layer of Android.
A certain method will be invoked if the component is in a specific
state. In Inter-Component Communication (ICC), there is also one
mechanism for implicit control flow if an Intent object is not assigned
with a determined class [27, 38].
Data based Evasion. Attacks like privacy leakage must conduct
data transmission. Such transmission can happen between different
methods, classes, apps, or even different channels (i.e., external
persistent storage and memory).
• Persistent Storage. On Android, applications may exchange

data through persistent storage. There are three types of persistent
storage provided by Android: file, shared preferences and SQLite
database. They can be used for applications or components to
exchange data — they provide an implicit data flow from one
component to another.

• Memory. Data that is temporarily stored in a specific memory
location (e.g., an object in the Java heap) might be accessed
globally. As a consequence, once there is a component or method
to fetch data from that memory location, it establishes a data flow
from where the data is stored to where it is fetched.

Both. Attacks can be further complicated by combining the ob-
fuscations on both control and data flow. As Intents are the main
vehicle for app communication, they can be used for a purpose of
advanced obfuscation. One intent can be either explicit or implicit.
Explicit intents have a specific class to start, while implicit intents
do not specify the corresponding class, and the system will select
the most well-suited class or application to execute. An explicit
intent can only invoke a specific component, which is defined in

368

the constructor, or by calling setComponent(ComponentName) or set-
Class(Context, Class); an implicit intent can be received by many
well-suited components. It appoints potential receivers by setting
an action in the constructor or setAction(String) (Meanwhile, it can be
instrumented with a data type to restrict its receivers). In addition,
an Intent object can be bundled with some data by invoking putExtra,
which generates a data flow from the caller component to the callee
component. Therefore, Intent can influence the execution order of
the app and also the data flow if enclosed with extras.

In addition, we use the transformation attacks [41, 42] to compli-
cate and transform the source code at the implementation level.
Transformation Attacks. We have selected 12 types of transfor-
mation attacks, such as identifier renaming, data encryption, code
reordering, to obfuscate the generated malware. Different from the
previous evasion techniques, the transformations cannot change the
behaviors or flows from source to sink. It is a kind of non-behavior
evasion technique since the transformations only change the lexical
information or code structure. However, by adding a lot of noise
to the previous code, it may bypass the detection of AMTs which
consider code structure or lexical information. With the reordering
of code, it may break some AMTs based on static analysis.

5. MULTI-OBJECTIVE GUIDED MALWARE
GENERATION

This section is devoted to the Android malware generation process
in MYSTIQUE. As shown in Fig. 3, MYSTIQUE takes a malware
feature model as the input and generates various malware variants.
During the process, each malware is encoded as a DNA sequence
based on their values for AF and EF in the feature model. The
malware evolution is an iterative process in accordance with the
principle of survival of the fittest, where we randomly choose an
initial population of malware satisfying the input feature model, and
select better malware in the each generation afterwards based on the
fitness function, i.e., the malware measurement function in our case.
The four steps in each iteration of malware evolution are as follows.

• Step 1: Feature Selection. Given the previous generation n of
malware, step 1 is to produce new malware by applying crossover
and mutation operations on malware from generation n. Consid-
ering the three objectives, the IBEA is used to choose the fittest
ones in each iteration.

• Step 2: Code Assembly. To make the malware run on a real
device, MYSTIQUE conducts to validate the assembled code and
package it into a deployable app. It includes the setup of triggers
that act as entry points of malicious behaviors, the configuration
of manifest file, and malware packaging.

• Step 3: Evasion Application. After evasion features are selected,
the corresponding evasion techniques are applied. Note that
the evasion is based on the source code, without changing the
malicious intent or behaviors of the constructed malware.

• Step 4: Objective Evaluation. In this step, we calculate the
objective functions and choose the fittest for the next iteration.
We also need to check whether the evolution is finished due to
convergence of EA or reaching the upper limit of iteration times.

The selected features of a feature model is encoded using an
array-based chromosome as shown in the step 2 of Fig. 1. Given
a chromosome of length n, array indices are numbered from 0 to
n−1. Each feature (no matter AF or EF) is assigned with an array
index starting from 0. Each value on the chromosome is zi such
that zi ∈ Z ∧ zi ∈ {0,1}, where 0 (resp. 1) represents the absence
(resp. presence) of the feature. Given a feature model M, we define
a function fM : Fea(M)→ {Z,⊥} that maps each feature f of the

feature model M to an array index. fM(f1) =⊥ denotes that there
is no array index that is assigned for the feature f1. Similarly, we
define fM−1 : Z→ Fea(M) as a function that maps a given array
index to the feature it represents. Thus, gene crossover is just the
array exchange at a certain index, and gene mutation is bit flipping
of the value at a certain index of the array.

To serve as the goals of malware generation, we propose three
objective functions in the evolution of malware: aggressiveness, eva-
siveness and detectability. As the results of the arms race, malware
are getting more aggressive with minimum evasion features needed,
but less detectable.

Given a chromosome x, we represent it as a bit vector of attack
and evasion features, where {f a

1 ...f
a
n } denotes the set of n attack

features and {f e
1 ...f

e
m} denotes the set of m evasion features. The

objective functions are defined as follows:
Definition 1 Aggressiveness means the severity of damages that
malware may cause to users, which is measured by the number of
contained AFs and formally defined as

F1(x) = ∑
n
i=1 ‖f

a
i ‖ (1)

where ‖f a
i ‖ returns 1 if f a

i is selected and returns 0 if not.

Definition 2 Evasiveness means the efforts to hide the malicious
intent and evade the detection. Attackers want to minimize such
effects of using evasion techniques to evade detection. It is measured
by the number of contained EFs and defined as follows

F2(x) = ∑
m
i=1 ‖f

e
i ‖ (2)

where ‖f e
i ‖ returns 1 if f e

i is selected and returns 0 if not.

Given a chromosome x and the set of AMTs Sd , {d1...dt}, intro-
duced in Section 6, we have the following definition for the last
objective function:
Definition 3 Detectability means the difficulty in detecting the mal-
ware. It can be measured by detection results of AMTs and defined
as follows

F3(x) = (∑
|Sd |
i=1 Di(x))/ | Sd | (3)

where Di(x) returns 1 if the malware of x is detected by the tool di
and | Sd | denotes the number of the tools.

5.1 Feature Selection via IBEA
Rather than encode three objectives into one weighted fitness

function, we treat all the three objectives equally and solve Multi-
objective Optimization Problems (MOPs) using the Pareto domi-
nance relation [30].

A k-objective optimization problem could be written in the fol-
lowing form2 (in our case, k = 3):

Minimize ~F = (F1(x),F2(x), ...,Fk(x)) (4)

where ~F is a k-dimensional objective vector and Fi(x) is the value
of ~F for ith objective.
Definition 4 Given two chromosomes~x,~y ∈ Bn and an objective
vector ~F : Bn→ Rk,~x dominates~y (~x≺~y) if

∀ i ∈ {1, ...,k} Fi(~x)6 Fi(~y) (5)

∃ j ∈ {1, ...,k} Fj(~x)< Fj(~y) (6)

otherwise~x 6≺~y
2Evasiveness and detectability need to be minimized, but aggressiveness
needs to be maximized. In implementation, maximizing is minimizing the
negative value of the objective.

369

M1

(1) Feature Selection (2) Code Assembly (3) Evasion Application (4) Objective Evaluation

Evasiveness

Aggressiveness

Detectability

F1

F2

F3

F4

M2

M3

M4

crossover
M5

mutation

Multi-objective guided

input output

F1

Feature model

F2 F3

F4 F5 F6 M1

A
gg

re
ss

iv
en

es
s

Evasiveness

M2

M3
M4 M5

Malware variants
Implementation

I1 I2 I3 I4

getSysService
getDevId

Code Template

Figure 3: Multi-objective guided malware generation

Algorithm 1: Multi-objective guided malware generation
Input: featureModel: the feature model of Android malware, maxIter:

the maximum number of iterations of the generation process,
popSize: the size for each generation

Output: allMal: a list of malicious apps with different feature
combinations

1 allMal ← ∅;
2 for 1 to maxIter do
3 newGeneration ← ∅;
4 if allMal == ∅ then
5 for 1 to popSize do
6 malware ← randomFeatureSelection(featureModel);
7 newGeneration← newGeneration∪{malware};

8 else
9 for newGeneration.size()< popSize do

10 select i, j ∈ [1, |allMal|];
11 malware = ibea crossover(allMal[i],allMal[j]);
12 newGeneration← newGeneration∪{malware};
13 select k ∈ [1, |allMal|];
14 malware = ibea mutation(allMal[k]);
15 newGeneration← newGeneration∪{malware};

16 for mal ∈ newGeneration do
17 evaluate(mal);

18 for mali ∈ newGeneration do
19 if ∃malj | malj ∈ newGeneration ∧ i 6= j • malj ≺ mali then
20 newGeneration← newGeneration\mali ;

21 if newGeneration⊂ allMal then
22 break;

23 allMal← allMal∪newGeneration;

24 return allMal;

Definition 5 Given chromosomes~x and a set of chromosomes S~x,~x
is non-dominated iff

∀~xi ∈ S~x ~xi 6≺~x (7)
Algorithm 1 shows how IBEA guides the feature selection. The

input of this algorithm is the feature model of Android malware, the
number of iterations for the generation process, and the population
size. In the beginning, it creates the initial population, randomly
selecting features in the feature model (line 4 to 7), otherwise we
can generate new malware derived from the existing malware (line 9
to 15). First, it selects two candidates with a probability and do
an ibea crossover operation (line 11) to generate a new malicious
app. Second, it selects one candidate in a probability and do an
ibea mutation operation (line 14) to generate a new malicious app.
Once the generation is created, all apps in this generation are evalu-
ated by the proposed three objectives to get the fitness value (line 16,
17). The algorithm utilizes the Pareto dominance relation to remove
malware that is dominated by others in the evaluation (line 18 to
20). The algorithm will stop once the selected features converges
(line 21) or exceeds the maximal times of iteration (line 2).

5.2 Code Assembly
In this section, we elaborate how to assemble code according to

the selected features. The input of this step is a list of features. The
output of this step is the assembled source code of the malware.

The translation from selected features to corresponding source
code is inspired by Aspect-Oriented Programming (AOP) [33]. One
feature has at least one implementation. For example, the source
feature TELEPHONY::IMEI can be implemented by invoking the
Android APIs—getSystemService, getDeviceId, in sequence. All the
implementations are integrated into a candidate app, and we se-
lect specific implementations in terms of the selected features to
generate a malicious app. Meanwhile, in the code generation, we
also write scripts to automatically check constraints from feature
dependencies and context, and generate the configuration files, such
as AndroidManifest.xml.
Constraints in Assembly. To assure the soundness and validity of
the assembled code, we have the following rules:
• Feature dependency constraint. Feature model has features

dependencies inside, which are constraints to be satisfied in code
assembly. For example, the permission feature android.permission.
READ PHONE STATE is needed for feature getDeviceId. When
a component attempts to start an activity via ICC, in order to
maintain the activity list in the history stack, it has to set the flag
FLAG ACTIVITY NEW TASK.

• Context constraint. We consider extra constraints to be verified
in code assembly, specifically, some operations can only occur in
a specific context. For example, the incoming SMS message is
only accessed in the context of onReceive, and the receipt of ICC in
a service is onStartCommand. All these constraints are not feature-
relevant at requirement level, but specific to implementation. All
these constraints should be satisfied to avoid runtime exception.

5.3 Evasion Application
For information leakage, AFs and EFs are orthogonally separated,

which implies the independence between the choice of AFs and EFs.
After AFs and EFs are selected by IBEA, the EFs are categorized
into two types: flow based ones or transformation based ones.
Evasion based on source-sink flow. The evasion is applied in
constructing the code, and the purpose is to complicate the flow
between the source and the sink. One malicious behavior may
stretch through multiple components. Therefore, we employ the
evasion features (§ 4.2) to obfuscate flows. For example, Android
Lifecycle is used to complicate control flows and ICC can be used
to complicate both control and data flows.
Evasion based on transformation. This evasion is applied after the
step of code assembly. DROIDCHAMELEON can directly work with
the deployment package of Android app. For the 12 transformations
mentioned (§ 4.2), we provide 12 EFs. If EFs are selected by IBEA
in step 1, we will later apply the corresponding transformations.

5.4 Objective Evaluation
According to Definition 1-3, we calculate the fitness value for

each generated malicious app. The fitness value is used as the
guidance to the feature selection in the next generation. We inspect
all apps in the new generation. If no new feature combination is
produced, the evolution process converges and would be terminated

370

Knowledge Base Android Ecosystem

*.java

*.xml

traces messages

…

Collector Detector
evidence

Mal. rule, Sig….

malware

Figure 4: The working process of an AMT

as line 21 in Algorithm 1. Finally, we get the collection of new
generated malware that serves the benchmark for auditing AMTs.

6. BRIEF ON ANTI-MALWARE TOOLS
In this section, we explore the capabilities of off-the-shelf AMTs.

Fig. 4 shows the working process of a typical AMT. Basically, it
contains Collector which collects evidence (§ 6.1.1) from Android
ecosystem. The evidence is sent to a Detector which determines
whether the app is malicious or not. Generally, the detector makes
the decision based on Knowledge Base (§ 6.1.2). Additionally (as
shown by dashed line), the confirmed malware can be supplemented
into the knowledge base to update the knowledge base. Finally,
according to our survey and testing on AMTs, we list detection
mechanisms adopted by mainstream AMTs in Section 6.2.

6.1 Detection Mechanism

6.1.1 Evidence Collection
AMTs need to collect and extract evidence as proof to identify

Android malware. Evidence can be collected from various sources
in Android ecosystem, ranging from different program entities (e.g.,
AndroidManifest.xml and class files) to various program output of
dynamic execution.

The source of evidence are threefold: manifest file, binary code
and runtime information. In the manifest file, AMTs can collect as
evidence the information: used permissions [7, 21, 43], hardware
components [7], Android components [7], and Intent filters [7];
AMTs can extract from binary code Android APIs [7, 9, 25, 27],
constant strings [7, 51], control flow [6, 23, 27, 43], data flow [20,
23, 27], and program dependency graph [52]; Some AMTs may run
apps in a real device or an emulator to collect the execution traces
of Android apps [11]. As malware often launches attacks via HTTP
or SMS, [19] collects the HTTP behaviors to fingerprint Android
apps. Interested users can refer to [1] for more details.

As the attack of privacy leakage involves both data and operations,
some attack hints can be found in all the above types of evidence.
Some other types of attack are more closely relevant to some certain
types of evidence, e.g., the attack of functionality abuse is mainly
behavior-oriented and highly identifiable based on AA and AB.

6.1.2 Knowledge-base Detection
The knowledge base is the basis and criteria of distinguishing

malware from benignware. After obtaining the evidence, AMTs that
use the knowledge base confirm malware by the following strategies:
Signature of Known Malware (SKM). An abundance of malware
collections [2, 7, 55] is publicly available for industrial and academic
research. Such abundance of malware enables to fast detect malware
based on signatures or features. For example, DROIDSIFT extracts
behavior graph from known malware. Many commercial anti-virus
tools use the hash value of malware as the signature [22]. However.
approaches based on exact matching with known malware (e.g.,
comparing hash value) are not resistent to new variants.
Attack Pattern (AP). To overcome the limitation of signature based
detection, existing AMTs can leverage the knowledge of attacks,
including attack targets, attack techniques, attack camouflages and

so forth. We herein call it attack pattern [14, 20] — generally, some
form of modeling of attack behaviors with aforementioned evidence.

6.2 Anti-malware Tools & Hypothesis
According to the general analysis techniques employed in detec-

tion, AMTs can be categorized into the following four types. Some
tools, such as [9, 25, 26, 52] that use both of static analysis and
machine learning, are categorized into machine learning approach.
Machine Learning. Owing to the popularity and availability, we
mainly analyze and audit the following machine learning approaches:
DREBIN [7], ADAGIO [26], ALLIX et al. [6] and REVEALDROID [25].
State Analysis. Considering the efficiency and ease of setting up,
most of existing approaches rely on static analysis. Since we con-
struct malware of privacy leakage, we consider the following open-
source detection tools targeting privacy leakage: SCANDROID [24],
FLOWDROID [8], DROIDSAFE [27] and ICCTA [34].
Dynamic Analysis. Approaches based on dynamic analysis can
be accurate at rumtime, but they face the difficulty in triggering
malware and the scalability issue. Besides, they are hard to set up.
We only audit the famous tool TAINTDROID [20] on this side.
Anti-virus Tools. We use the online service of VIRUSTOTAL [4] to
audit the state-of-the-art Anti-virus tools. VIRUSTOTAL provides
the recent version of 57 anti-virus tools.

In this study, we focus on evaluation of different detection mech-
anisms rather than comparison of the particular tools. The above
list of AMTs may not be complete, but we try to cover the existing
detection mechanisms. Before auditing AMTs, We propose the
following four commonsense hypothesis :

Hypothesis 1 Mainstream AV tools, which rely on signature or
pattern based approaches, cannot detect the variants of the existing
malware, even those with similar attack features.

Hypothesis 2 Evasion features in privacy leakage, e.g., flow com-
plication, can help the malware to evade the detection, despite which
detection approach is used by the AMTs.

Hypothesis 3 AMTs based on dynamic analysis should be more
accurate than those based on static analysis or machine learning,
regardless of the time and the difficulty in setup.

Hypothesis 4 The human check of malware in online app store,
involving both static and dynamic analysis, is the most complete
and sound solution to detect malware in reality.

7. MALWARE AND AMT EVALUATION
MYSTIQUE is implemented in about 12K lines of Java code.

Moreover, test scripts written for experiments are of 1K lines of
Shell and Python. All the experiments are conducted on a Ubuntu
14.04 machine with Intel Xeon(R) CPU E5-16500 and 16G memory.
In this section, our experiments are aimed to answer the following
research questions:

RQ1. Are the modularized AFs and EFs valid? Is the generated
malware valid and workable?

RQ2. Can we use the generated malware to audit AMT? Are the
Hypothesis 1 to 4 in Section 6.2 accepted or rejected?

RQ3. Is our generated malware representative? How useful is
MYSTIQUE in generating malware?

7.1 Evaluation Subjects
To evaluate the effectiveness of MYSTIQUE and the defense ca-

pabilities of AMTs, we generate multiple sets of malicious apps
for different evaluation targets with MYSTIQUE. The malware is
grouped based on its attack targets, and covers multiple attack and

371

evasion features. On the other hand, we use the malware to test
the defense capabilities of AMTs, especially, the state-of-the-art
public AMTs introduced in Section 6.2. The evaluation subjects are
described in the following two aspects.
Offence: to evaluate the strength of the malware generated using
MYSTIQUE. Each malware sample has at least one attack target,
which is listed in Section 4.1. We give feature labels for malware to
assess the attack capabilities. All the features used in MYSTIQUE
feature model are manually summarized from the 1,260 malware
samples in GENOME. Totally, we have 266 attack features and 14
evasion features in our feature model (§ 4.1). We sketch a diagram
in Fig. 5 of the cumulative distribution for each kind of AF defined
in GENOME. Since EFs are difficult to be categorized from the code,
we do not show the distribution of EFs.
Defense:. to evaluate the four types of tools (§ 6.2) to cover a
complete protection from three aspects: untrusted app analysis,
install-time checking, and continuous runtime monitoring [49]. We
need an initialization for machine learning and dynamic analysis
tools. For machine learning tools, we select all 1,260 malware
samples in GENOME, and 1,260 benign apps from Google Play
as their training set. For dynamic analysis tools, we implement a
driver in Python to simulate all possible triggers in our scope, e.g.,
starting an app, receiving an SMS message, changing the geography
location. Interested readers can refer to the trigger list in [1].

7.2 RQ1: Validity of Generated Malware
We validate the generated malware from two aspects.

Proof of Program Synthesis. We assure that the flows of privacy
leakage in malware are logically true. In detail, we verify the two
phases of the automated malware generation: p1, feature selection
(§ 5.1), and p2, transformation from feature model to code (§ 5.2).

• Proof of p1. In the process of feature selection, we select appro-
priate candidate features, conforming to the constraints in the
feature model. It guarantees there are sufficient and necessary
features to construct malware.

• Proof of p2. Constraints on the unique runtime environment
of Android (§ 5.2) should be satisfied. For example, consuming
operations in Android apps cannot be executed in the main thread,
and hence we have to create a child thread to execute consuming
operations. In code assembly, we write scripts to make sure all
the implementation constraints are satisfied.

To sum up, for given features, this step is to assure that all the
requirement and implementation constraints are satisfied.
Malware App Validation. The last step is to valid the final malware
app to test whether it can leak privacy information. To this end, we
set the target URL and phone number to our honeypot that the
information would be sent to. We use the running example to
illustrative the validation process. We generate a malicious app
using the features of malware in the running example (Fig. 1). The
selected features are as follows:

Triggers-MAIN::STARTUP
Sources-TELEPHONY::IMEI, TELEPHONEY::PHONE NUMBER

Sinks-HTTP::APACHE POST

(dependencies) PERMISSION::READ PHONE STATE

We set the target URL to our honeypot web site, in which there
is a responding web page written in PHP to store the received
message from the generated malware. Since there are 30 types of
sources in the feature model, we use MYSTIQUE to generate 30
malicious apps accordingly, each of which contains one kind of
sources. For simplicity, we construct one flow that satisfies the
constraints defined in the feature model for the privacy leakage, by
selecting one satisfiable trigger and sink, and setting up the acquired

Table 1: Detection ratio of privacy leakage malware in GENOME

Malware Family # Samples Detection Ratio (%)
DA SA ML AV

DroidKungFu3 309 0 53.7 100 70.2
AnserverBot 187 0 51.0 99.7 74.7
BaseBridge 122 0 60.7 99.2 73.0
DroidKungFu4 96 0 10.2 100 70.3
Geinimi 69 0 40.1 99.3 71.9
Pjapps 58 0 45.6 98.9 71.6
KMin 52 0 37.8 100 72.0
GoldDream 47 0 55.6 100 70.4
DroidKungFu1 34 0 60.2 100 75.6
DroidKungFu2 30 0 67.0 100 73.7

permissions. We execute them on a physical Android device. Our
honeypot successfully collects all sensitive information sent by these
malicious apps.

7.3 RQ2: Auditing of AMTs
In this section, we aim to evaluate the AMT using the generated

malware and test the four hypothesis.
First, we test the deployed AMTs on GENOME malware as the

baseline understanding of AMTs. Note that we only choose mal-
ware with privacy leakage attack, which contains 78% of the 1,260
samples in GENOME. The results are presented in Table 1, where
machine learning tools and anti-virus tools perform well in detecting
existing malware. As the dataset GENOME originated from 2010,
anti-virus tools (AVTs), which are mainly based on signature and
pattern matching, can accurately detect the malware with a recall of
71.9% on average. There are still some AVTs that perform poorly,
e.g., Bkav (0%), CMC (0%), Malwarebytes (0%) and TheHacker
(0%). Since machine learning tools use 60% of malware samples in
GENOME as the training set and the remaining 40% as the testing
set, they outperform the other tools with a higher recall.

Static analysis and dynamic analysis are more time-consuming
compared to the previous two approaches, due to the program anal-
ysis they conduct. Static analysis tools has yet achieved around
48.4% of detection ratio of GENOME malware. For the dynamic
tool TAINTDROID, it fails to detect existing malware in GENOME.
The problem is attributed to the limited support of TAINTDROID
to source or sink types, and the compatibility issues when running
out-of-date malware in latest Android OS.

Second, we use MYSTIQUE to generate 100 generations of mal-
ware without evasion features to evaluate the detection ratio (DR)
of AMTs. Then we add evasion features into the malicious apps
to re-evaluate the DR. As shown in Table 2, there are two columns
for each kind of AMTs, of which the first column is the DR with-
out evasion features, and the second column “(E)” is the DR with
evasion features. All the values of DRs are calculated as the av-
erage values amongst tools of a specific type. We summarize the
hypothesis testing results as follows.
H1. The Susceptibility of AVs to Unknown Malware. Main-
stream AVs employ signature- or feature-based approaches. The
detection capabilities depend on the completeness and timeliness of
malware database, and also the abstraction of malware. Generally,
they perform very well in detecting known malware as in GENOME
experiment above: they achieve a 71.9% recall on average, and 27
(out of 57) AVs can even detect at least 99% of malware samples in
the experiment. However, they perform poorly in detecting our gen-
erated 0day malware. According to the detection results of our gen-
erated malware, only 18 generated malware samples can be detected
by the union of these AVs. For example, ESET-NOD32 detects 3
malware samples as “a variant of Android/TrojanSMS.Agent.BLY”.
By further inspection, we find that the 3 samples steal the SMS
messages. Specifically, they share one common behavior: it mon-

372

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60 Trigger
Source
Sink
Permission

Figure 5: Cumulative AFs in GENOME samples

Type Feature DR (%)
Source TELEPHONY::SIM SERIAL 21.1
Source TELEPHONY::SIM COUNTRY 12.5
Trigger BROADCAST::android.bluetooth.device.action.NAME CHANGED 12.5
Trigger BROADCAST::android.intent.action.ACTION SHUTDOWN 12.5
Trigger BROADCAST::android.intent.action.PACKAGE REMOVED 12.5
Source SMS::INCOMING SMS 1.6
Source BUILD::SDK INT 1.6
Trigger BROADCAST::android.provider.Telephony.SMS RECEIVED 1.6
Trigger BROADCAST::android.intent.action.PACKAGE RESTARTED 1.6

Sink HTTP::SOCKET GET 1.6

Figure 6: The significance of attack features in detection

Table 2: The objective value of generated malware during evolution

Gen #Vars AFs #EFs Detection Ratio (%)
#Triggers #Sources #Sinks #Perms DA DA(E) SA SA(E) ML ML(E) AV AV(E)

10 50 35.9 13.4 4.6 74.9 5.6 17.2 13.4 32.5 12.5 42.5 41.7 0.0 0.0
20 50 31.8 7.6 4.5 82.6 7.5 34.2 14.3 25.0 13.5 25.0 22.5 0.0 0.0
30 50 33.8 9.8 3.1 75.2 4.8 24.5 14.3 27.5 15.0 20.0 20.0 0.0 0.0
40 50 29.5 9.9 2.4 78.3 5.1 14.1 14.1 17.5 15.9 32.5 29.5 0.0 0.0
50 50 32.9 8.2 2.4 81.9 8.0 22.0 15.9 17.5 0.0 27.5 25.0 0.0 0.0
60 50 31.2 10.5 2.2 80.5 7.5 21.0 10.5 17.5 12.8 27.5 22.5 0.0 0.0
70 50 27.6 10.5 2.4 74.5 6.2 6.7 4.8 17.5 15.0 25.0 22.5 0.0 0.0
80 50 28.5 10.3 4.8 70.3 3.1 19.5 14.2 18.2 12.5 27.3 25.0 0.0 0.0
90 50 33.3 9.0 2.9 77.5 6.6 5.6 5.6 10.0 5.8 25.0 21.0 0.0 0.0
100 50 36.9 10.0 4.0 76.5 5.4 10.2 8.7 10.0 6.0 22.3 20.0 0.0 0.0

itors the change of the Content Provider of SMS, steals all SMS
messages, and sends out to a specific remote server.

We can conclude that AVs have made efforts to infer the seman-
tics of code as the behavior is split into two methods. However,
the inference is quite limited. We crafted malware samples by em-
ploying evasion techniques, which cannot be detected any more. In
general, we consider H1 is accepted.
H2. The Insignificant Impact of Evasion Techniques. We have
generated two malware datasets, one of which contains malware
samples without any evasion features, and the other contains mal-
ware samples with arbitrary evasion features. From the comparison
of detection results, evasion features rarely effect the detection re-
sults of AVs. It can help to evade the detection of dynamic and static
analysis (43.7% of reduction in DR). Since the dynamic analysis tool
TAINTDROID tracks the flow of information in the system, it fails to
detect the privacy leakage once the flow is complicated by involving
ICC or implicit data flow. The static analysis tools that perform a
code analysis from the source to sink, can overcome complicated
transformation attacks and behavior-level evasion techniques. For
example, ICCTA takes into the account ICCs during different com-
ponents of apps, can identify behaviors of privacy leakage occurring
across multiple components. However, static analysis in ICCTA
still has some flaws. It cannot track the data flow across persistent
storage, such as file, SQLite or shared preferences. Static analysis
tools usually employ API-matching to identify sources and sinks.
Therefore, they can be easily defeated by involving dynamic loading
techniques, such as reflection, constant encryption. Moreover, for
machine learning based tools, evasion features have a little impact
on DR, which is not significant enough (the differences of ML and
ML(E) in Table 2 are within 5%). We observe that the higher #EFs
does not necessarily lead to a lower DR.

Thus, we consider that H2 is partially accepted — certain eva-
sion can only work for certain detection approaches and too many
evasions may not better bypass the detection.
H3. Diverse Detection Capabilities of AMTs. Based on the de-
tection results to our malware benchmark, we test H3 by evaluating
the weakness and strength of each type of approaches.
• Dynamic analysis is a kind of black box testing, which focuses on

the input and output of sensitive information to apps, while they
do not consider how the behavior is implemented. Therefore, the
detection capabilities depend on the coverage of sources, sinks
and the communication channels between. Our experiments show
that TAINTDROID can track sensitive information obtained from
specific Android APIs, such as getDeviceId and getLine1Number. It
does not track the information from incoming SMS message and
Content Provider, etc. It performs well for the communication
channel ICC and file-based channel. However, SQLite and shared
preferences can help bypass its detection.

• Static analysis is more scalable than dynamic analysis. However,
it lacks of information during runtime and thereby its capabilities
are limited. Nowadays, there are some works [36] using symbolic
execution to mitigate the lacking of runtime information.

• We compare the detection results of two malware sets, one of
which has more attack features and the other has less attack fea-
tures. The dataset with more attack features are more likely to be
detected, while machine learning based approaches are suscep-
tible to malware with less attack features. Another comparison
occur between two tools REVEALDROID and DREBIN. Although
DREBIN has considered more features, its detection ratio is im-
proved a lot. Therefore, the significance, rather than the number,
of features can better facilitate the detection. As shown in Fig. 6,
we list five attack features which are easiest to be detected, and
five attack features which are hardest to be detected. Interested
readers please refer to [1] for a complete list of significance of
attack features in the feature model.

• It is reasonable for AVs to use a fast approach with a low false
positive rate. Our observation is that AVs mainly aim at detecting
known malware. Hence, AVs work in a reactive way, not in a
proactive way.
To sum up, we consider that H3 should be rejected. Consider-

ing the detection results of TAINTDROID in Table 2, we cannot
confirm that dynamic tools can produce high detection accuracy,
although they can provide more accurate information in detection.
The problem lies in the difficulty in triggering malicious behaviors
in execution. Note that due to the unavailability of other dynamic
tools, we cannot generalize our conclusion for all dynamic tools.

373

(B1) onReceive()

Global Variable

ICC

(A1) onCreate()

SOURCE(IMEI)

(A1) onCreate()

STORE

(A1) onStart()

SINK(HTTP)

(B2) onReceive()

SOURCE(SMS)

(B2) onReceive()

STORE

(A2) onCreate()

ICC

(A2) onCreate()

SINK(HTTP)

Figure 7: Malicious behaviors to be repackaged

Table 3: The capabilities of vetting process in modern marketplaces
#Benign Base Google Play GetJar SlideMe TorrApk

1 3 7 3 7
2 7 7 7 7
3 7 7 7 7

H4. Strong Vetting Process in Modern App Stores. Modern An-
droid app stores employ multiple techniques to inspect the submitted
apps and protect their marketplaces. Google Play has turned from an
offline dynamic analysis-Bouncer [35] to a manual check by human
experts [32]. Currently, Android app stores GetJar3, SlideMe4 and
TorrApk5 all inspect the submitted apps by human experts.

Since our generated malware has no normal functionalities other
than malicious behaviors, it got rejected when we submit it into these
four app stores. To address this, we download three open-source
benignware, which have been verified by AMTs and approved by
Google Play. We inject our malicious behaviors into their source
code, repackage them and then submit them to the four Android
app stores. One example of malicious behaviors is shown in Fig. 7.
And it acquires 5 permission and steals SMS messages and identity
information of device into a particular server.

For each of the 3 benignware (benign base), we select 4 malware
samples from our benchmark and inject them into the benign base.
Here are the 4 malware samples: 1) one malicious app without eva-
sion features; 2) one malicious app is generated by adding evasion
features into the first app; 3) an optimal malware sample in our
benchmark. 4) a random choosen one from our malware benchmark.
The 4 different malicious apps from the same benign base is submit-
ted to the four different app stores. Table 3 shows the detection ratio
of these apps by AMTs, 7 and 3 indicate an app is approved (not
detected) and rejected (detected) by the corresponding app stores,
respectively. From this experiment, we can conclude that the vetting
process of Android app stores still have severe flaws, and can be eas-
ily bypassed. Although human inspection can judge the quality of
apps of high confidence, the security of apps is not fully inspected.

According to our observations, we consider that H4 should be
rejected. Note that the malware samples that are used for injection
are with a ratio of 0% to 22.8% to be detected. Thus, the vetting
results are not significantly better than the results of our AMTs. We
suspect that the vetting process also uses the AMTs for detection.

7.4 RQ3: Representative Malware and Use-
fulness of Mystique

In this section, we conduct a controlled experiment to assess the
effectiveness of MYSTIQUE to obtain optimal malware from the
attacker’s view. The basic idea is to use a small set of AFs and EFs
for fast convergence, and evaluate the resulting malware when the
evolution stops.

The experiment is conducted as follows: 1) pick up 10 samples of
malware which can be detected. 2) use IBEA algorithm to generate

3http://developer.getjar.mobi/
4http://slideme.org/
5https://www.torrapk.com/

new variants by combining or mutating features in the initial popu-
lation of malware. 3) stop if no more optimal malware is generated.

The 10 samples are from malware family DroidKungFu3, Anserver-
Bot, BaseBridge, DroidKungFu4, Geinimi, Pjapp, KMin, Gold-
Dream, DroidKungFu1 and DroidKungFu2 as shown in Table 1.
The extracted features are as follows. In addition, we consider all
14 types of evasion features in this experiment.

Triggers:
[T1] STARTUP,
[T2] android.intent.action.BOOT COMPLETED,
[T3] android.intent.action.BATTERY CHANGED,
[T4] android.intent.action.NEW OUTGOING CALL
[T5] android.provider.Telephony.SMS RECEIVED,

Source:
[SU1] PACKAGE::INSTALLED APK,
[SU2] SMS::ALL,
[SU3] SMS::INCOMING SMS,
[SU4] TELEPHONY::IMEI,
[SU5] TELEPHONY::IMSI,
[SU6] TELEPHONY::PHONE NUMBER,
[SU7] TELEPHONY::SIM SERIAL

Sinks:
[SI1] HTTP::APACHE GET,
[SI2] HTTP::APACHE POST,
[SI3] HTTP::SOCKET POST,
[SI4] SMS::SEND TEXT MESSAGE

Permissions:
[P1] android.permission.INTERNET
[P2] android.permission.PROCESS OUTGOING CALLS
[P3] android.permission.RECEIVE BOOT COMPLETED
[P4] android.permission.READ PHONE STATE
[P5] android.permission.RECEIVE SMS
[P6] android.permission.SEND SMS

Evasion:
[E1] Control based evasion
[E2] Data based evasion
[E3] Transformation attacks (12 types of transformation)

Initially, MYSTIQUE selects features randomly to construct 10
malware samples as the initial population. MYSTIQUE evolves based
on the fitness value of newly-generated malware. After 30 iterations,
MYSTIQUE obtains the optimal malware of which the fitness values
reach optimum in three objectives. The optimal malware contains 16
attack features and 3 evasion features. AFs in the optimal malware
are {T1, T3, T5, SU1, SU2, SU4, SU5, SU7, SI1, SI2, SI3, SI4, P1,
P2, P3, P6}, and EFs contains control based evasion, data based
evasion and one transformation. We put the optimal malware and
more details on our tool website [1] for public observation.

8. DISCUSSION

8.1 Threats to Validity
The internal threats for experiment results are from three aspects.

First, we mainly consider privacy leakage attack and their behaviors.
However, the logic of this attack is quite straightforward and we
have the limited number of AFs. Second, for EFs, we mainly take
into account the flow complication and transformation attacks. Last,
we use default parameters and set-up of IBEA for malware evolu-
tion. Further investigation should be conducted to see the effects of
different parameters and set-up.

The external threats mainly stem from the choice of malware
samples for FODA. Currently, our malware samples for FODA are
only from GENOME. As GENOME originated from 2010, it may
contain lots of out-of-date malware. To ensure the timeliness of
malware, we need to further investigate what malicious behaviors
are contained in other malware collections. Another threat is due to
the public availability of the AMTs that we can audit. Especially,

374

for tools based on dynamic analysis, the source code is required for
better debugging and testing the malware. At this moment, we only
have the source code of TAINTDROID. In future, we plan to audit
more AMTs based on dynamic analysis.

8.2 Countermeasure for Generated Malware
According to our experiments on generated malicious apps and

the detection results of AMTs, we present three suggestions for
future research on Android malware detection.

• A Refined Source&Sink Pattern. Generally, the recognition
of sources and sinks is the first step for static- and dynamic-
analysis tools. Consequently, they need to track the flow of
information (obtained by sources) in either the program or the
runtime environment. However, most of existing works [8, 20,
27, 34] identify sources and sinks by doing a matching with
Android APIs, such as SUSI [40]. However, there exist some
sources which cannot be represented as APIs. For example, the
number of incoming calls can be obtained from the context of
〈PhoneStateListener〉onCallStateChanged. Although SUSI includes
the methods getLatitude and getLongitude as sources, malware can
use the method toString instead to fetch the specific latitude and
longitude to bypass AMTs’ tracking, and these kinds of sources
exist in our benchmark. Hence, one refined pattern for sources
and sinks facilitate the detection of privacy leakage.

• Full Consideration of Communication Channels. There ex-
ist many communication channels in Android, through which
information is transmitted. Besides ICC provided by Android,
malicious apps can communicate via system memory or persis-
tent storage. In addition, there emerge side channel attacks in
Android [15]. All of these advanced techniques hinder the detec-
tion of malware. Therefore, modern detection approaches should
follow the development of attacks firmly and supplement domain
knowledge from time to time.

• Correct Understanding of Malicious Behaviors. Current ap-
proaches based on machine learning lack an understanding of
essences of malicious behaviors. Features extracted from apps
are usually separated or not directly relevant to malicious be-
haviors. Although machine learning tools achieve 91.4% on
accuracy in the training, they can only detect less than 9.5% of
generated malware in reality (§ 7.3). Therefore, with a tolera-
ble loss of efficiency, machine learning based approaches can
learn the essences of malicious behaviors deeply to increase their
performance on Android apps in the wild. For example, they
can employ static analysis to extract the relationship between
different features [25, 51, 52].

9. RELATED WORK
Android Malware Generation Aydogan and Sen [10] propose an
approach to generate Android malware with a genetic algorithm.
The newly generated malware originate from the crossover and
mutation of malware in GENOME [55], and they conducted experi-
ments to show that the new malware variants can easily bypass the
detection of anti-virus tools. Cani et. al. [12] employ µ GP to auto-
matically create new malware which is undetectable for anti-virus
tools, and injects it into a benign app to construct a Trojan horse.
Malware Evasion Techniques. Christodorescu et al. [16] firstly
give a formal definition for obfuscation, and these techniques can be
used by hackers to modify their malware to evade the detection of
anti-virus tools and analysis of security analysts. In order to hinder
dynamic analysis of Android malware, Petsas et al. [39] proposes
three heuristics to check if malware is running on an emulated
device or a real device, thereby decide whether to execute malicious

behaviors. The three heuristics contains-static heuristics, such as
IMEI code, routing table; dynamic heuristics, such as sensor data,
and; hypervisor heuristics, such as QEMU scheduling.
Anti-malware Auditing. Christodorescu and Jha [16] leverage
four types of obfuscation techniques to test the capabilities of com-
mercial anti-virus tools. In addition, they propose an algorithm
to extract the unique signature by which anti-virus tools use to
identify malware. ADAM [53] is an automatic and extensible plat-
form to test and audit Android anti-virus tools. It employs several
transformation techniques to generate polymorphic malware, and
test 10 prestigious anti-virus tools. DROIDCHAMELEON [41, 42]
collects three types of transformation attacks in Android, and the
authors have used these attacks to audit the off-the-shelf detection
tools. Huang et al. [29] assess the detection capabilities of 30 top
anti-virus tools from two aspects: malware scanning and engine
updating. They reveal hazards of evasion in malware scanning, and
null-protection windows during the update of engine.

10. CONCLUSION
We propose a feature model to describe the behaviors in malware

for the ease of understanding and detection. We present MYSTIQUE,
an Android malware generation framework to automatically gen-
erate malware with specific features. The generated malware is
used to explore the agressivity of attack features, and efficiency of
evasion techniques. We provide 10,000 generated malicious apps
which can be used to evaluate the emerging AMTs and thereby help
to enhance the security of Android ecosystem.

Acknowledgments
This work is supported by the National Research Foundation, Sin-
gapore under its National Cybersecurity R&D Program (Award
NRF2014NCR-NCR001-30). This work is also sponsored by the
National Science Foundation of China (No. 61572349, 61272106).

References
[1] Mystique | Evolving Android Malware for Auditing

Anti-Malware Tools. https://sites.google.com/site/
malwareevolution/.

[2] VirusShare. http://www.virusshare.com.
[3] 10 Years of Mobile Malware Whitepaper. http:

//www.fortinet.com/sites/default/files/whitepapers/
10-Years-of-Mobile-Malware-Whitepaper.pdf, 2014.

[4] VirusTotal - Free Online Virus, Malware and URL Scanner.
https://www.virustotal.com, 2015.

[5] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining API-
Level Features for Robust Malware Detection in Android. In
SecureComm, 2013.

[6] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon. Machine
Learning-Based Malware Detection for Android Applications:
History Matters! Technical Report 978-2-87971-132-4, 2014.

[7] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and
K. Rieck. Drebin: Effective and Explainable Detection of
Android Malware in Your Pocket. In NDSS, 2014.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise
Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In PLDI, pages 259–269,
2014.

[9] V. Avdiienko, K. Kuznetsov, A. Gorla, and A. Zeller. Mining
Apps for Abnormal Usage of Sensitive Data. In ICSE, 2015.

[10] E. Aydogan and S. Sen. Automatic Generation of Mobile
Malwares Using Genetic Programming. In Applications of
Evolutionary Computation, volume 9028, 2015.

[11] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid:
Behavior-based Malware Detection System for Android. In
SPSM, pages 15–26, 2011.

375

https://sites.google.com/site/malwareevolution/
https://sites.google.com/site/malwareevolution/
http://www.virusshare.com
http://www.fortinet.com/sites/default/files/whitepapers/10-Years-of-Mobile-Malware-Whitepaper.pdf
http://www.fortinet.com/sites/default/files/whitepapers/10-Years-of-Mobile-Malware-Whitepaper.pdf
http://www.fortinet.com/sites/default/files/whitepapers/10-Years-of-Mobile-Malware-Whitepaper.pdf
https://www.virustotal.com

[12] A. Cani, M. Gaudesi, E. Sanchez, G. Squillero, and A. Tonda.
Towards Automated Malware Creation: Code Generation and
Code Integration. In SAC, pages 157–160, 2014.

[13] K. Chen, P. Liu, and Y. Zhang. Achieving Accuracy and
Scalability Simultaneously in Detecting Application Clones
on Android Markets. In ICSE, pages 175–186, 2014.

[14] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai, K. MacNa-
mara, T. R. Magrino, E. X. Wu, M. Rinard, and D. X. Song.
Contextual Policy Enforcement in Android Applications with
Permission Event Graphs. In NDSS, 2013.

[15] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into Your
App without Actually Seeing It: UI State Inference and Novel
Android Attacks. In USENIX Security, pages 1037–1052,
2014.

[16] M. Christodorescu and S. Jha. Testing Malware Detectors. In
ISSTA, pages 34–44, 2004.

[17] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley Professional, 3rd edition,
Aug. 2001.

[18] K. Czarnecki and U. W. Eisenecker. Generative Programming
- Methods, Ttools and Applications. Addison-Wesley, 2000.

[19] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song. Net-
workProfiler: Towards Automatic Fingerprinting of Android
Apps. In IEEE INFOCOM, pages 809–817, 2013.

[20] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. TaintDroid: An Information-flow
Tracking System for Realtime Privacy Monitoring on Smart-
phones. In OSDI, pages 1–6, 2010.

[21] W. Enck, M. Ongtang, and P. D. McDaniel. On Lightweight
Mobile Phone Application Certification. In CCS, pages 235–
245, 2009.

[22] Essam Al Daoud and Iqbal H. Jebril and Belal Zaqaibeh. Com-
puter Virus Strategies and Detection Methods. 1(2), 2008.

[23] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy:
Semantics-based Detection of Android Malware Through
Static Analysis. In FSE, pages 576–587, 2014.

[24] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. Checking
Interation-Based Declassification Policies for Android Using
Symbolic Execution. Technical report, 2009.

[25] J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-Khaligh, and
S. Malek. Obfuscation-Resilient, Efficient, and Accurate De-
tection and Family Identification of Android Malware. Techni-
cal Report GMU-CS-TR-2015-10, 2015.

[26] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural
Detection of Android Malware Using Embedded Call Graphs.
In AISec, pages 45–54, 2013.

[27] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen,
and M. C. Rinard. Information Flow Analysis of Android
Applications in DroidSafe. In NDSS, 2015.

[28] H. Gunadi and A. Tiu. Efficient Runtime Monitoring with Met-
ric Temporal Logic: A Case Study in the Android Operating
System. CoRR, abs/1311.2362, 2013.

[29] H. Huang, K. Chen, C. Ren, P. Liu, S. Zhu, and D. Wu. To-
wards Discovering and Understanding Unexpected Hazards in
Tailoring Antivirus Software for Android. In AsiaCCS, pages
7–18, 2015.

[30] H. Ishibuchi, N. Tsukamoto, and Y. Nojima. Evolutionary
Many-Objective Optimization: A Short Review. In CEC,
pages 2419–2426, 2008.

[31] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented Domain Analysis (FODA) Feasi-
bility Study. Technical report, Nov 1990.

[32] E. Kim. Creating Better User Experiences on Google
Play. http://android-developers.blogspot.ro/2015/03/
creating-better-user-experiences-on.html, 2015.

[33] R. Laddad. AspectJ in Action, Second Edition. 2009.
[34] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S. Arzt,

S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel. IccTA:
Detecting Inter-Component Privacy Leaks in Android Apps.
In ICSE, 2015.

[35] H. Lockheimer. Android and Security - Official Google
Mobile Blog. http://googlemobile.blogspot.sg/2012/02/
android-and-security.html, 2012.

[36] K. Micinski, J. Fetter-Degges, J. Jeon, J. S. Foster, and M. R.
Clarkson. Checking Interation-Based Declassification Policies
for Android Using Symbolic Execution. Technical Report
arXiv:1504.03711v2, 2015.

[37] D. A. Mundie and D. M. McIntire. An Ontology for Malware
Analysis. In ARES, pages 556–558, 2013.

[38] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,
and Y. Le Traon. Effective Inter-Component Communication
Mapping in Android with Epicc: An Essential Step Towards
Holistic Security Analysis. In USENIX Security, pages 543–
558, 2013.

[39] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis,
and S. Ioannidis. Rage Against the Virtual Machine: Hindering
Dynamic Analysis of Android Malware. In EuroSec, pages
5:1–5:6, 2014.

[40] S. Rasthofer, S. Arzt, and E. Bodden. A Machine-learning
Approach for Classifying and Categorizing Android Sources
and Sinks. In NDSS, 2014.

[41] V. Rastogi, Y. Chen, and X. Jiang. DroidChameleon: Evalu-
ating Android Anti-malware Against Transformation Attacks.
In AsiaCCS, pages 329–334, 2013.

[42] V. Rastogi, Y. Chen, and X. Jiang. Catch Me If You Can:
Evaluating Android Anti-Malware Against Transformation
Attacks. IEEE Transactions on Information Forensics and
Security, 9(1):99–108, 2014.

[43] J. Sahs and L. Khan. A Machine Learning Approach to An-
droid Malware Detection. In EISIC, pages 141–147, 2012.

[44] A. S. Sayyad, T. Menzies, and H. Ammar. On the Value of User
Preferences in Search-based Software Engineering: A Case
Study in Software Product Lines. In ICSE, pages 492–501,
2013.

[45] R. Schlegel, K. Zhang, X. yong Zhou, M. Intwala, A. Kapadia,
and X. Wang. Soundcomber: A Stealthy and Context-Aware
Sound Trojan for Smartphones. In NDSS, Feb. 2011.

[46] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and
X. Wang. Soundcomber: A Stealthy and Context-Aware Sound
Trojan for Smartphones. In NDSS, 2011.

[47] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz,
K. A. Yüksel, S. A. Camtepe, and S. Albayrak. Static Anal-
ysis of Executables for Collaborative Malware Detection on
Android. In ICC, pages 631–635, 2009.

[48] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki.
Reverse Engineering Feature Models. In ICSE, pages 461–470,
2011.

[49] D. J. J. T. SUFATRIO, T.-W. CHUA, and V. L. L. THING.
Securing Android: A Survey, Taxonomy, and Challenges, May
2015.

[50] T. H. Tan, Y. Xue, M. Chen, J. Sun, Y. Liu, and J. S. Dong.
Optimizing Selection of Competing Features via Feedback-
directed Evolutionary Algorithms. In ISSTA, pages 246–256,
2015.

[51] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck.
AppContext: Differentiating Malicious and Benign Mobile
App Behavior Under Contexts. In ICSE, 2014.

[52] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-Aware
Android Malware Classification Using Weighted Contextual
API Dependency Graphs. In CCS, 2014.

[53] M. Zheng, P. P. C. Lee, and J. C. S. Lui. ADAM: An Automatic
and Extensible Platform to Stress Test Android Anti-virus
Systems. In DIMVA, pages 82–101, 2013.

[54] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou. Fast,
Scalable Detection of “Piggybacked" Mobile Applications. In
Proceedings of the 3rd ACM Conference on Data and Applica-
tion Security and Privacy, pages 185–196, 2013.

[55] Y. Zhou and X. Jiang. Dissecting Android Malware: Charac-
terization and Evolution. In IEEE S&P, pages 95–109, 2012.

376

http://android-developers.blogspot.ro/2015/03/creating-better-user-experiences-on.html
http://android-developers.blogspot.ro/2015/03/creating-better-user-experiences-on.html
http://googlemobile.blogspot.sg/2012/02/android-and-security.html
http://googlemobile.blogspot.sg/2012/02/android-and-security.html

	Introduction
	Background
	Software Product Line Engineering
	Overview of Android Attacks
	Adopting SPLE for Malware Generation

	Mystique Overview
	Mystique Overview
	Technical Challenge

	Feature-oriented Domain Analysis of Android Malware
	Attack Feature
	Evasion Feature

	Multi-objective Guided Malware Generation
	Feature Selection via IBEA
	Code Assembly
	Evasion Application
	Objective Evaluation

	Brief on Anti-malware Tools
	Detection Mechanism
	Evidence Collection
	Knowledge-base Detection

	Anti-malware Tools & Hypothesis

	Malware and AMT Evaluation
	Evaluation Subjects
	RQ1: Validity of Generated Malware
	RQ2: Auditing of AMTs
	RQ3: Representative Malware and Usefulness of Mystique

	Discussion
	Threats to Validity
	Countermeasure for Generated Malware

	Related Work
	Conclusion

