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ABSTRACT
Anonymous Identity-Based Broadcast Encryption (AIBBE)
allows a sender to broadcast a ciphertext to multi-receivers,
and keeps receivers’ anonymity. The existing AIBBE schemes
fail to achieve efficient decryption or strong security, like
the constant decryption complexity, the security under the
adaptive attack, or the security in the standard model. Hence,
we propose two new AIBBE schemes to overcome the draw-
backs of previous schemes in the state-of-art. The biggest
contribution in our work is the proposed AIBBE scheme
with constant decryption complexity and the provable secu-
rity under the adaptive attack in the standard model. This
scheme should be the first one to obtain advantages in all
above mentioned aspects, and has sufficient contribution in
theory due to its strong security. We also propose another
AIBBE scheme in the Random Oracle (RO) model, which
is of sufficient interest in practice due to our experiment.
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1. INTRODUCTION
With the increased determination of content owners to

preserve copyright and the enhanced awareness of common
users to protect their privacy, many multi-user applications,
such as digital content distribution and pay-per-view, re-
quire a cryptographic mechanism to prevent unauthorized
users and keep receiver anonymity. Anonymous Identity-
Based Broadcast Encryption (AIBBE) seems to be an ideal
solution to settle the issue mentioned above. AIBBE allows
a sender to generate a broadcast ciphertext with multiple in-
tended receivers’ identities. Given the generated ciphertext,
every intended receiver can decrypt out the contained plain-
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text. In general, a secure AIBBE scheme guarantees that no
one except the intended receivers can learn anything about
the plaintext, and know who are the intended receivers.

In recent years, the work of designing an efficient AIBBE
scheme has gained an increasing interest both from the aca-
demic and industrial communities. As a result, some AIBBE
schemes have been proposed. However, they have signifi-
cant disadvantages in the aspect of performance or security.
In general, the existing AIBBE schemes can be categorized
into two types according to their mathematical character-
istics. One type is based on Lagrange-polynomial, and an-
other type is based on randomness-reuse. Suppose N is the
number of the intended receivers of an AIBBE ciphertext.
In the Lagrange-polynomial-based AIBBE schemes, such as
the schemes in [1–5], it is unavoidable that their decryption
algorithms need to compute a polynomial of degree N .

Similarly, the early proposed randomness-reuse-based AIB-
BE schemes, such as the schemes in [6–9], have the same de-
cryption complexity as the Lagrange-polynomial-based AIB-
BE schemes. In contrast, the later proposed randomness-
reuse-based AIBBE schemes, such as the schemes in [10,11],
claim that they achieve the constant decryption complexity.
But they do not show the details in their decryption algo-
rithms. In our opinion, those details are very important,
since they are relevant not only to decryption complexity
but also to anonymity. More explanations will be given in
the following content.

In the aspect of security, no exiting randomness-reuse-
based AIBBE scheme can prove its security in the standard
model or guarantee a strong anonymity. The former charac-
teristic is obviously important for the theoretical research of
AIBBE, since it avoids the unreasonable assumption in the
Random Oracle (RO) model. The latter characteristic is
also important, but never be observed by previous AIBBE
schemes. Roughly, to encrypt a plaintext M , the existing
randomness-reuse-based AIBBE schemes takes an identity
set I = {ID1, · · · , IDN} as input, and generates a cipher-
text C having the general form

C = (C0, C1 = E(ID1,M), · · · , CN = E(IDN ,M)),

where C0 is the part of a reused randomness, and Ci is a par-
tial ciphertext corresponding to receiver IDi. Given C, every
receiver IDi retrieves his partial ciphertext Ci, and decrypts
out plaintext M using his private key and C0. It is clear that
the generated ciphertext C implies the order of identities in
set I. Suppose that in the security proof, an adversary with
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identity ID takes two identity sets as his challenge, and iden-
tity ID has different positions in those two sets. Then the
adversary can distinguish the corresponding two challenge
ciphertexts according to the different positions, where he
can retrieve his partial ciphertexts from those two challenge
ciphertexts.

In addition, most of existing randomness-reuse-based AIB-
BE schemes are provably secure (including anonymous) un-
der the non-adaptive attack. The non-adaptive attack means
that an adversary must choose two challenge identity sets at
the beginning of an attack game, i.e. no information can
be leveraged by the adversary to make his choice. In con-
trast, the adaptive attack allows an adversary to adaptively
choose two challenge identity sets according to some histor-
ical information. It is obvious that the adaptive attack is
stronger than the non-adaptive one. So far as we known,
only the scheme in [8] is provably secure under the adaptive
attack. But this scheme does not achieve the above strong
anonymity.

1.1 Our Ideas
In this paper, our final goal is to design an AIBBE scheme

with constant decryption complexity, and provable strong
security (including anonymity) under the adaptive attack in
the standard model. Note that we do not consider the se-
curity under chosen ciphertext attacks, since our proposed
AIBBE schemes can be easily extended by some general
methods [12–15] to achieve that security. In order to ob-
tain those advantages, we adopt the following ideas.

To obtain the constant decryption complexity and the
strong anonymity, we adopt the idea of dual randomness-
reuse and a standard data structure called history-independe-
nt dictionary. In general, to encrypt a plaintext M with an
identity set I = {ID1, · · · , IDN}, the idea of dual random-
ness-reuse allows our AIBBE scheme to generate two random-
ness-reused parts C0 and C′0, and N label-ciphertext pairs
{(Ii, Ci = E(IDi,M))|i ∈ [1, N ]}; then {(Ii, Ci = E(IDi,
M))|i ∈ [1, N ]} are stored in a history-independent dictio-
nary L, i.e. the position of Ci in L is independent with
i; finally the generated ciphertext is C = (C0, C

′
0,L). Given

C0 and the corresponding private key, receiver IDi can com-
pute label Ii, and retrieve Ci according to Ii from L in com-
plexity O(1); given C′0, receiver IDi can further decrypt out
plaintext M from Ci. It is clear that (1) if the complexity to
compute label Ii and decrypt out plaintextM from Ci is con-
stant, our AIBBE scheme achieves constant decryption com-
plexity, and (2) due to the property of history-independency,
dictionary L does not imply the order of identities in set I.

To obtain the provable security under the adaptive at-
tack in the standard model, we adopt a programmable hash
function in the multilinear setting, which was introduced
in [16]. In general, the security proof of AIBBE is a game
between an adversary and a simulator. In the game, the
simulator must forge an ideal AIBBE scheme, such that the
ideal AIBBE scheme is indistinguishable with a real AIBBE
scheme in the view of the adversary; the adversary can issue
some queries to the simulator. Most of existing randomness-
reuse-based AIBBE schemes can not prove their securities
under the adaptive attack, since they can not forge an effec-
tive hash function to respond the queries of the adversary.
In other words, their forged hash functions only have a negli-
gible probability (which is related to N) to be effective. For-
tunately, this problem can be avoided by the programmable

hash function. Moreover, the programmable hash function
needs not to be assumed as a random oracle in the secu-
rity proof. This property allows our AIBBE scheme to be
provably secure in the standard model.

1.2 Our Contributions
In this paper, we sequentially propose two AIBBE schemes.

Both of them have constant decryption complexity and strong
anonymity. The first AIBBE scheme is provably secure un-
der the non-adaptive attack in the RO model. This scheme
clearly presents our idea of dual randomness-reuse and the
application of a history-independent dictionary. The exper-
imental results show that this scheme is practical. Hence, it
is of independent interest for the industrial community. The
second AIBBE scheme is provably secure under the adaptive
attack in the standard model. This scheme shows the appli-
cation of the programmable hash function, and achieves our
final goal of this paper.

1.3 Organization
The remainder is as follows. Section 2 gives some re-

lated definitions about AIBBE, and the definition of history-
independent dictionary. Section 3 introduces our first AIB-
BE scheme, which is provably secure in the RO model, and
shows that this scheme is practical by some numerical re-
sults. Section 4 introduces our second AIBBE scheme, which
is provably secure in the standard model. More details about
the related works are introduced in Section 5. Section 6 con-
cludes this paper.

2. PRELIMINARY
In theory, an AIBBE scheme means an IBBE scheme with

anonymity and semantic security. Hence, to define AIBBE,
we need to define IBBE and its anonymity and semantic
security. These definitions and the definition of history-
independent dictionary are introduced in this section. Let

γ
$← < denote an element γ randomly sampled from <. The

definitions are as follows.

Definition 1. (IBBE). Let N ∈ N be the maximal size
of receiver set for one IBBE encryption. An IBBE scheme
consists of the following four algorithms:

• Setup(1k, ID): Take as inputs a security parameter
1k where k ∈ N and an identity space ID, and output
the master public key MP and the master secret key
MS;

• Extract(MS, ID): Take as inputs MS and an iden-
tity ID ∈ ID, and output a private key SKID of ID;

• Enc(MP, I,M): Take as inputs MP, an identity set
I = {ID1, ..., IDN} consisting of N intended receivers’
identities (where IDi ∈ ID with i ∈ [1, N ]), and a
plaintext M , and output a ciphertext C;

• Dec(SKID′ , C): Take as inputs a private key SKID′ of
identity ID′ and a ciphertext C, and output a plaintext
M or ⊥ otherwise (⊥ denotes a failed decryption).

In addition, an IBBE scheme must be consistent in the
sense that for any C ← Enc(MP, I,M) and SKID′ ←
Extract(MS, ID′), Dec(SKID′ , C) = M holds if ID′ ∈ I,
except with a negligible probability in the security parameter
k.
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In the paradigmatic application of IBBE, a trusted Key
Generation Center (KGC) initializes an IBBE scheme by
running algorithm Setup and publishing the generated mas-
ter public key, and generates private keys for all legal users
by running algorithm Extract. A sender runs algorithm
Enc to generate a broadcast ciphertext and sends the ci-
phertext to the intended receivers. When receiving the ci-
phertext, every intended receiver runs algorithm Dec to de-
crypt out the contained plaintext.

The anonymity of IBBE is defined as the Anonymity un-
der the adaptive-Multiple-IDs and Chosen Plaintext Attacks
(Anon-MID-CPA). It defines an attack game between a Prob-
abilistically Polynomial Time (PPT) adversary and a chal-
lenger. In this game, the adversary queries the private keys
of some identities, and then adaptively chooses two iden-
tity sets as his challenge. The challenger randomly chooses
one of that two identity sets and generates a challenge ci-
phertext. We say that an IBBE scheme is Anon-MID-CPA
secure if the adversary can not decide which one of that two
identity sets was used to generate the challenge ciphertext.
The Anon-MID-CPA security defines the strong anonymity,
which was mentioned in Section 1, by allowing the adversary
to query the identities belonging to the intersection of that
two identity sets. The details of Anon-MID-CPA security
are as follows.

Definition 2. (Anon-MID-CPA). An IBBE scheme is
Anon-MID-CPA secure if any PPT adversary A has only a
negligible advantage AdvAnon-MID-CPA

IBBE,A to win in the following
Anon-MID-CPA game:

• Setup Phase: A challenger sets up the IBBE scheme
by running algorithm Setup to generate the master
public-and-secret-keys pair (MP,MS), and sendsMP
to A;

• Query Phase 1: A adaptively issues the following
query multiple times.

– Private Key Query QSK(ID): Given a queried
identity ID ∈ ID, the challenger returns a pri-
vate key of identity ID;

• Challenge Phase: A sends two different challenge
identity sets I∗0 and I∗1 and a plaintext M to the chal-
lenger, where I∗0 = {ID∗01 , ..., ID∗0N } and I∗1 = {ID∗11 ,
..., ID∗1N }. The challenger picks d

$← {0, 1}, computes
the challenge ciphertext C∗d = Enc(MP, I∗d ,M), and
sends C∗d to A;

• Query Phase 2: This phase is the same with Query
Phase 1. Note that both in Query Phase 1 and
Query Phase 2, A can not query the private keys
corresponding to the challenge identities in I∗0 and I∗1
except the challenge identities in I∗0 ∩ I∗1 ;

• Guess Phase: A sends his guess d′ to the challenger.
We say that A wins if d′ = d. Let AdvAnon-MID-CPA

IBBE,A
= Pr[d′ = d] − 1

2
be the advantage of A to win in the

above game.

The anonymity of IBBE under the non-adaptive attack is
defined as Anon-sMID-CPA. The corresponding attack game
of Anon-sMID-CPA is the same with that of Anon-MID-
CPA, except that an adversary in Anon-sMID-CPA must

choose two challenge identity sets at the beginning of the
attack game. Let AdvAnon-sMID-CPA

IBBE,A denote the advantage
of adversary A to win in this game.

The semantic security of IBBE is defined as the Semantic
Security under the adaptive-Multiple-IDs and Chosen Plain-
text Attacks (SS-MID-CPA). In the attack game defined in
SS-MID-CPA, a PPT adversary queries the private keys
of some identities, and then adaptively chooses a challenge
identity set and two challenge plaintexts. A challenger ran-
domly choose one of that two challenge plaintexts and gener-
ates a challenge ciphertext for the challenge identity set. We
say that an IBBE scheme is SS-MID-CPA secure if the ad-
versary can not decide which one of that two challenge plain-
texts was used to generate the challenge ciphertext. Note
that the adversary can not query the private keys of those
challenge identities. The details of SS-MID-CPA security
are as follows.

Definition 3. (SS-MID-CPA). An IBBE scheme is SS-
MID-CPA secure if any PPT adversary A has only a neg-
ligible advantage AdvSS-MID-CPA

IBBE,A to win in the following SS-
MID-CPA game:

• Setup Phase: A challenger sets up the IBBE scheme
by running algorithm Setup to generate the master
public-and-secret-keys pair (MP,MS), and sendsMP
to A;

• Query Phase 1: A adaptively issues the following
query multiple times.

– Private Key Query QSK(ID): Given a queried
identity ID ∈ ID, the challenger returns a pri-
vate key of identity ID;

• Challenge Phase: A sends an identity set I and two
challenge plaintexts (M∗0 ,M

∗
1 ) to the challenger, where

I = {ID1, ..., IDN} and |M∗0 | = |M∗1 |. The challenger

picks d
$← {0, 1}, computes the challenge ciphertext

C∗d = Enc(MP, I,M∗d ), and sends C∗d to A;

• Query Phase 2: This phase is the same with Query
Phase 1. Note that both in Query Phase 1 and
Query Phase 2, A can not query the private keys
corresponding to the identities in set I;

• Guess Phase: A sends his guess d′ to the challenger.
We say that A wins if d′ = d. Let AdvSS-MID-CPA

IBBE,A =

Pr[d′ = d] − 1
2

be the advantage of A to win in the
above game.

The semantic security of IBBE under the non-adaptive
attack is defined as SS-sMID-CPA. The corresponding at-
tack game of SS-sMID-CPA is the same with that of SS-
MID-CPA, except that an adversary in SS-sMID-CPA must
choose a challenge identity set at the beginning of the attack
game. Let AdvSS-sMID-CPA

IBBE,A denote the advantage of adver-
sary A to win in this game.

In addition to the above definitions about AIBBE, our
proposed AIBBE schemes will employ a standard data struc-
ture dictionary and two operations on dictionary. We define
those two operations as follows:

• Creat(T ): Take a list T of label-data pairs as input
(where each label is unique), and return a dictionary
L;
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• Get(L, I): Take a dictionary L and a label I as in-
puts, return the corresponding data D if (I,D) ∈ D,
otherwise return NULL.

Note that the dictionary operation Creat(T ) is history-
independent [17]. It means that for any list T the distri-
bution of D ← Creat(T ) is independent with the order of
the label-data pairs in T . In addition, the time complexity
of operation Get is O(1).

3. OUR FIRST AIBBE SCHEME
Our first AIBBE scheme will be constructed by a popular

mathematical tool called bilinear map. Before the construc-
tion, some related mathematical preliminaries will be intro-
duced. After the construction, we will prove that our first
AIBBE scheme is Anon-sMID-CPA and SS-sMID-CPA se-
cure based on the Decisional Bilinear Diffie-Hellman (DBDH)
assumption [18] in the RO model, and shows that our first
AIBBE scheme is practical by some numerical results.

Let G and G1 denote two multiplicative groups of prime
order q. Let g be a generator of G. A bilinear map ê :
G×G→ G1 is an efficiently computable and non-degenerate
function, with the bilinearity property ê(ga, gb) = ê(g, g)ab,

where (a, b)
$← Z∗q and ê(g, g) is a generator of G1. Let

BGen(1k) be an efficient bilinear map generator that takes
as input a security parameter 1k and probabilistically out-
puts (q,G,G1, g, ê). Let an identity space be ID = {0, 1}∗.

Our first AIBBE scheme is constructed as follows.

• Setup(1k, ID): Take as inputs 1k and ID, compute

(q,G, G1, g, ê)← BGen(1k), pick s
$← Z∗q , set p← gs,

choose a cryptographic hash functions H : {0, 1}∗ →
G, and output the master public-and-secret keys

MP = (q,G,G1, g, ê, p,H, ID) and MS = s;

• Extract(MS, ID): Take as inputs MS and an iden-
tity ID ∈ ID, and output a private key SKID =
H(ID)s of ID;

• Enc(MP, I,M): Take as inputs MP, an identity set
I = {ID1, ..., IDN} of multiple receivers, and a plain-
text M ∈ G1, and do the following steps:

1. Choose values (r1, r2)
$← Z∗q , initialize an empty

list T , and compute C0 = gr1 and C′0 = gr2 ;

2. Compute Ii = ê(p,H(IDi))
r1 and Ci = ê(p,H(

IDi))
r2 ·M , and add the label-data pair (Ii, Ci)

into T for i ∈ [1, N ];

3. Generate dictionary L ← Creat(T ), and output
a ciphertext C = (C0, C

′
0,L);

• Dec(SKID′ , C): Take as inputs a private key SKID′ of
identity ID′ and a ciphertext C, and do the following
steps:

1. Parse C = (C0, C
′
0,L), compute I ′ = ê(C0, SKID′),

and retrieve C′ ← Get(L, I ′);
2. Output a plaintext M = C′ · ê(C′0, SKID′)

−1.

In practice, we usually have k ∈ [160, 512]. For a fixed
k, each execution of bilinear map ê takes a constant time
complexity. Hence, it is obvious that the time complexity of

the above algorithm Dec is constant for a fixed k. In other
words, the time complexity of the above algorithm Dec is
independent with the number of receivers of the ciphertext
C.

3.1 Consistency
Roughly, suppose that in the above algorithm Dec we

have ID′ = IDi where IDi ∈ I. It is easy to find that
I ′ = Ii holds, since I ′ = ê(C0, SKID′) = ê(gr1 ,H(ID′)s) =
ê(gs,H(ID′))r1 = Ii. Since Ci is the corresponding cipher-
text of Ii, we have C′ = Ci. Moreover, according to the
definition of bilinear map, it is easy to prove that the above
algorithm Dec can output the correct plaintext. Formally,
we have Theorem 1 on consistency whose proof can be found
in Appendix A.

Theorem 1. For any ciphertext C ← Enc(MP, I,M)
and private key SKID′ ← Extract(MS, ID′), the above
IBBE scheme has Dec(SKID′ , C) = M if ID′ ∈ I, except
with a negligible probability in the security parameter k.

3.2 Anon-sMID-CPA Security Proof
The Anon-sMID-CPA security of the above IBBE scheme

relies on the DBDH assumption in BGen(1k). The defini-
tion of DBDH assumption [18] is as follows.

Definition 4. (The DBDH Assumption [18]). The
DB-DH problem in BGen(1k) = (q,G,G1, g, ê) is defined
as the advantage of any PPT algorithm B to distinguish the
tuples (ga, gb, gc, ê(g, g)abc) and (ga, gb, gc, ê(g, g)y), where

(a, b, c, y)
$← Z∗4q . Let AdvDBDH

B (1k) = Pr[B(ga, gb, gc, ê(g,

g)abc) = 1]− Pr[B(ga, gb, gc, ê(g, g)y) = 1] be the advantage
of algorithm B to solve the DBDH problem. We say that
the DBDH assumption holds in BGen(1k), if the advantage
AdvDBDH

B (1k) is negligible in the parameter k.

In the security proof of Anon-sMID-CPA, we prove that
if there is an adversary who can break the Anon-sMID-CPA
security of the above IBBE scheme in the RO model, then
there is an algorithm which can solve the DBDH problem in
BGen(1k). Formally, we have Theorem 2 whose proof can
be found in Appendix B.

Theorem 2. Let the hash function H be modeled as the
random oracle QH(·). Suppose a PPT adversary A wins
in the Anon-sMID-CPA game of the above IBBE scheme
with advantage AdvAnon-sMID-CPA

IBBE,A . Then there is a PPT al-

gorithm B that solves the DBDH problem in BGen(1k) also
with advantage AdvDBDH

B (1k) = AdvAnon-sMID-CPA
IBBE,A .

Since the advantage AdvDBDH
B (1k) is widely recognized

as a negligible value in practice, Theorem 2 implies that the
advantage AdvAnon-sMID-CPA

IBBE,A is also negligible. Hence, the
above IBBE scheme is Anon-sMID-CPA secure.

3.3 SS-sMID-CPA Security Proof
In the security proof of SS-sMID-CPA, we prove that if

there is an adversary who can break the SS-sMID-CPA se-
curity of the above IBBE scheme in the RO model, then
there is an algorithm which can solve the DBDH problem in
BGen(1k). Formally, we have Theorem 3 whose proof can
be found in Appendix C.
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Theorem 3. Let the hash function H be modeled as the
random oracle QH(·). Suppose a PPT adversary A wins
in the SS-sMID-CPA game of the above IBBE scheme with
advantage AdvSS-sMID-CPA

IBBE,A . Then there is a PPT algorithm

B that solves the DBDH problem in BGen(1k) also with
advantage AdvDBDH

B (1k) = AdvSS-sMID-CPA
IBBE,A .

By the same reason as the Anon-sMID-CPA security of
the above IBBE scheme, Theorem 3 implies that the above
IBBE scheme is SS-sMID-CPA secure in practice.

3.4 Experiment
We coded our first AIBBE scheme, and tested the time

cost of algorithm Dec to decrypt the ciphertexts of different
number of receivers. Table 1 shows the system parameters
including hardware, software and the chosen elliptic curve.
We generated several ciphertexts by algorithm Enc for dif-
ferent N ∈ [5, 100], and each ciphertext was decrypted by a
randomly chosen receiver of the ciphertext using algorithm
Dec. Figure 1 shows the time cost of algorithm Dec to
decrypt those ciphertexts. It is clear that the time cost of
algorithm Dec is independent with N , and almost the same
for all ciphertexts. Hence, our first AIBBE scheme is prac-
tical.

Table 1: Configuration of System Parameters
Hardware Intel Core 2 Duo CPU E5300 @ 2.60GHz

OS and Compiler Windows XP, Microsoft Visual C++ 6.0
Program Library MIRACL version 5.4.1

Parameters of bilinear map

Elliptic Curve y2 = x3 +A · x+B · x
Pentanomial Basis tm + ta + tb + tc + 1

Base Field: 2m m = 379
A 1
B 1

Group Order: q 2m + 2(m+1)/2 + 1
a 315
b 301
c 287

The default unit is decimal.
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Figure 1: Time Cost of Decryption

4. OUR SECOND AIBBE SCHEME
Our second AIBBE scheme will be constructed by a new

mathematical tool called multilinear map. Before the con-
struction, multilinear map will be introduced. After the
construction, we will prove that our second AIBBE scheme
is Anon-MID-CPA and SS-MID-CPA secure in the standard
model.

In [16], Freire et al. utilized the ”approximation” of multi-
linear maps [19] to construct a programmable hash function
in the multilinear setting (MPHF). To simplify the descrip-
tion of our second AIBBE scheme, we do not consider the
”approximation” of multilinear maps. It means that we will
leave out the functions that are the encoding of a group
element, the re-randomization of an encoding and the ex-
traction of an encoding. The following definitions will be
used to construct our second AIBBE scheme and prove its
security.

Definition 5. (Multilinear Maps [16]). An `-group
system in multilinear setting consists of ` cyclic groups G1,
· · · ,G` of prime order q, along with bilinear maps êi,j :
Gi × Gj → Gi+j for all i, j ≥ 1 with i + j ≤ `. Let gi be
a generator of Gi. The map êi,j satisfies êi,j(g

a
i , g

b
j) = gabi+j

(for all a, b ∈ Zq). When i, j are clear, we will simply
write ê instead of êi,j. It will also be convenient to ab-
breviate ê(h1, · · · , hj) = ê(h1, ê(h2, · · · , ê(hj−1, hj) · · · )) for
hj ∈ Gij and i = (i1 + i2 + · · ·+ ij) ≤ `. By induction, it is
easy to see that this map is j-linear. Additionally, we define
ê(g) = g. Finally, it can also be useful to define the group
G0 = Z+

q of exponents to which this pairing family natu-
rally extends. In the following, we will assume an `-group
system MPG` = {{Gi}i∈[1,`], q, {êi,j}i,j≥1,i+j≤`} generated
by a multilinear maps parameter generator MG` on input a
security parameter 1k.

Definition 6. (The `-Multilinear Decisional Diffie-
Hellman (MDDH) Assumption [16]). Given (g, gx1 , · · · ,
gx`+1) (for g

$← G1 and uniform exponents xi), the `-MDDH
assumption is that the element ê(gx1 , · · · , gx`)x`+1 ∈ G` is
computationally indistinguishable from a uniform G`-element.

Definition 7. (Group hash function [16]). A group
hash function H into G consists of two polynomial-time algo-
rithms: the probabilistic algorithm HGen(1k) output a key
hk, and HEval(hk,X) (for a key hk and X ∈ {0, 1}k) de-
terministically outputs an image Hhk(X) ∈ G.

Definition 8. (MPHF [16]). Assume an `′-group sys-
tem MPG`′ as generated by MG`′(1

k). Let H be a group
hash function into G` (` ≤ `′), and let m,n ∈ N. We say
that H is an (m,n)-programmable hash function in the mul-
tilinear setting ((m,n)-MPHF) if there are PPT algorithms
TGen and TEval as follows.

• TGen(1k, c1, · · · , cl, h) (for ci, h ∈ G1 and h 6= 1)
outputs a key hk and a trapdoor td. We require that
for all ci and h, that distribution of hk is statistically
close to the output of HGen.

• TEval(td,X) (for a trapdoor td and X ∈ {0, 1}k)
deterministically outputs aX ∈ Z∗q and BX ∈ G`−1

with Hhk(X) = ê(c1, · · · , c`)aX · ê(BX , h). We require
that there is a polynomial p(k) such that for all hk
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and X1, · · · , Xm, Z1, · · · , Zn ∈ {0, 1}k with {Xi}i ∩
{Zj}j = ∅,

Phk,{Xi},{Zj} =Pr[(aX1 = · · · = aXm = 0)

∧ (aZ1 = · · · = aZn 6= 0)] ≥ 1/p(k),

where the probability is over possible trapdoors td out-
put by TGen along with the given hk. Furthermore,
we require that Phk,{Xi},{Zj} is close to statistically in-
dependent of hk. (Formally, we have |Phk,{Xi},{Zj} −
Phk′,{Xi},{Zj}| ≤ v(k) for all hk and hk′ in the range
of TGen, all {Xi} and {Zj}, and negligible v(k).)

We say that H is a (poly, n)-MPHF if it is a (q(k), n)-
MPHF for every polynomial q(k). Note that TEval algo-
rithm of an MPHF into G1 yields BX ∈ G0, i.e., exponents
BX .

Let an identity space be ID = {0, 1}k. Our second AIBBE
scheme is constructed as follows.

• Setup(1k, ID): Take as input a security parameter
1k and space ID, generate an (` + 1)-group system
MPG`+1 = {{Gi}i∈[1,`+1], q, {êi,j}i,j≥1,i+j≤`+1} ←
MG`+1(1k), generate a (poly, N)-MPHF H into G`

and hk ← HGen(1k), pick g
$← G1 and s

$← Zq, set
p← gs, and output the master public-and-secret keys

MP = (MPG`+1, g, p,H, hk, ID) and MS = (hk, s);

• Extract(MS, ID): Take as inputs MS and an iden-
tity ID ∈ ID, and output a decryption key SKID =
Hhk(ID)s of ID.

• Enc(MP, I,M): Take as inputs MP, an identity set
I = {ID1, ..., IDN} of multiple receivers, and a plain-
text M ∈ G`+1, and do the following steps:

1. Choose values (r1, r2)
$← Z∗q , initialize an empty

list T , and compute C0 = gr1 and C′0 = gr2 ;

2. Set Ii = ê(p,Hhk(IDi))
r1 and Ci = ê(p,Hhk(

IDi))
r2 ·M , and add the label-data pair (Ii, Ci)

into T for i ∈ [1, N ];

3. Generate dictionary L ← Creat(T ), and output
ciphertext C = (C0, C

′
0,L);

• Dec(SKID′ , C): Take as inputs a private key SKID′ of
identity ID′ and a ciphertext C, and do the following
steps:

1. Parse C = (C0, C
′
0,L), compute I ′ = ê(C0, SKID′),

and retrieve C′ ← Get(L, I ′);
2. Output a plaintext M = C′ · ê(C′0, SKID′)

−1.

4.1 Consistency
Roughly, suppose that in the above algorithm Dec we

have ID′ = IDi where IDi ∈ I. It is easy to find that I ′ =
Ii holds, since I ′ = ê(C0, SKID′) = ê(gr1 ,Hhk(ID′)s) =
ê(gs,Hhk(ID′))r1 = Ii. Since Ci is the corresponding ci-
phertext of Ii, we have C′ = Ci. Moreover, according to
the definition of multilinear maps, it is easy to prove that
the above algorithm Dec can output the correct plaintext.
Formally, we have Theorem 4 on consistency.

Theorem 4. For any C ← Enc(MP, I,M) and SKID′ ←
Extract(MS, ID′), the above IBBE scheme has Dec(SKID′ ,
C) = M if ID′ ∈ I, except with a negligible probability in
the security parameter k.

Proof. Without loss of generality, let I = {ID1, · · · ,
IDN}, ID′ = IDi , and (Ii, Ci) be the label-data pair gen-
erated by algorithm C ← Enc(MP, I,M), where i ∈ [1, N ],
Ii = ê(p,Hhk(IDi))

r1 and Ci = ê(p,Hhk(IDi))
r2 ·M . Parse

C = (C0, C
′
0,L). Algorithm Dec(SKID′ , C) shows that I ′ =

ê(C0, SKID′) = ê(gr1 ,Hhk(ID′)s) = ê(gs,Hhk(ID′))r1 =
ê(p,Hhk(ID′))r1 = Ii according to the definition of mul-
tilinear maps. Hence, we have C′ = Ci, except with a
negligible probability in the security parameter k. Accord-
ing to equation C′ · ê(C′0, SKID′)

−1 = ê(p,Hhk(IDi))
r2 ·

M · ê(C′0, SKID′)
−1 = M , we can prove that Dec(SKID′ ,

C) = M .

4.2 Anon-MID-CPA Security
In the security proof of Anon-MID-CPA, we prove that

if there is an adversary who can break the Anon-MID-CPA
security of the above IBBE scheme in the standard model,
then there is an algorithm which can break the (`+1)-MDDH
assumption in MG`+1(1k). Formally, we have the following
theorem.

Theorem 5. Assume the above IBBE scheme is imple-
mented in an (` + 1)-group system, and with a (poly, N)-
MPHF H into G`. Then, under the (`+ 1)-MDDH assump-
tion, the IBBE scheme is Anon-MID-CPA secure.

Proof. Suppose a PPT adversary A wins in the Anon-
MID-CPA game of the above IBBE scheme with advantage
AdvAnon-MID-CPA

IBBE,A , in which A makes at most qp queries to

oracle QIBBE
SK (·). To prove this theorem, we will construct

a PPT algorithm B to play the Anon-MID-CPA game with
adversary A and take advantage of A to break the (` + 1)-
MDDH assumption in MG`+1(1k). The constructed algo-
rithm B is as follows.

• Setup Phase: Algorithm B gets as input an (`+ 1)-
group system MPG`+1 with security parameter 1k

and group elements g, gx1 , · · · , gx`+1 , gx`+2 ∈ G1

and S ∈ G`+1, where either S = ê(gx1 , · · · , gx`+1)x`+2

(i.e., S is real) or S ∈ G`+1 uniformly (i.e., S is ran-
dom). B generates a (qp, N)-MPHF H into G`, sets
up the master public key as MP = (MPG`+1, g, p =
gx`+1 ,H, hk, ID) where (hk, td)← TGen(1k, gx1 , · · · ,
gx` , g), and sends MP to adversary A. Here, we
use the TGen and TEval algorithms of the (qp, N)-
MPHF property of H.

• Query Phase 1: Adversary A adaptively issues the
following query multiple times.

– Decryption Key Query QSK(ID): Taking as in-
put an identity ID ∈ ID, algorithm B does the
following steps:

1. Compute TEval(td, ID) = (aID, BID) ∈ Z∗q×
G`−1;

2. If aID = 0, return private key SKID = ê(BID,
p); otherwise, abort and output ⊥;

Note that we have SKID = ê(BID, p) = ê(BID,
g)x`+1 = Hhk(ID)x`+1 . So B can answer a QSK(
ID) query of A for identity ID precisely when
aID = 0.
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• Challenge Phase: Adversary A sends two different
challenge identity sets I∗0 = {ID∗01 , · · · , ID∗0N } and
I∗1 = {ID∗11 , · · · , ID∗1N } and a plaintexts M ∈ G`+1

to algorithm B; B picks d
$← {0, 1}, and does the fol-

lowing steps:

1. For ID∗di ∈ I∗0
⋂
I∗1 , compute TEval(td, ID∗di ) =

( aID∗di
, BID∗di

), and if aID∗di
6= 0, abort and out-

put ⊥;

2. For ID∗di ∈ I∗d − I∗0
⋂
I∗1 , compute TEval(td,

ID∗di ) = (aID∗di
, BID∗di

), and if aID∗di
= 0, abort

and output ⊥;

3. Choose a value r
$← Z∗q , initialize an empty list

T , and compute C0 = gx`+2 and C′0 = gr·x`+2 ;

4. For ID∗di ∈ I∗d , compute Ii = S
a
ID∗d

i · ê(BID∗di
,

gx`+1 , gx`+2) and Ci = Iri ·M , and add the label-
data pair (Ii, Ci) into T ;

5. Generate dictionary L ← Creat(T ), and send a
challenge ciphertext C∗d = (C0, C

′
0,L) to adver-

sary A.

Suppose algorithm B does not abort in this phase (i.e.,
aID∗di

= 0 for all aID∗di
∈ I∗0

⋂
I∗1 , and aID∗di

6= 0 for

all aID∗di
∈ I∗d − I∗0

⋂
I∗1 ). We have Hhk(ID∗di ) =

ê(gx1 , · · · , gx`)
a
ID∗d

i · ê(BID∗di
, g). If S = ê(gx1 , · · · ,

gx`+1)x`+2 , we have Ii = S
a
ID∗d

i ·ê(BID∗di
, gx`+1 , gx`+2

) = ê(Hhk(ID∗di ), gx`+1)x`+2 , which implies that the
generated (Ii, Ci) is valid in this case. Otherwise,
the generated (Ii, Ci) is uniformly distributed in their
ranges and independent with any identity in sets I∗0
and I∗1 .

• Query Phase 2: This phase is the same as Query
Phase 2. Note that both in Query Phase 1 and
Query Phase 2, adversary A cannot query the de-
cryption keys of the challenge identities in set I∗0

⋃
I∗1−

I∗0
⋂
I∗1 .

• Guess Phase: Adversary A sends a guess d̂′ to algo-
rithm B. Let Abort′ denote the event that B does not
abort in all previous phases. Let {ID1, · · · , IDqp} be
the set of all queried IDs by A both in Query Phase 1
and Query Phase 2. Let I = {ID1, · · · , IDqp}

⋃
(I∗0⋃

I∗1 − I∗0
⋂
I∗1 ), where |I∗0

⋃
I∗1 − I∗0

⋂
I∗1 | ≤ N . Let

PI = Pr[Abort′|I], which will be decided later. As
in [16, 20], B “artificially” aborts with probability 1 −
1/(PI ·p(k)) for the polynomial p(k) from Definition 8
and outputs ⊥. If it does not abort, B uses the guess of
A. This means that if d = d′, B outputs 1, otherwise
it outputs 0.

In Guess Phase, B did not directly use the guess of A,
since event Abort′ might not be independent of the identi-
ties in I. So B “artificially” aborts to achieve the indepen-
dence. Let Abort be the event that B does not abort in the
above game. We have that Pr[Abort] = 1− Pr[Abort′|I]−
Pr[Abort′|I] · (1− 1/(PI · p(k))) = 1/p(k). Hence, we have
Pr[B = 1|S is real] = Pr[Abort] · ( 1

2
+ AdvAnon-MID-CPA

IBBE,A )

and Pr[B = 1|S is random] = Pr[Abort] · 1
2
, where 1

2
+

AdvAnon-MID-CPA
IBBE,A is the probability that A succeeds in the

Anon-MID-CPA game of IBBE. Further, we have Pr[B =
1|S is real]−Pr[B = 1|S is random] = 1

p(k)
·AdvAnon-MID-CPA

IBBE,A .

Hence, B breaks the (`+ 1)-MDDH assumption if A breaks
the Anon-MID-CPA security of the proposed IBBE scheme.

Finally, to evaluate PI , we can only approximate it (up
to an inversely polynomial error, by running TEval with
freshly generated keys sufficiently often), which introduces
an additional error term in the analysis. We refer to [20] for
details on this evaluation.

4.3 SS-MID-CPA Security
In the security proof of SS-MID-CPA, we prove that if

there is an adversary who can break the SS-MID-CPA secu-
rity of the above IBBE scheme in the standard model, then
there is an algorithm which can break the (` + 1)-MDDH
assumption in MG`+1(1k). Formally, we have the following
theorem.

Theorem 6. Assume the above IBBE scheme is imple-
mented in an (` + 1)-group system, and with a (poly, N)-
MPHF H into G`. Then, under the (`+ 1)-MDDH assump-
tion, the IBBE scheme is SS-MID-CPA secure.

Proof. Suppose a PPT adversary A wins in the SS-
MID-CPA game of the above IBBE scheme with advantage
AdvSS-MID-CPA

IBBE,A , in which A makes at most qp queries to or-

acle QIBBE
SK (·). To prove this theorem, we will construct a

PPT algorithm B to play the SS-MID-CPA game with adver-
sary A and take advantage of A to break the (`+ 1)-MDDH
assumption in MG`+1(1k). The constructed algorithm B is
as follows.

• Setup Phase: Algorithm B gets as input an (`+ 1)-
group system MPG`+1 with security parameter 1k

and group elements g, gx1 , · · · , gx`+1 , gx`+2 ∈ G1

and S ∈ G`+1, where either S = ê(gx1 , · · · , gx`+1)x`+2

(i.e., S is real) or S ∈ G`+1 uniformly (i.e., S is ran-
dom). B generates a (qp, N)-MPHF H into G`, sets
up the master public key as MP = (MPG`+1, g, p =
gx`+1 ,H, hk, ID) where (hk, td)← TGen(1k, gx1 , · · · ,
gx` , g), and sends MP to adversary A. Here, we
use the TGen and TEval algorithms of the (qp, N)-
MPHF property of H.

• Query Phase 1: Adversary A adaptively issues the
following query multiple times.

– Decryption Key Query QSK(ID): Taking as in-
put an identity ID ∈ ID, algorithm B does the
following steps:

1. Compute TEval(td, ID) = (aID, BID) ∈ Z∗q×
G`−1;

2. If aID = 0, return private key SKID = ê(BID,
p); otherwise, abort and output ⊥;

Note that we have SKID = ê(BID, p) = ê(BID,
g)x`+1 = Hhk(ID)x`+1 . So B can answer a QSK(
ID) query of A for identity ID precisely when
aID = 0.

• Challenge Phase: Adversary A sends a challenge
identity set I∗ = {ID∗1 , · · · , ID∗N} and two challenge
plaintexts M∗0 ∈ G`+1 and M∗1 ∈ G`+1 to algorithm B;

B picks d
$← {0, 1}, and does the following steps:
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1. For ID∗i ∈ I∗, compute TEval(td, ID∗i ) = (aID∗i ,
BID∗i

), and if aID∗i = 0, abort and output ⊥;

2. Choose a values r
$← Z∗q , initialize an empty list

T , and compute C0 = gx`+2 and C′0 = gr·x`+2 ;

3. For ID∗i ∈ I∗, compute Ii = S
aID∗

i ·ê(BID∗i
, gx`+1 ,

gx`+2) and Ci = Iri ·M∗d , and add the label-data
pair (Ii, Ci) into T ;

4. Generating dictionary L ← Creat(T ), and send
a challenge ciphertext C∗d = (C0, C

′
0,L) to adver-

sary A.

Suppose algorithm B does not abort in this phase (i.e.,
aID∗i 6= 0 for all aID∗i ∈ I

∗). We have Hhk(ID∗i ) =

ê(gx1 , · · · , gx`)
aID∗

i · ê(BID∗i
, g). If S = ê(gx1 , · · · ,

gx`+1)x`+2 , we have Ii = S
aID∗

i · ê(BID∗i
, gx`+1 , gx`+2)

= ê(Hhk(ID∗i ), gx`+1)x`+2 , which implies that the gen-
erated (Ii, Ci) is valid in this case. Otherwise, the gen-
erated (Ii, Ci) is uniformly distributed in their ranges.

• Query Phase 2: This phase is the same as Query
Phase 2. Note that both in Query Phase 1 and
Query Phase 2, adversary A cannot query the de-
cryption keys of the challenge identities in I∗.

• Guess Phase: Adversary A sends a guess d̂′ to algo-
rithm B. Let Abort′ denote the event that B does not
abort in all previous phases. Let I = {ID1, · · · , IDqp ,
ID∗1 , · · · , ID∗N} be the set of all queried IDs by A both
in Query Phase 1 and Query Phase 2 and all chal-
lenge identities. Let PI = Pr[Abort′|I], which will be
decided later. As in [16,20], B “artificially” aborts with
probability 1 − 1/(PI · p(k)) for the polynomial p(k)
from Definition 8 and outputs ⊥. If it does not abort,
B uses the guess of A. This means that if d = d′, B
outputs 1, otherwise it outputs 0.

In Guess Phase, B did not directly use the guess of A,
since event Abort′ might not be independent of the identi-
ties in I. So B “artificially” aborts to achieve the indepen-
dence. Let Abort be the event that B does not abort in the
above game. We have that Pr[Abort] = 1− Pr[Abort′|I]−
Pr[Abort′|I] · (1 − 1/(PI · p(k))) = 1/p(k). Hence, we
have Pr[B = 1|S is real] = Pr[Abort] · ( 1

2
+AdvSS-MID-CPA

IBBE,A )

and Pr[B = 1|S is random] = Pr[Abort] · 1
2
, where 1

2
+

AdvSS-MID-CPA
IBBE,A is the probability that A succeeds in the SS-

MID-CPA game of IBBE. Further, we have Pr[B = 1|S
is real] − Pr[B = 1|S is random] = 1

p(k)
· AdvSS-MID-CPA

IBBE,A .

Hence, B breaks the (`+ 1)-MDDH assumption if A breaks
the SS-MID-CPA security of the proposed IBBE scheme.

Finally, to evaluate PI , we can only approximate it (up
to an inversely polynomial error, by running TEval with
freshly generated keys sufficiently often), which introduces
an additional error term in the analysis. We refer to [20] for
details on this evaluation.

5. RELATED WORKS
AIBBE has been extensively investigated in recent years.

Several AIBBE schemes were proposed. Table 2 compares
the existing AIBBE schemes and our proposed AIBBE sche-
mes. More details are as follows. In 2010, Fan et al. [1] pro-
posed the first AIBBE scheme (called FHH’10 in our paper).

However, Wang et al. [2] and Chien [6] respectively demon-
strated that FHH’10 scheme fails to provide anonymity un-
der the inside attack. In other words, an intended receiver
of a ciphertext generated by FHH’10 scheme can extract the
identities of the other intended receivers. Hence, Wang et
al. [2] proposed an AIBBE scheme (called WZXQ’12 in our
paper) to improve FHH’10 scheme. Unfortunately, Zhang
et al. [3] presented that WZXQ’12 scheme is still unable
to provide anonymity, and proposed a new AIBBE scheme.
Tseng et al. [4] proposed an AIBBE scheme with the prov-
able security under chosen ciphertext attacks. Ren et al. [5]
proposed an AIBBE scheme based on asymmetric bilinear
groups, which is secure under the adaptive attack in the
standard model.

In 2012, Chien [6] also proposed a randomness-reuse-based
AIBBE scheme (called C’12 in our paper) to improve FHH’10
scheme. But Wang [21] pointed out that C’12 scheme does
not satisfy the indistinguishability of encryptions under the
non-adaptive and chosen ciphertext attacks. Hur et al. [7]
proposed an AIBBE scheme to reduce decryption cost, but
they did not give formal security proof. To protect anonymity
and reduce decryption cost, Cui et al. [8] introduced a new
concept called server-aided identity-based anonymous broad-
cast encryption scheme. In 2013, Zhang et al. [10] proposed
an AIBBE scheme (called ZT’13 in our paper) with the con-
stant decryption complexity. But, Zhang et al. [9] pointed
out that ZT’13 scheme did not achieve anonymity, and pro-
posed an improved AIBBE scheme. Tseng et al. [11] pro-
posed an AIBBE scheme with the constant decryption com-
plexity and the anonymity under the non-adaptive attacks
in the RO model.

In addition, Zhang et al. [22] constructed an AIBBE scheme
with the provable security under the adaptive attack in the
standard model. But this scheme has the number of public
parameters linear with the total number of users. Hence, it
fails to obtain the advantage of identity-based cryptography.

6. CONCLUSION
This paper proposes two AIBBE schemes in the RO and

standard models respectively. Both schemes employ the
ideas of dual randomness-reuse and history-independent dic-
tionary to achieve the constant decryption complexity and
the strong anonymity. Hence, they allow a receiver to de-
crypt a ciphertext with the complexity independent with
the number of receivers of the ciphertext, keep receivers’
anonymity of a ciphertext even under the inside attack.
In addition, the proposed AIBBE scheme in the standard
model is secure under the adaptive attack. So far as we
known, this scheme is the first one to achieve the constant
decryption complexity, and the strongest security compared
with previous works.
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Table 2: Comparisions in the Aspects of Security and Decryption Complexity
Scheme Type Adaptive Model Strong Anonymity Decryption Complexity

FHH’10 [1]

Lagrange-Polynomial

sMID RO Achieved

O(n)

WZXQ’12 [2] sMID RO Achieved
ZX’12 [3] No Proof

THC’14 [4] sMID RO Achieved
RNZ’14 [5] MID Standard Achieved

C’12 [6]

Randomness-Reuse

No Proof
HPH’12 [7] sMID RO Failed
CMG’13 [8] MID RO Failed
ZM’15 [9] sMID RO Failed
ZT’13 [10] sMID RO Failed

O(1)
TTHC’14 [11] sMID RO Failed

Our First AIBBE sMID RO Achieved
Our Second AIBBE MID Standard Achieved
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APPENDIX
A. THE PROOF OF THEOREM 1

Proof. Without loss of generality, let I = {ID1, · · · ,
IDN}, ID′ = IDi , and (Ii, Ci) be the label-data pair gen-
erated by algorithm C ← Enc(MP, I,M), where i ∈ [1, N ],
Ii = ê(p,H(IDi))

r1 and Ci = ê(p,H(IDi))
r2 · M . Parse

C = (C0, C
′
0,L). Algorithm Dec(SKID′ , C) shows that I ′ =

ê(C0, SKID′) = ê(gr1 ,H(ID′)s) = ê(gs,H(ID′))r1 = ê(p,
H(ID′))r1 = Ii according to the definition of bilinear map.
Hence, we have C′ = Ci, except with a negligible prob-
ability in the security parameter k. According to equation
C′ ·ê(C′0, SKID′)

−1 = ê(p,H(IDi))
r2 ·M ·ê(C′0, SKID′)

−1 =
M , we can prove that Dec(SKID′ , C) = M .

B. THE PROOF OF THEOREM 2
Proof. To prove this theorem, we will construct a PPT

algorithm B that plays the Anon-sMID-CPA game with ad-
versary A and utilizes the capability of A to solve the DBDH
problem in BGen(1k) with advantage AdvAnon-sMID-CPA

IBBE,A .
The constructed algorithm B in the Anon-sMID-CPA game
is as follows.

• Setup Phase: Adversary A sends two challenge iden-
tity sets (I∗0 , I∗1 ) to the challenger, where I∗0 = {ID∗01 ,
..., ID∗0N } and I∗1 = {ID∗11 , ..., ID∗1N }. Algorithm B
takes as inputs (q,G,G1, g, ê, g

a, gb, gc, Z) (where Z equ-
als either ê(g, g)abc or ê(g, g)y) and identity space ID =
{0, 1}∗, initializes a list HList = ∅ ⊆ ID×G×Z∗q , and
sends the master public key MP = (q,G,G1, g, ê, p =
ga, ID) to adversary A;

• Query Phase 1: Adversary A adaptively issues the
following queries multiple times. To simplify the de-
scription of this phase, we suppose that A never issues
the same queries both in the following two kinds of
queries.

– Hash Query QH(ID): Given a queried identity
ID ∈ ID, algorithm B does the following steps:

1. Pick x
$← Z∗q ;

2. If the queried identity ID ∈ I∗0
⋃
I∗1 and ID /∈

I∗′
⋂
I∗, add tuple (ID, gc·x, x) into HList, and

return gc·x to A;

3. Otherwise add tuple (ID, gx, x) into HList, and
return gx to A;

– Decryption Key Query QSK(ID): Given a queried
identity ID ∈ ID, algorithm B does the following
steps:

1. If (ID, ∗, ∗) /∈ HList, query QH(ID);

2. According to ID, retrieve (ID,X, x) from HList;

3. Return private key ga·x to A;

• Challenge Phase: Adversary A sends a plaintext M

to algorithm B. B picks d
$← {0, 1}, and does the fol-

lowing steps:

1. Choose value r
$← Z∗q , initialize an empty array L,

and compute C0 = gb and C′0 = gb·r;

2. For i ∈ [1, N ], retrieve tuple (ID∗di , X, x) from
HList according to identity ID∗di , compute Ii =
Zx and Ci = Zx·r ·M if IDd

i /∈ I∗0
⋂
I∗1 , otherwise

compute Ii = ê(ga, gb)x and Ci = ê(ga, gb)x·r ·M ,
and finally set L[Ii] = Ci;

3. Return challenge ciphertext C∗d = (C0, C
′
0,L) to A;

• Query Phase 2: This phase is the same as Query
Phase 1. Note that both in Query Phase 1 and
Query Phase 2, A can not query the private keys
corresponding to the challenge identities in I∗0 and I∗1
except the challenge identities in I∗0 ∩ I∗1 ;

• Guess Phase: Adversary A sends a guess d′ to algo-
rithm B. If d = d′, B outputs 1; otherwise, outputs
0.

Next, we will prove that the above game is computation-
ally indistinguishable with a real one in the view of adversary
A when Z = ê(g, g)abc, and adversary A has the negligible
advantage to win in the above game when Z = ê(g, g)y.
These proofs will finally demonstrate this theorem.

In the above game, it is easy to verify that all generated
private keys are valid. When Z = ê(g, g)abc, the generated
challenge ciphertext is a real one. Hence, in the view of
adversary A, the above game in this case is computationally
indistinguishable with a real one. When Z = ê(g, g)y, the
generated challenge ciphertext is only dependent with the
challenge identities in I∗0

⋂
I∗1 . But it is independent with

the location of these challenge identities respectively in sets
I∗0 and I∗1 , since the array L in the challenge ciphertext is
history-independent. Hence, adversary A has the negligible
advantage to win in the above game when Z = ê(g, g)y.
Summarily, we have the following equation.

AdvDBDH
B (1k)

= Pr[B = 1|Z = ê(g, g)abc]− Pr[B = 1|Z = ê(g, g)y]

= Pr[d = d′|Z = ê(g, g)abc]− Pr[d = d′|Z = ê(g, g)y]

= AdvAnon-sMID-CPA
IBBE,A +

1

2
− 1

2
= AdvAnon-sMID-CPA

IBBE,A

In addition, it is clear that algorithm B is a PPT algo-
rithm, if adversary A is a PPT adversary. In conclusion, if
a PPT adversary A wins in the Anon-sMID-CPA game of
the above IBBE scheme with advantage AdvAnon-sMID-CPA

IBBE,A ,
there is a PPT algorithm B that solves the DBDH problem
in BGen(1k) with AdvDBDH

B (1k) = AdvAnon-sMID-CPA
IBBE,A .

C. THE PROOF OF THEOREM 3
Proof. To prove this theorem, we will construct a PPT

algorithm B that plays the SS-sMID-CPA game with adver-
sary A and utilizes the capability of A to solve the DBDH
problem in BGen(1k) with advantage AdvSS-sMID-CPA

IBBE,A . The
constructed algorithm B in the SS-sMID-CPA game is as fol-
lows.

• Setup Phase: Adversary A sends an identity set I =
{ID1, ..., IDN} to algorithm B. Then B takes as in-
puts (q,G,G1, g, ê, g

a, gb, gc, Z) (where Z equals either
ê(g, g)abc or ê(g, g)y) and identity space ID = {0, 1}∗,
initializes a list HList = ∅ ⊆ ID×G×Z∗q , and sends the
master public key MP = (q,G,G1, g, ê, p = ga, ID) to
adversary A;
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• Query Phase 1: Adversary A adaptively issues the
following queries multiple times. To simplify the de-
scription of this phase, we suppose that A never issues
the same queries both in the following two kinds of
queries.

– Hash Query QH(ID): Given a queried identity
ID ∈ ID, algorithm B does the following steps:

1. Pick x
$← Z∗q ;

2. If the queried identity ID ∈ I, add tuple (ID,
gc·x, x) into HList, and return gc·x to A;

3. Otherwise add tuple (ID, gx, x) into HList, and
return gx to A;

– Decryption Key Query QSK(ID): Given a queried
identity ID ∈ ID, algorithm B does the following
steps:

1. If (ID, ∗, ∗) /∈ HList, query QH(ID);

2. According to ID, retrieve (ID,X, x) from HList;

3. Return private key ga·x to A;

• Challenge Phase: Adversary A sends two challenge
plaintexts (M∗0 ,M

∗
1 ) with |M∗0 | = |M∗1 | to algorithm B.

Then B picks d
$← {0, 1}, and does the following steps:

1. Choose value r
$← Z∗q , initialize an empty array L,

and compute C0 = gb and C′0 = gb·r;

2. For i ∈ [1, N ], retrieve tuple (IDi, X, x) from HList
according to identity IDi, compute Ii = Zx and
Ci = Zx·r ·M∗d , and set L[Ii] = Ci;

3. Return challenge ciphertext C∗d = (C0, C
′
0,L) to A;

• Query Phase 2: This phase is the same as Query
Phase 1. Note that both in Query Phase 1 and
Query Phase 2, A can not query the private keys
corresponding to the identities in set I;

• Guess Phase: Adversary A sends a guess d′ to algo-
rithm B. If d = d′, B outputs 1; otherwise, outputs
0.

Next, we will prove that the above game is computation-
ally indistinguishable with a real one in the view of adversary
A when Z = ê(g, g)abc, and adversary A has the negligible
advantage to win in the above game when Z = ê(g, g)y.
These proofs will finally demonstrate this theorem.

In the above game, it is easy to verify that all generated
private keys are valid. When Z = ê(g, g)abc, the generated
challenge ciphertext is a real one. Hence, in the view of ad-
versary A, the above game in this case is computationally
indistinguishable with a real one. When Z = ê(g, g)y, the
generated challenge ciphertext is independent with all iden-
tities in set I. The generated challenge ciphertext has the
same distribution regardless of the choice of d. Hence, ad-
versary A has the negligible advantage to win in the above
game when Z = ê(g, g)y. Summarily, we have the following
equation.

AdvDBDH
B (1k)

= Pr[B = 1|Z = ê(g, g)abc]− Pr[B = 1|Z = ê(g, g)y]

= Pr[d = d′|Z = ê(g, g)abc]− Pr[d = d′|Z = ê(g, g)y]

= AdvSS-sMID-CPA
IBBE,A +

1

2
− 1

2
= AdvSS-sMID-CPA

IBBE,A

In addition, it is clear that algorithm B is a PPT algo-
rithm, if adversary A is a PPT adversary. In conclusion, if
a PPT adversary A wins in the SS-sMID-CPA game of the
above IBBE scheme with advantage AdvSS-sMID-CPA

IBBE,A , there
is a PPT algorithm B that solves the DBDH problem in
BGen(1k) with AdvDBDH

B (1k) = AdvSS-sMID-CPA
IBBE,A .
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