
Privacy Preserving Disease Treatment & Complication
Prediction System (PDTCPS)

Qinghan Xue
Department of CSE
Lehigh University

Bethlehem, PA, USA
qix213@lehigh.edu

Mooi Choo Chuah
Department of CSE
Lehigh University

Bethlehem, PA, USA
mcc7@lehigh.edu

Yingying Chen
Department of ECE
Stevens Institute of

Technology
Hoboken, NJ, USA

yingying.chen@stevens.edu

ABSTRACT
Affordable cloud computing technologies allow users to ef-
ficiently store, and manage their Personal Health Records
(PHRs) and share with their caregivers or physicians. This
in turn improves the quality of healthcare services, and lower
health care cost. However, serious security and privacy con-
cerns emerge because people upload their personal infor-
mation and PHRs to the public cloud. Data encryption
provides privacy protection of medical information but it
is challenging to utilize encrypted data. In this paper, we
present a privacy-preserving disease treatment, complica-
tion prediction scheme (PDTCPS), which allows autho-
rized users to conduct searches for disease diagnosis, per-
sonalized treatments, and prediction of potential complica-
tions. PDTCPS uses a tree-based structure to boost search
efficiency, a wildcard approach to support fuzzy keyword
search, and a Bloom-filter to improve search accuracy and
storage efficiency. In addition, our design also allows health
care providers and the public cloud to collectively gener-
ate aggregated training models for disease diagnosis, per-
sonalized treatments and complications prediction. More-
over, our design provides query unlinkability and hides both
search & access patterns. Finally, our evaluation results us-
ing two UCI datasets show that our scheme is more efficient
and accurate than two existing schemes.

Keywords
Cloud Computing; PHR; Fuzzy Keyword; Query Privacy;
Data Mining

1. INTRODUCTION
In recent years, cloud computing has emerged to be a pop-

ular technology that provides scalable and elastic storage
and computation resources for enterprises and individuals.
More and more organizations and individuals begin to em-
brace these benefits by outsourcing their data into the cloud
[5]. For example: online personal health record (PHR) sys-
tems such as Microsoft HealthVaults allow patients to store

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS’16, May 30–June 3, 2016, Xi’an, China.
c© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897893

and manage their own medical records in the public cloud.
Such systems allow users easy access and sharing of their
personal health data.

Meanwhile, electronic health record systems contain vari-
ous types of patients’ information, which includes their de-
mographics, diagnosis codes, medication, allergies, and lab-
oratory test results [7],[18]. Such health related data is used
not just for primary care but also provides a promising av-
enue for improving healthcare related research. Data con-
sumers can gather large sets of health related information
including PHRs from users or healthcare providers and per-
form large scale analytic tasks, e.g., data-mining tasks to
predict disease epidemic [28] or for query and answering [1].
A number of repositories have also been set up to facili-
tate the dissemination and reuse of patient-specific data for
research advancement, e.g., the Database of Genotype and
Phenotype (dbGaP) [22]. In addition, work is currently un-
der way to construct the Nationwide Health Information
Network (NHIN) [2] to provide privacy-preserving search
over distributed, access controlled content.

Although the cloud-assisted healthcare systems offer a
great opportunity to improve the quality of healthcare ser-
vices and potentially reduce healthcare costs, there are many
security and privacy concerns. For example, people have
started to realize that they would completely lose control
over their personal information once it enters the cyberspace.
In order to minimize the risk of data leakage to the cloud
service providers, sensitive data must be encrypted before
being outsourced into the cloud. By doing so, the cloud ser-
vice providers can only see data in encrypted form and never
learn any information about the encrypted data values.

However, this in turn makes data utilization challenging.
For instance, it is difficult to apply machine learning tech-
niques to learn from aggregated privately encrypted data for
accurate predictions. In order to solve the problem, a set of
techniques has been developed (e.g., [6, 13, 16, 19]). While
some approaches [13, 16] demonstrated that basic machine
learning algorithms such as simple linear classifiers can be
performed efficiently to build models over a small scale en-
crypted dataset, their efficiency degraded rapidly as its size
grows. Though other techniques [6, 19] had utilized more
sophisticated classifiers (e.g., support vector machine) to ad-
dress the problem, either they lack security & privacy fea-
tures or require large computational cost. A recent work [21]
designed a scheme which provides machine learning mod-
els over encrypted dataset but their encryption scheme has
high computational and communication cost. Another re-

841

cent work [10] also designed a scheme which allows data min-
ing over encrypted data but their scheme does not construct
encrypted index tree for efficient search. Neither schemes
provide features to hide search and access patterns.

To overcome the above limitations, in this paper, we de-
sign a privacy-preserving disease treatment, complication
prediction scheme (PDTCPS), which allows authorized users
to conduct searches for disease diagnosis, personalized treat-
ments, and prediction of potential complications of their ill-
nesses. In particular, we design an encrypted index tree
which supports fuzzy keyword queries. The tree-based struc-
ture is used to provide search efficiency. Each top level node
in our encrypted index tree contains an encrypted category
keyword that represents a specific body part, e.g., bone &
joints, kidneys, etc, and a Bloom filter which contains all the
disease keywords classified under this top level node, and
their associate fuzzy keyword sets. All relevant information,
e.g., associated diseases classified under each top-level node
will be stored in the 2nd level nodes. Each 2nd level node
(representing k diseases) has three child nodes, one for diag-
nosis, one for complication prediction and one for treatment
options. These three child nodes are leaf nodes. Each leaf
node stores relevant information about k diseases, including
a training model, its encrypted feature sets and the corre-
sponding Bloom filter containing fuzzy keyword set of each
disease. In addition, we include random components in our
design to provide query unlinkability, hide search and access
patterns. Such features strengthen further the security &
privacy capability of our design.

In addition, we present security analysis, and evaluate the
effectiveness and efficiency of our proposed scheme using two
datasets from the UCI machine learning repository. Our
experimental results show that compared to two existing
schemes described in [21, 10], our scheme is more efficient (in
terms of communication cost) and has higher accuracy than
both of these existing schemes. Additionally, our scheme ac-
commodates typos in users’ submitted requests, which could
not be handled by the existing schemes. In summary, our
contributions can be summarized as follows:

• We propose a Privacy-Preserving Disease Treatment,
Complication Prediction Scheme (PDTCPS), which
allows users to conduct privacy-aware searches with
high search efficiency and accuracy.

• PDTCPS is designed to handle typos in queries and
provide query unlinkability with minimal information
leakage.

• Our design allows healthcare providers and the pub-
lic cloud to collectively generate aggregated training
models for disease diagnosis, personalized treatments
and prediction of potential illness complications.

• We provide a formal security analysis to justify the
privacy-preserving guarantee of our proposed scheme.

• We present simulation results of our proposed scheme
using two UCI datasets, namely the PIMA Indians Di-
abetes and the Breast Cancer Wisconsin Datasets.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 provides detailed descrip-
tions of the system and threat models, our design goals,
and definitions for the techniques used in our design. Sec-
tion 4 describes our privacy-preserving disease treatment &
complication prediction system (PDTCPS) in detail. Sec-
tion 5 presents the security analysis of PDTCPS. Section 6

presents the evaluation results where we compare our scheme
with two existing schemes using UCI datasets. Section 7
concludes the paper with discussions of our future work.

2. RELATED WORK
2.1 Keyword Search over Encrypted Data

Searchable encryption (SE) is a cryptographic method
designed for users to securely conduct keyword search over
encrypted data. It was first proposed by Song et al. in
[25], where their proposed scheme supports single keyword
search without an index and the server must scan the whole
document to find the search result. After this work, many
improvements and novel schemes have been proposed.

Many SE schemes are either based on public key cryp-
tography (PKC) or symmetric key cryptography (SKC).
Boneh et al. [9] proposed the first public key based search-
able encryption scheme. Then, to better protect the in-
dex and query privacy, Sahai and Waters [24] proposed the
idea of Attribute-based Encryption (ABE). In their work,
a decrypter could decrypt the message only if his attributes
are the same as what is specified by the encrypter. It was
later extended to the Key-Policy Attribute-Based Encryp-
tion (KP − ABE) [15], in which a ciphertext is created
with an encryption policy involving a set of attributes. In
addition, S.Roy et al. [23] have presented an enhanced Ci-
phertext Policy Attribute-based Encryption (CP − ABE)
scheme which provides the user revocation feature. In their
scheme, each client’s private key is associated with a set of
attributes and each ciphertext is encrypted with an access
policy so that the encrypted data can only be accessed by
the authorized clients.

Other works focus on enriching the search functionality,
e.g. providing ranked results, multi-keyword search or fuzzy
keyword search. For example, Cao et al. [11] proposed
a privacy-preserving multi-keyword ranked search scheme,
which allows multi-keyword query and provides similarity
ranked results. To improve the search efficiency, Wenhai
Sun et al., proposed a tree-based search algorithm in [27].
In addition, Cong Wang et al. [29] proposed a symbol-based
tree-traverse searching mechanism to support fuzzy search
with constant search time independent of the size of the key-
word set. To enrich the search functionality, Chuah et al.
[12] introduced a tree structure index to support efficient
keyword search and flexible incremental updates.

2.2 Predictive Analysis over Encrypted Medi-
cal Data

The increasing availability of commercial options for stor-
ing and providing online access to patients’ electronic med-
ical records (EMR) has generated much interests among
researchers from various fields, e.g., data-mining or bioin-
formatics to build predictive models using data mining tech-
niques over large scale electronic healthcare data.

Most of these health data research works focus on design-
ing techniques to ensure privacy of sensitive data, or new
machine learning classification methods, etc.

2.2.1 Privacy-preserving Health Data Protection
Privacy-preserving health data storage is studied by Sun

et al. [26], where they design a secure healthcare system
HCPP to provide privacy protection on patients’ records.
Their scheme allows patients to store their encrypted health
data on a third-party server and conducts efficient health

842

information retrieval. In addition, in [20], Li et al. have
proposed a cloud-based data-sharing framework where the
attribute-based encryption (ABE) scheme was used to en-
crypt patients’ medical records. While their scheme provides
a strong guarantee that no one could mine any useful infor-
mation from the encrypted health data, it also makes data
utilization a very challenging task. For example, the public
cloud can only serve as a remote storage but it cannot con-
duct data mining over the encrypted data. Moreover, Guo
et al. [17] proposed a verifiable privacy-preserving scheme
for a cloud-assisted mHealth system which can answer some
high level queries but they did not discuss how to generate
aggregated training models via machine learning techniques.

2.2.2 Privacy-preserving Health Data Mining
Many privacy-preserving data mining schemes for clini-

cal decision support can be grouped into two major cat-
egories: randomization based approaches and SMC-based
approaches. In the randomization-based approaches, the
original data was protected by adding some random noise.
In [4], Agrawal and Srikant demonstrated that some statis-
tical properties could still be preserved when adding ran-
dom noise to the training data. As a result, a Naive Bayes
classifier with comparable accuracy could still be obtained
from the sanitized data. In [14], Evfimievski et al. pre-
sented a new “amplification” method which limits privacy
breaches without the knowledge of data distribution. Using
their method, randomized data will be added to the original
data to avoid privacy breaches. While both proposed ran-
domization methods can protect the sensitive data, a trade
off needs to be made between accuracy and privacy.

Secure multiparty computation (SMC) is designed to al-
low multiple parties, each holding a private input, to collec-
tively perform a computation without disclosing information
more than the output reveals. For example, Lin et al. in
[21] had designed a cloud-assisted mHealth monitoring sys-
tem that not only protects the data privacy, but also returns
treatment recommendations. In [10] the authors had con-
structed three major privacy-preserving classifiers including
hyperplane decision, Naive Bayes and decision trees to con-
duct models over encrypted data. While these schemes are
secure, they incur large computational and communication
costs.

3. PROBLEM FORMULATION
In this section, we first describe our system and threat

models. Then, we describe the design goals of our pro-
posed privacy-preserving disease treatments and complica-
tions prediction system (PDTCPS). Next, we provide de-
scriptions of some important building blocks used in our
solution.

3.1 System Model for PDTCPS
PDTCPS consists of four parties: the hospitals, the public

cloud server, a fully-trusted authority (TA), and individual
clients, as shown in Fig 1.

• Hospitals: Hospitals first collect patients’ medical records,
encrypt them and store them in the private clouds
they owned. The private cloud servers may perform
data mining operations over the stored data to gener-
ate locally trained models. Based on these models, the
hospitals can later diagnose diseases, provide personal-
ized treatments, and predict disease complications for
their patients. However, since each hospital may only

have limited number of patients associated with a par-
ticular disease, the prediction models may not always
be comprehensive and accurate. Thus, in order to ob-
tain more accurate prediction, the hospital servers may
send relevant information extracted from their trained
model securely to the public cloud so that the pub-
lic cloud can perform data mining operations on the
aggregated data received to generate a more accurate
prediction model for all participating hospitals to use.

• Semi-trusted public cloud: The public cloud stores the
relevant encrypted information sent from each partici-
pating hospital, and performs data mining operations
to generate predictive models. It also constructs a key-
word based encrypted index tree which allows autho-
rized clients to conduct searches based on their indi-
vidual profiles, lab tests for potential disease diagnosis,
treatment options, and risk analysis of potential com-
plications related to their current illnesses.

• Fully-trusted authority (TA): TA is responsible for gen-
erating and distributing the symmetric encryption keys
to authorized clients and all participating hospitals. It
is also responsible for sending relevant disease cate-
gorization information, e.g., which disease belongs to
which top-level category nodes, to the hospitals and
the public cloud.

• Clients: Clients refer to those who wish to conduct
searches for disease diagnosis, personalized treatments,
and assessing their risks of disease complications caused
by their current illnesses.

At the initial phase, TA generates the encryption keys and
sends them to all participating hospitals and their autho-
rized clients. Upon receiving the keys, each hospital server
first encrypts its data and performs data mining operations
to generate locally trained models. Each hospital server then
sends the relevant information from the locally trained mod-
els securely to the public cloud. The public cloud will then
generate aggregated trained models for disease diagnosis,
possible treatment models for different groups of patients
based on their profiles and medical histories, and prediction
models of any potential disease complications. In addition,
the public cloud will generate an encrypted index tree which
allows clients to search for information more efficiently. De-
tails of what the encrypted index tree contains will be de-
scribed in Section 4.

When a client wishes to query the public cloud for health
related predictions, the client first uses the received keys
from the TA to generate a search request and then sends
it to the public cloud. After receiving the encrypted query,
the public cloud server will perform the search over the en-
crypted index tree and send back all the relevant answers to
the authorized client.

3.2 Adversarial Model
We assume that the trusted authority can be trusted fully

and it will not be compromised. As for all participating
hospitals, we assume that they are semi-trusted, i.e., they
will honestly follow the designated protocols but always cu-
rious to gain additional insights from the information sent
by other hospitals. They may also collude with the cloud
server to find such information.

Similarly, we also adopt a “honest-but-curious” model for
the public cloud server as in [30, 29]. Like the hospitals, it
will execute the designated protocols honestly but will be

843

Figure 1: System Model for PDTCPS

curious to infer any extra information it can derive from the
information sent by all participating hospitals and from the
queries/responses issued/received by the authorized clients.

Depending on the available information to the cloud server,
the following two threat models are considered in this work:

• Known Ciphertext Model: The encrypted data, the
secure index, encrypted queries and responses are all
available to the cloud server.

• Known Background Model: In addition to the avail-
able information assumed in the former model, the
cloud server can also use statistical information to de-
duce specific contents in a query. It can even collude
with other attackers to derive additional information
from the encrypted data.

In addition, we assume users are trusted entities. They
obtain authorized keys from the TA.

3.3 Design Goals
To address the security and threat models we have pre-

sented earlier, we design a PDTCPS scheme, which allows
authorized users to conduct privacy-aware searches for dis-
ease diagnosis, personalized treatment and prediction of po-
tential complications based on their individual profiles, lab-
oratory test results, and potential medical histories. Our
system is designed with the following goals in mind:

• Fuzzy keyword search: During query generation, an
authorized client may make typos while inputting query
contents. For example, a client may type “dibetes”
instead of “diabetes” in the following query: “(dis-
ease=“dibetes”)”. Our scheme should support such
fuzzy query and still return relevant information.

• Search Efficiency and Accuracy: The scheme should
achieve high search accuracy, i.e., it should return mostly
correct answers to search queries. It should also achieve
high search efficiency, i.e., the average search time per
query is small.

• Privacy Guarantee: Our system should provide pri-
vacy guarantees by not leaking sensitive information
about stored data or encrypted indices. Our system
should provide query privacy and unlinkability. The
cloud server should not be able to deduce sensitive
contents that have been used for search. Submitted
queries should look different each time even if the same
keyword and lab results are submitted. Furthermore,
the search and access patterns should be hidden from
the public cloud server. In other words, the encrypted
index structure should be designed such that the server
traverses different nodes on the index tree even for the
same search request.

• Extensibility: Our system should be designed such
that the encrypted index tree as well as trained data
models can be updated easily without complete re-
design.

3.4 Important Building Blocks
Before we present the detailed description of our newly

designed scheme, we first discuss some of the security tools
we use in this work, and define a few terminologies.

1. Organization of Information Regarding Various Dis-
eases: Patients may suffer from different types of diseases.
To make it easier for PDTCPS we design to answer users’
questions regarding diagnosis, treatment options, or poten-
tial disease complications, we decide to categorize patients’
illnesses similar to how a popular healthcare forum website
called patientslikeme organizes different types of diseases.
Diseases are categorized based on how they affect human
body parts (refer to Fig 2), e.g., Endocrine includes all dis-
eases which affect the endocrine system such as diabetes,
hypothyroidism, hyperthyroidism, etc.

For each disease, our system keeps several pieces of im-
portant information, namely (i) a trained model for disease
diagnosis based on results of laboratory tests, symptoms,
(ii)various treatment options based on patients’ profiles, and
(iii) a trained model for complication prediction based on pa-
tients’ profiles, laboratory tests, and medical histories, e.g.,
other diseases a patient may have.

Figure 2: Healthcare Searchable Tree
2. Order-preserving Encryption: Order-preserving sym-

metric encryption (OPE) is a deterministic encryption scheme
which preserves numerical ordering of the plaintexts. It al-
lows order relations between data items to be established
based on their encrypted values, without revealing the data
itself. For example if x ≤ y, then OPEK(x) ≤ OPEK(y),
for any secret key K. Thus, with the help of OPE encryp-
tion, the server can perform data mining operations over the
encrypted data.

3. Parallel SVM method: Support Vector Machines (SVMs)
are powerful classification and regression tools, but their
computational costs increase rapidly with the size of train-
ing instances. Efficient parallel algorithms for constructing
SVM models are critical to ensure that SVM can be used
for large scale data mining analysis.

The parallel SVM method [31] we use is based on the
cascade SVM model where a partial SVM model is con-
structed for each partition of a large dataset. Then, the
partial SVMs are aggregated iteratively as shown in Fig
3. The sets of support vectors from two SVMs are merged
into one set and used to create a new SVM . Such a pro-
cess is repeated until only one set of support vectors remain.
This parallel SVM approach allows large scale optimization

844

problems to be divided into smaller independent optimiza-
tions.

Figure 3: Training process of parallel SVM

4. Parallel Decision Tree method: Decision trees are sim-
ple yet effective classification algorithms, but one needs to
sort all numerical attributes in order to decide where to split
a node within a decision tree, which costs much computation
time when a large data set is involved. Thus, it is important
to develop parallel version of decision tree algorithms which
can be efficient and scalable.

The decision tree method we use is a parallel histogram-
based decision tree algorithm for classification [8] where the
master node builds the regression trees layer by layer as
shown in Fig 4. At each iteration, a new layer is constructed
as follows: each node compresses its share of the data using
histograms and sends them to the master node. The master
node merges the histograms and uses them to approximate
the best splits for each leaf node, thereby constructing a new
layer. Then, the master node sends this new layer to each
participating node, and those nodes construct histograms
for this new layer. Therefore, every iteration consists of an
updating phase performed simultaneously by all the partici-
pating nodes and a merging phase performed by the master
node. The communication cost for this method consists of
all the histograms sent by the participating nodes to the
master and the master sending information of a new layer
of the tree to those nodes.

4. PDTCPS SCHEME
As discussed earlier, PDTCPS provides a secure way for

clients to diagnose their diseases, predict complications and
search for possible treatment options for their illnesses. One
important component of our PDTCPS system is the en-
crypted index tree that the public cloud constructs based
on instructions given by the TA. Before we describe our
scheme, we first give the definitions of various notations we
use.
Notations:
• KO - the symmetric key for OPE encryption.

Figure 4: Training process of parallel Decision Tree

• KB - the Bloom filter generation key.
• KA - the key used to generate key hash values for key-

words, i.e. Enc(w) = KeyHash(KA, w).
• CW - the category keywords set, denoted as CW={cw1,

cw2, · · · , cw|CW |}.
• W - the disease keywords set, denoted as W={w1, w2,
· · · , w|W |}.
• W̃i - a subset of W , indicating the disease keywords

in the ith category, denoted as W̃i={ai1, ai2, · · · , ai|W̃i|
},

where aij ∈ W .

• S̃ - a set, indicating the number of children that under

each category node, denoted as S̃ = {|C1|, |C2|, · · · |C|S̃||}.
• k - the number of diseases stored in every 2nd level node.
• bf(wi) - a Bloom filter, containing the keyword wi and

its associated fuzzy keywords.
• s̃v - a set, indicating the training features of a disease.
• cwq - the category keyword for the query.
• F - the lab test results set, denoted as F = {F1, F2, · · · }.
• h - the number of hash functions used in generating the

Bloom filter.

4.1 Overview
Fig 5 is an overview of PDTCPS which shows the informa-

tion provided by the TA, hospitals, and queries submitted
by authorized clients.

Figure 5: Overview of PDTCPS

During the encrypted index tree construction phase, the
TA sends the public cloud some information to help the
public cloud build the encrypted index tree. Specifically, TA
sends the public cloud a set of encrypted category keywords,
which will form the 1st level nodes. In addition, the TA
sends a Bloom filter for each 1st level node which contains
keywords of all the illnesses listed under this 1st level node
as well as their associated fuzzy keywords. Fuzzy keywords
are generated to deal with typos. For example, for a disease
or category keyword, wi = “hypoglycemia”, the following
wild-card keywords having an edit distance of 1 from the
keyword “hypoglycemia”: {∗hypoglycemia, h∗ypoglycemia,
hy ∗ poglycemia, hyp ∗ oglycemia, hypo ∗ glycemia, hypog ∗
lycemia, hypogl∗ycemia, hypogly ∗cemia, hypoglyc∗emia,
hypoglyce ∗ mia, hypoglycem ∗ ia, hypoglycemi ∗ a, · · · }
are inserted into the Bloom filter. Note that, it is easy to
extend our system to support multiple edit distances. (e.g.,
generate one Bloom filter per edit distance).

The TA also sends information regarding the number of

845

children each 1st level node will have, e.g., top-level node i
will have |Ci| 2nd level nodes. Each 2nd level node has a
Bloom filter containing k encrypted disease keywords and
their associated fuzzy keyword sets (to address typos). All
Bloom filters associated with 2nd level nodes are also sent to
the public cloud. The public cloud then stores those Bloom
filters in the appropriate child nodes of first level nodes.

Each 2nd level node represents k diseases and has three
child nodes, namely (i) diagnosis, (ii) complication predic-
tion, and (iii) treatment options. These child nodes are leaf
nodes. The diagnosis node will contain the training models
for disease diagnosis of the k diseases that this 2nd level node
represents. Each training model has an associated disease
token (which is a secure Bloom filter that contains hash val-
ues of a disease keyword with its typos) for the public cloud
to determine which training model to use when it processes a
query. Similarly, the complication prediction node contains
k training models, each for predicting potential complica-
tions which may arise of a particular disease. Finally, the
treatment node contains training models for k diseases, one
for each illness. Each training model represents an aggre-
gated model constructed by the public cloud using encrypted
information sent by each hospital. The training model is
built using patients’ profiles, disease treatments, laboratory
tests, etc, and is used to assess the best treatment option
for a particular patient based on his personal profile, and/or
laboratory test results.

As for the clients, they may use their personal profiles
and lab tests results to generate search requests. After re-
ceiving an encrypted search request, the public cloud server
first finds a matched category in the 1st level category nodes.
Then, the server will only search for matching results among
the child nodes of that best matched 1st level category node.
This can significantly reduce the search time because the
server merely searches information within this relevant sub-
tree structure, only a subset of the whole information collec-
tion. The server goes through the child nodes of this selected
category node to find k = 2 best matched 2nd level nodes.
Next, based on the query identifier, the server randomly se-
lects one of the k matched level 2 nodes, and traverses into
its sub-tree structure based on the query type, e.g., diagno-
sis, complication or treatment. After finding the matched
leaf node, the cloud server will return the answers using the
appropriate training model for that query. For example,
based on the disease token and query type, the cloud server
selects the appropriate training model to see if a client has
suffered this disease or predict potential complications that
may arise or the treatment options for this particular dis-
ease based on that client’s unique profiles and laboratory
test results.

4.2 Detail Design of PDTCPS
We present more detailed descriptions of the proposed

scheme in this section.

4.2.1 Index Tree Construction
The public cloud constructs a keyword based encrypted in-

dex tree which allows authorized clients to conduct searches
for health related questions based on their individual profiles
and lab tests results.

Here, we describe how the encrypted index tree is con-
structed. In our design, we use SHA − 256 as our keyed
hash function, and use L-bit Bloom filters to handle typos.

1. Operations performed by the TA:
(i) In the initialization phase, a secret key SK = {KO,KB ,

KA} is produced by the trust authority where (a) KO is a
symmetric key for OPE operation; (b)KB is the generation
key for the Bloom filter generation; (c) KA is the key used
for computing key hash values of category keywords.

(ii) Then, TA generates a set of key hash values of category
keywords, Enc(CW) = {Enc(cw1), Enc(cw2), · · · } which
will form the 1st level nodes.

(iii) For every category i, TA also produces a set: W̃i

= {ai1, ai2, · · · , ai|W̃i|
}, where aij is a disease keyword

belonging to category i. Next, for each keyword aij , the TA
generates a fuzzy keyword set: {aij1 , aij2 , · · · }, where aijz is
a single-typo keyword of aij . The TA inserts the keyed hash
values of all relevant disease keywords and their associated

fuzzy keyword sets into a L-bit Bloom filter, bf(W̃i), using
the secret key KB .

(iv) In addition, TA determines the number of children

nodes, |Ci| for each category node i and forms the set S̃ =
{|C1|, |C2|, · · · , |C|S̃||}. Then, for each child node (e.g., the

jth child node of the ith category), it stores a keyword set
Dij , which contains k disease keywords. Next, TA generates
a Bloom filter bf(Dij), which contains those k keywords as
well as their associated fuzzy keywords. Our solution inserts
the same disease into k different 2nd level nodes so that
the cloud server can go through k different nodes (based on
query identifiers) to find a matched leaf node even with the
same keyword search request. Thus, both the search and
path patterns can be hidden from the cloud server.

(v) Finally, TA delivers all the generated ciphertexts in-

cluding {Enc(CW),S̃,{BFD(W̃1),· · · ,BFD(W̃|S|)}}, where

BFD(W̃i)={Icwi ,bf(W̃i),{bf(Di1),bf(Di2),· · · ,bf(Di|Ci|)}}
and Icwi is a category index, to the cloud server.

(vi) It also sends both encrypted category keywords, Enc(CW)
and the secret key SK to every hospital. The secret key SK
is also sent to all authorized clients.

2. Operations performed by hospitals:

(i) Every hospital Hm contains a category set C̃Wm=
{kw1,kw2,· · · ,kw|C̃Wm|} and a disease keyword set {Gm(kw1),

Gm(kw2), · · · , Gm(kw|C̃Wm|)}, where Gm(kwi) = {bi1, bi2,

· · · , bi|Gm(kwi)|} and bij is a disease keyword.
(ii) Then, hospital Hm generates Enc(CWm) which con-

sists of all key hash values of category keywords in CWm.
(iii) For each illness bij which Hm has relevant patients’

information, it also generates bf(bij) using the secret key
KB .

(iv) Next, Hm uses a classification method to extract the
training feature set for that illness bij , denoted as s̃v(bij).
Later, it encrypts this training feature set using OPE and

the KO key to produce S̃V (bij)=OPEKO (s̃v(bij))+rij , where
rij are some random value sets. The random values are
added to ensure the participating hospitals cannot uncover
the true values of these feature vectors each hospital sends
even if some hospitals collude with the cloud server.

(v) Finally, hospital Hm sends {Enc(C̃Wm),{BSV (Gm(kw1)),
· · · , BSV (Gm(kw|C̃Wm|))}}, where BSV (Gm(kwi)) = {Ikwi ,

{bf(bi1), S̃V (bi1)}, · · · , {bf(bi|Gm(kwi)|), S̃V (bi|Gm(kwi)|)}}
and Ikwi is the category index for category keyword kwi, to
the cloud server.

3. GenIndex: (i) The cloud server first builds the 1st level

846

Figure 6: PDTCPS Index Tree Structure

nodes, where the ith category node stores the encrypted key-

word Enc(cwi) and the corresponding Bloom filter bf(W̃i).
(ii) Then, the public cloud uses the received information

to build the 2nd level, where the jth second level node of
the ith first level node stores the corresponding Bloom filter
bf(Dij).

(iii) For each 2nd level node, the cloud server constructs
three children nodes, one for each query type, i.e., “diag-
nose”, “complication” and “treatment”. An integer value can
be used to represent each query type.

(iv) For each received set of information from a hospital,
the cloud server first uses the received Enc(kwi) to find the
matched 1st level category node. Then, it computes the
inner product values between each of the received bf(bij)
and the Bloom filters stored in the |Ci| child nodes under
the ith category node to find the k matched 2nd level nodes.
Next, the cloud server traverses into their leaf nodes to find
the right training model.

(v) If no training model exists, the newly received training
model will be stored. If a training model already exists, the
public cloud generates a new model by combining previously
stored feature vectors for that disease with the most recently
received feature vectors to generate a new training model.

With the procedures outline above, the cloud server finally
constructs the encrypted index tree, which is shown in Fig 6.
Query Generation

To provide query unlinkability, we need to generate a dif-
ferent search request even for the same keyword query.

(i) Given a query Q={cwq, (F1, · · · , Fi, · · ·), xq, tq},
where cwq is the category keyword, Fi is either a personal
attribute of a client or his lab test result i, xq is the disease
keyword and tq is the query type.

(ii) An authorized client first generates a random query
id IDq and a keyed hash value of the category keyword as
Enc(cwq).

(iii) Each Fi will be encrypted as OPEKO (Fi) +Ri using
the received encryption key KO and a random value Ri. This
step ensures that the same Fi results in different encrypted
value and hence provides query unlinkability.

(iv) The client also generates a fuzzy keyword set: {xq1 ,
· · · , xqi , · · · }, where xqi is a single-typo keyword of xq.
Then, the client generates bf(xq) using the secret key KB .

(v) Finally, the encrypted search request EncSK(Q)={IDq,
(OPEKO (F1) + R1, · · · , OPEKO (Fi) + Ri, · · ·), Enc(cwq),
bf(xq), hash(tq)}, is submitted to the cloud server.
Search Process
(i) Upon receiving the search request EncSK(Q), the server
first checks if Enc(cwq) can be matched with the stored
encrypted keywords Enc(CW) in the 1st level nodes.

(ii) If it is not found, then the cloud server computes the

Figure 7: Inner Product Computation

inner products of Bloom filter bf(xq) in the query with |S̃|
Bloom filters stored in the 1st level nodes. The one with the
best match will be the selected 1st level node. (Fig 7)

(iii) Next, the cloud server searches through the child
nodes of this selected 1st level category node by perform-
ing the following operations:
• Compute the inner product values between the bf(xq)

and the stored |Ci| Bloom filters in the 2nd level nodes.
• Find the top k nodes among those |Ci| nodes in the

second level.
• Next, select one of k matched 2nd level nodes, node j,

using j = IDq mod (k) and travels into its sub-tree nodes
based on the query type.

(iv) After finding the matched leaf node, the cloud server
can find the appropriate training model to diagnose disease,
predict potential complications or determine the best treat-
ment options for a client based on his query type, tq.

5. SECURITY ANALYSIS
In this section, we analyze the privacy characteristic of

PDTCPS against possible attacks by various entities in-
volved in our system. Adversaries in our system could be
participating hospitals, network eavesdroppers, or even the
cloud server. For instance, hospitals and the cloud server in
our system are assumed to be semi-trusted, implying that
they follow the protocol execution, but may attempt to learn
additional information. A network eavesdropper could have
the resources to monitor all messages in the network or the
messages sent by a particular hospital or a client.

5.1 Network Eavesdroppers
For network eavesdroppers, PDTCPS achieves privacy

preserving mainly via encrypted communication. Our de-
signed scheme guarantees that attackers cannot uncover any
knowledge of any content within the ciphertext as long as
eavesdroppers cannot obtain the cryptographic keys. In ad-
dition, by adding randomness in each encrypted query, the
adversaries cannot conduct frequency analysis to gain ad-
ditional information about submitted queries and hence no
sensitive information is revealed.

5.2 Semi-honest Hospitals
In the presence of semi-honest hospitals, our scheme achieves

information-theoretic security. Specifically, our design adds
some randomness to the encrypted training features gener-
ated by each hospital before they are being sent to the cloud
server. Thus, participating hospitals cannot gain additional
information on the ciphertext sent by other hospitals even
if they know the secret key.

847

5.3 Semi-honest Cloud Server
In this subsection, we will show how PDTCPS satisfies

several search privacy requirements:
• Index and Query confidentiality under both the known

ciphertext model and the known background model. More
details are provided in subsequent subsections.
• Query unlinkability: Our PDTCPS generates different

search requests even with the same query keyword and hence
provides query unlinkability to a certain extent.
• Hiding access pattern: Our design ensures that the cloud

server traverses different nodes to find a match even with the
same keyword search request and hence the access patterns
are hidden from the server.

5.3.1 Security Analysis of PDTCPS Under the
Known Ciphertext Model

Here, we adapt the simulation-based security model in [27]
to prove that our scheme can be secure under the known
ciphertext attack. Before proving, we first introduce some
notations that will be used in the proving process.
• History: It is an index set I and a query set Q = {Q1,

Q2, · · · }, denoted as H = (I,Q).
• View: The cloud server can only see the encrypted

form of a H, denoted as V I(H), including the secure in-
dexes Enc(I) and the encrypted search requests Enc(Q) =
{Enc(Q1), Enc(Q2), · · · }.
• Trace: A trace is a set of queries, denoted as Tr(H) =
{Tr(Q1), Tr(Q2), ...}. Tr(Qi) captures the information for
each query Qi including the search pattern PAQi , and the
outcome of the search REQi which is available to the cloud
server to gain additional information.

As in [27], our proof is based on the following argument:
given two histories that produce the same trace, if the cloud
server cannot distinguish which history is produced by the
simulator, then the cloud server cannot learn additional knowl-
edge beyond the information that the system is willing to
leak.

We adopt a simulator that can simulate a view V I(H)′

indistinguishable from cloud server’s view V I(H). The sim-
ulator works as follows:

1. For the encrypted query Enc(Q1), the simulator gen-
erates Enc(Q1)′ as follows:

(i) The simulator first selects random strings {s1, s2, s3},
where si ∈ {0, 1}U , and then sets ID′

Q1
= s1, hash(cw′

Q1
) =

s2 and hash(t′Q1
) = s3 separately. U is the length of hash-

value, ID′
Q1

is the query identifier, and cw′
Q1

is the category
keyword in that query and t′Q1

is its query type.

(ii) The simulator also generates a L′-bit vector v ∈ {0, 1}L
′

and sets bf(x′
Q1

) = v where x′
Q1

mimics the disease keyword
in the query.

(iii) Next, the simulator builds a vector which represents
encrypted attributes used in the query, Enc(F ′

Q1
) = {G1,

G2, · · · }, where Gi is a random string chosen from {0, 1}U .
(iv) After the above steps, the following encrypted query,

Enc(Q1)′={ID′
Q1

,Enc(F ′
Q1

),hash(cw′
Q1

),bf(x′
Q1

),hash(t′Q1
)},

is simulated.
2. Based on the search pattern PAQ1 , the simulator can

generate the Enc(I)′ as follows:
(i) Let us assume PAQ1 goes through category node ca(1),

intermediate node im(1) and leaf node ln(1) of the index
tree.

(ii) The simulator first sets the Enc(ca(1))′ = hash(cw′
Q1

).
(iii) Then, the simulator adds bf(x′

Q1
) to bf(ca(1))′.

(iv) The simulator also sets bf(D̃′
Q1)′ = bf(D̃′

Q1)′ +

bf(x′
Q1

), where |D̃′
Q1 | = k and D̃′

Q1 [(ID′
Q1

)mode(k)] =
im(1).

3. For subsequent queries such as Qj with search pattern
PAQj which goes through category node ca(j), intermediate
node im(j) and leaf node ln(j) of the index tree where 2 ≤
i ≤ j ≤ |Q|, the simulator does the following:

(i) If ca(j), im(j), ln(j) are not same as ca(i), im(i), ln(i),
then the simulator repeats the same process as simulating
Enc(Q1)′ and Enc(I)′.

(ii) If ca(j) is the same as ca(i) but im(j) 6= im(i), then
the simulator repeats the same process as simulating Enc(Q1)′

and Enc(I)′ with the condition that hash(cw′
Qj

)=hash(cw′
Qi

).

(iii)If im(j) is the same as im(i) but ln(j) 6= ln(i), then
the simulator sets hash(t′Qj

) 6= hash(t′Qi
) and also generates

all the other necessary information.
(iv) If the search pattern PAQj ends at the same leaf

node ln(i) as the previous query Qi, then the simulator sets
hash(t′Qj

) = hash(t′Qi
) and does the following:

• If the search result REQj for the query Qj , is not the
same as REQi , then the simulator repeats the same process
as simulating Enc(Q1)′ and Enc(I)′ with the condition that
the Enc(F ′

Qj
) is different from the Enc(F ′

Qi
).

• If the search result is the same, then the simulator sets
bf(x′

Qj
) = bf(x′

Qi
) and generates the Enc(F ′

Qj
), which is

similar to the Enc(F ′
Qi

).
4. After all the queries have been simulated, the simulator

does the following:
• It converts each bf(ca(i))′ and bf(im(i))′ into L′-bit

{0, 1}L
′

vectors by replacing the elements bigger than 1 with
1.
• It adds Enc(F ′

Qi
) to the training feature set s̃v(x′

Qi
)

to make sure that the query result is the same as REQi .
Note that the training feature set s̃v(x′

Qi
) is attached to the

appropriate simulated leaf node.
5. The simulator outputs the view V I(H)′=(Enc(I)′,

Enc(Q)′).
In summary, the Enc(I)′ and Enc(Q)′ can generate the

same trace as the one that the cloud server has. Thus, we
claim that no probabilistic polynomial-time (P.P.T) adver-
sary can distinguish between the view V I(H)′ and V I(H).

5.3.2 Security Analysis of PDTCPS Under the
Known Background Model

In this subsection, we analyze the security of PDTCPS
under the known background attack model. For each query
Qi we generate the encrypted search request as follows:
Enc(Qi)={IDQi ,Enc(FQi),hash(cwQi),bf(xQi),hash(tQi)}.
Since a random value set is introduced during the query gen-
eration, PDTCPS produces different search requests even
for the same query. Thus, our scheme can achieve query un-
linkability such that it makes it hard for the cloud server to
link one transformed request to another even if both contain
the same keyword.

In addition, since in the known background model, the
cloud server can deduce the statistical information by ana-
lyzing the search and path patterns for each query. Thus,
it is important to hide those information from the cloud. In
our scheme, we have extended every 2nd level node to con-
tain k different keywords so that the cloud server randomly
selects one of the k matched nodes containing the desired
keyword. Therefore, both the search and path patterns can
be hidden from the cloud server.

848

Discussion: Since OPE is a deterministic encryption, so
it is subjected to two known security vulnerabilities, namely
(i) frequency-based attack where adversaries use frequency
distributions of ciphertext and plaintext to infer their cor-
respondence and (ii) order-relations among plaintexts where
attackers can easily break the encryption via sorting of known
values of plaintexts and ciphertexts using domain knowl-
edge. However, since we have added random values in PDTCPS,
attackers simply cannot infer such information. Thus, our
design is safe against both frequency and domain attacks.

6. PERFORMANCE EVALUATION
We implemented PDTCPS and conduct our experiments

on a Mac Pro with an Intel Core i5 processor running at
2.6GHz and 8GB memory. The following performance met-
rics are used to evaluate our scheme (PDTCPS) and two
other proposed solutions, namely the CAM [21], and the
hyperplane decision-tree based scheme (HDBS) [10]:
• Index construction time, which is the time incurred in

generating the proposed index tree structure;
• The generation time, testing time, accuracy, communi-

cation and storage costs of the training model;
• The accuracy of the search results.

First, we select |S̃| categories based on the major cate-
gories in Medical Health provided in the Patientslikeme web-
site [1], (e.g., Endocrine, Intestinal, Throat etc), as the 1st

level nodes of the index tree.
Then, based on these |S̃| categories, we extract

∑|S̃|
i=1 |Ci|

unique disease keywords, e.g., Endocrine includes all dis-
eases which affect the endocrine system such as diabetes,
hypothyroidism, hyperthyroidism and so on. Next, we map

all these
∑|S̃|

i=1 |Ci| distinct keywords into their appropriate
categories and build the encrypted index tree, where each
leaf node represents k disease keywords. We also set k=2,
the length of the Bloom filter, L, to 64bytes, and use h=2
hash functions to insert keywords and their associated fuzzy
keyword sets to a Bloom filter in our PDTCPS scheme.

6.1 Construction and Communication
Costs For Index Tree

The index construction process contains two major steps:
• TA generates sets of encrypted information including the

encrypted category keywords, Bloom filters, and the number
of children that under each category node. Then, it sends
these Bloom filters to the public cloud.
• After receiving the information above, the public cloud

stores all these information in the index tree.
This index construction cost is only a one-time compu-

tation cost. Since the encrypted index tree contains |S̃|
category nodes and

∑|S̃|
i=1 |Ci| second level nodes, the TA

needs to generate |S̃| encrypted category keywords and |S̃|+∑|S̃|
i=1 |Ci| Bloom filters(BFs). Fig 8(a) shows the generation

cost for a L-bit Bloom filter and from the results we can
see the generation cost increases linearly with the number
of inserted keywords. In addition, it needs to send all these

|S̃|+
∑|S̃|

i=1 |Ci| Bloom filters to the public cloud to be stored
in the encrypted index tree. Since the results in our system
show a linear relationship between the time and the number
of disease keywords, so the realistic overhead of our system
will increase linearly according to the number of disease key-
words. For example, base on the Dewey Decimal system,
which is a library classification system, we can further clus-

ter all the existing 30,000 human diseases into almost 60 cat-

egories. Assuming |S̃|=60 and each top-level node has 500
child nodes, then the total computational cost can be com-
puted as follows: it takes 0.39 ms to insert 60 fuzzy keywords
into the BF of a child node and 0.39ms*500*31/60=101 ms
to insert 500*31 fuzzy keywords into the BF of each category
node. Thus, the overall index construction time for 30,000
diseases is 18 sec. Furthermore, to ensure the collision rate
of BF at each category node to 1%, we need to use a BF
of length 305 Kbytes. In addition, each child node contains
2 disease keywords where the average keyword length is 15.
Thus, we need a 1.2 Kbytes Bloom filter for each child node
to ensure a 1% collision rate. Therefore, the total one-time
communication cost that TA incurs to send relevant infor-
mation to the cloud for index tree construction of 30,000
diseases is (305*60+1.2*500*60)=53 Mbytes.

Figure 8: (a)Bloom Filter Generation Cost Vs Num-
ber of Keywords. (b)Inner Product Computation
Cost Vs Bloom Filter Length .

6.2 Training Model Evaluation
1. Training Model Generation Method:
As for the training model generation cost, we first de-

scribe the construction processes for PDTCPS, CAM and
HDBS schemes. Since we do not have access to any dataset
for complications and treatments, here we only evaluate the
performance of our model for disease diagnosis.

(i) PDTCPS: For each disease associated with a leaf
node, the cloud server generates a training model based on
the received training feature sets from all hospitals. Here,
we use the parallel SVM method described in Section 3 to
construct an aggregate SVM model. By having each hospi-
tal conducts its own data mining and sends only encrypted
support vectors makes our solution more efficient and scal-
able.

(ii) CAM [21]: This scheme uses a parallel histogram-
based decision tree algorithm to generate the training model
where every iteration consists of an updating phase per-
formed simultaneously by all the hospitals and a merging
phase performed by the cloud server. At each iteration, a
new layer is constructed as follows: each hospital compresses
its share of the data using histograms and sends them to
the cloud. Then, the cloud server merges the histograms
and determines the best splits for each node in the decision
tree, thereby constructing a new layer. Next, it sends this
new layer to each hospital, and the hospitals construct his-
tograms for this new layer. Finally, the cloud server can
build the regression tree layer by layer through the itera-
tions.

(iii) Hyperplane Decision Based Scheme (HDBS) [10]:
This scheme introduces a sophisticated approach to perform
machine learning on encrypted data. All hospitals send their
encrypted datasets to the public cloud server. The public
cloud server generates an aggregated training model based

849

on all these encrypted datasets using homomorphic encryp-
tion method. Next, the client generates an encrypted search
and submits to the public cloud. The public cloud traverses
the encrypted index tree as described before and sends rele-
vant answers back to the client in encrypted form. The client
then decrypts the returned response to obtain the answer.

2. Training Model Performance:
In this sub-section, we conduct Exp 1 and Exp 2 to eval-

uate the performance of the above three schemes.
(A) Exp 1: In the experiment, we use the Pima Indians

Diabetes Data Set from the UCI machine learning reposi-
tory [3], which contains 768 instances with 9 attributes of
two labeled classes. We first select 90% of the Pima dataset
as training set, S1, and the remaining 10% as the test set
T1. Then, based on the distribution (e.g., mean or stan-
dard deviation) of each attribute, we generate two synthetic
datasets from S1 denoted as S11 and S12, where S11 contains
1384 instances, and S12 contains 4152 instances. Next, we
partition the synthetic datasets as follows (i) we partition
each synthetic dataset into m equal parts and assign each
part to one hospital. (ii) Since in the real world different
hospital may have different data size, so we also divide each
synthetic dataset into m unequal parts, and assign each of
them to one hospital.

(B) Exp 2: To ensure that the conclusions we draw from
Exp 1 is reliable, we also use the Breast Cancer Wisconsin
(Original) Data Set, which contains 699 instances with 10
attributes and two class labels, to conduct Exp 2. The same
method used in Exp 1 is used to generate the dataset for
each hospital.

After data generation, the hospitals then extract the train-
ing features from their assigned datasets and encrypt them
using the OPE algorithm, where the encryption complexity
is largely based on the bit length of each feature. For ex-
ample, our experiments show that using only the 1st 10 bits
of the encrypted value produce similar prediction accuracy
in disease prediction. The OPE algorithm takes 7.1ms to
encrypt a 10-bit length feature. Thus, we only use the first
10 bits of the encryption value for all our experiments to
reduce encryption time without affecting accuracy.

(C) Performance Evaluation: Tables I and II show the
evaluation results for all the above three schemes. Note that
(i) the reported storage cost is the cost of storing one train-
ing model for a particular disease, and (ii) no HDBS result
is reported for the diabetic dataset because we have no ac-
cess to their codes, and they did not have published results
using that dataset. One can see that the training time for
our scheme (PDTCPS) is much smaller than the CAM and
HDBS schemes described in [21, 10]. The CAM scheme is
inefficient since it needs multiple interactions between hos-
pitals and cloud server to generate the aggregated decision-
tree, which greatly increases the training cost. HDBS uses
the aggregated dataset for SVM training while PDTCPS
uses parallel SVM for training, hence HDBS incurs more
training time than PDTCPS.

Tables I and II also show that our training model gener-
ation process incurs smaller communication cost than the
CAM and HDBS schemes.PDTCPS incurs the least cost
because the hospitals only need to send the encrypted train-
ing features instead of all the instances to the cloud server.
Whereas in the CAM scheme, the communication cost is
largely due to the histograms that are sent by the hospitals.
Meanwhile, in order to transform the ciphertext from one

encryption form into another, the HDBS scheme requires
multiple interactions between a client and server, which in-
curs much communication cost. The tables also show that
by using SVM rather than decision tree, PDTCPS achieves
higher accuracy than CAM .

In addition, from Tables I and II, we can see that the
CAM scheme incurs less test time than PDTCPS when the
dataset size is small. This is expected because the test time
for the CAM scheme is largely based on the height of the
decision tree. Thus, when the dataset is small, the height of
the decision tree is also small, which leads to low test evalua-
tion cost. Whereas in PDTCPS, the number of instances in
the dataset has little impact on the test evaluation cost since
it only depends on the number of attributes. PDTCPS only
incurs about 0.035Kbytes for Exp1 and 0.04Kbytes for Exp2
to store a training model. However, to increase the efficiency
for future training model updates, we may also store the en-
crypted training feature sets. The reported storage cost for
PDTCPS in Tables 1&2 shows the storage cost incurred
when such feature sets are also stored.

6.3 Search Evaluation
In this sub-section, we evaluate the search performance of

PDTCPS.
1. Search Over Encrypted Index: The search oper-

ation executed at the cloud server side consists of the in-
ner product calculation for the nodes contained in the index
tree. If a node contains the keyword(s) in the query, the
corresponding bits in both Bloom filters will be 1 thus the
inner product will return a high value. Figure 8 (b) shows
that the inner-product computation time grows linearly with
the length of the Bloom filter. This is intuitive because the
cloud server needs to go over all the bits in Bloom filters
before computing the final inner product values. Assuming

that there are |S̃| = 60 categories, and each category has
500 diseases, then on the average, a query without an en-
crypted category keyword needs to search through 30 top
level category nodes and 250 2nd-level nodes, then the aver-
age search time will be (30*1.7+250*0.0067)=53s since each
inner product computation takes 6.7 ms with L = 1.2Kbytes
and 1.7s with L = 305Kbytes. However, the search time
is only about (250*0.0067)=1.675s with an encrypted cat-
egory keyword included in the query. The search time for
queries without category keywords can be reduced by us-
ing the bed-tree structure [12] to create more hierarchy for
category keywords so that fewer category nodes need to be
searched.

2. Search Accuracy: In our experiment, we adopt the
widely used performance metric, namely false positive, de-
noted as FP , to measure the search result accuracy. The
false positive rate of a L-bit Bloom filter with h hash func-

tions can be computed as (1− 1

L
)nh, where n is the number

of keywords inserted into that Bloom filter. The number of
the inserted keywords in a Bloom filter for a disease keyword
can be computed as n = 2 ∗ li + 1, where li is the number of
characters of that disease keyword wi.

Figure 9(a) shows how the false positive rate of our scheme
varies as the number of inserted keywords changes when
L = 1.2Kbytes. One observation is that the false positive is
very low when li is small, i.e. 0.6% at li = 15 which is the
average character length of our disease keywords.

Figure 9 (b) shows the performance of our scheme when
the length of a Bloom filter is varied. Although large Bloom

850

Table 1: Training Model Evaluation for Exp1

Scheme Number
of At-
tributes

Number
of In-
stances

Equal
Data
Size

Number
of Leaf
Nodes

Training
Time

Communication
Cost

Testing
Time

Accuracy Storage
Cost

PDTCPS 9
1384

Yes 0.05s 8.09KB 0.024ms 81.6% 7.9KB
No 0.05s 8.1KB 0.024ms 80.3% 7.7KB

4152
Yes 0.13s 23.48KB 0.024ms 76.3% 21.8KB
No 0.15s 23.50KB 0.024ms 80.3% 21.9KB

CAM 9
1384

Yes 48 2.0s 8.7KB 0.015ms 75.0% 0.18KB
No 41 1.8s 7.9KB 0.14ms 75.0% 0.17KB

4152
Yes 187 7.8s 28.1KB 0.026ms 68.4% 0.6KB
No 178 6.9s 24.60KB 0.024ms 69.7% 0.58KB

Table 2: Training Model Evaluation for Exp2

Scheme Number
of At-
tributes

Number
of In-
stances

Equal
Data
Size

Number
of Leaf
Nodes

Training
Time

Communication
Cost

Testing
Time

Accuracy Storage
Cost

PDTCPS 10
1680

Yes 0.004s 1.01KB 0.027ms 92.9% 1.1KB
No 0.005s 1.07KB 0.027ms 92.1% 1.2KB

5040
Yes 0.011s 1.67KB 0.027ms 92.1% 1.5KB
No 0.012s 1.72KB 0.027ms 90.6% 1.5KB

CAM 10
1680

Yes 24 1.5s 9.6KB 0.010ms 86.4% 0.06KB
No 20 1.3s 8.7KB 0.09ms 88.5% 0.05KB

5040
Yes 42 5.8s 20.8KB 0.015ms 84.3% 0.1KB
No 36 5.5s 18.9KB 0.013ms 86.4% 0.09KB

HDBS 10 699 0.032s 35.84KB 151.1ms
1The results of the HDBS scheme are extracted from [10] and scaled to the same CPU environment used to evaluate our scheme;

Figure 9: False Positive Rate of the Bloom filter.
(a) With varying numbers of keywords. (b) With
various Bloom filter lengths.

filter can better reduce the false positive rate, it may in-
crease both the search time and the storage cost (since the
cloud server needs to store these Bloom filters in the index
tree). Thus, there is a trade-off among the false positive
rate, search time, and the storage cost of our scheme. For
example, we can tune the parameters, i.e. L, li, to specifi-
cally fit a particular accuracy and storage requirements.

Therefore, the total accuracy can be further computed by
combining both false positives in the searching model and
error rates in the prediction results as follows:

Acctotal = 1− (Pf + (1− Pf) ∗ Cf) (1)

where Pf is the false positive for the searching model and
Cf is the error rate for the training model. Typically, the
Bloom filters are designed to achieve a Pf = 1% and Cf as
shown in Tables 1 & 2 ranges from 76.3 to 92.9%.

7. CONCLUSION
In this paper, we have proposed a Privacy-Preserving Dis-

ease Treatment, Complication Prediction Scheme (PDTCPS),
which allows users to conduct privacy-aware searches for
health related questions based on their individual profiles
and lab tests results. Our design also allows healthcare
providers and the public cloud to collectively generate aggre-

gated training models to diagnose diseases, predict compli-
cations and offer possible treatment options. In addition, to
enrich search functionality and protect the clients’ privacy,
our scheme can support fuzzy keyword search and query
unlinkability. Moreover, PDTCPS also hides access pat-
terns and hence addresses the security threat via exposed
access patterns identified in previous searchable encryption
schemes. Finally, we validate the practicality of our scheme
by evaluating our scheme using two UCI datasets. The
results show that PDTCPS is secure against different ad-
versarial situations, and has better performance than two
existing schemes.

In the near future, we would like to enhance our scheme
to support more complex query types (e.g., range queries),
while preserving the privacy of the query keywords. For ex-
ample, a medical researcher may want to find the number
of diabetic patients who have taken a specific drug for a
long time, and yet still suffer a high blood sugar level, by
submitting a query like “(50<age<80) AND (sex=“female”)
AND (illness=“diabetes”) AND (drug=“humira”) AND (du-
ration>5 years) AND (blood-sugar>7%)”. In addition, we
would like to improve the performance of our scheme us-
ing other types of encrypted health data. For example, we
may include disease diagnosis using MRI images, and hence
enhance our scheme to deal with encrypted image features.

ACKNOWLEDGEMENT

This work was supported by the US National Science Foun-
dation awards CNS-1217379, CNS-1217387 and CNS-0954020.

8. REFERENCES
[1] Patientslikeme, https://www.patientslikeme.com/.

[2] NHIN, http://www.hhs.gov/healthit/healthnetwork.

[3] UCI Machine Learning Repository,
https://archive.ics.uci.edu/ml/datasets.html.

851

[4] R. Agrawal and R. Srikant. Privacy-preserving data
mining. In ACM Sigmod Record, volume 29, pages
439–450. ACM, 2000.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. In Communications of the ACM, pages
50–58, April 2010.

[6] M. Barni, P. Failla, R. Lazzeretti, A.-R. Sadeghi, and
T. Schneider. Privacy-preserving ecg classification
with branching programs and neural networks. pages
452–468. IEEE, 2011.

[7] J. L. N. B.B. Dean, J. Lam, Q. Butler, D. Aguilar,
and R. J. Nordyle. Use of electronic medical records
for health outcomes research: a literature review. In
Medical Care Research Review, 2010.

[8] Y. Ben-Haim and E. Tom-Tov. A streaming parallel
decision tree algorithm. volume 11, pages 849–872.
JMLR. org, 2010.

[9] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and
G. Persiano. Public key encryption with keyword
search. In Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, volume 3027
of Lecture Notes in Computer Science, pages 506–522.
Springer, 2004.

[10] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser.
Machine learning classification over encrypted data.
Crypto ePrint Archive, 2014.

[11] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou.
Privacy-preserving multi-keyword ranked search over
encrypted cloud data. volume 25, pages 222–233.
IEEE, 2014.

[12] M. Chuah and W. Hu. Privacy-aware bedtree based
solution for fuzzy multi-keyword search over encrypted
data. In ICDCSW, pages 273–281, 2011.

[13] W. Du, Y. S. Han, and S. Chen. Privacy-preserving
multivariate statistical analysis: Linear regression and
classification. In SDM, pages 222–233. SIAM, 2004.

[14] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting
privacy breaches in privacy preserving data mining. In
Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 211–222. ACM, 2003.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access
control of encrypted data. In Proceedings of the 13th
ACM conference on Computer and communications
security, pages 89–98. Acm, 2006.

[16] T. Graepel, K. Lauter, and M. Naehrig. Ml
confidential: Machine learning on encrypted data. In
Information Security and Cryptology–ICISC 2012,
pages 1–21. Springer, 2013.

[17] L. Guo, Y. Fang, M. Li, and P. Li. Verifiable
privacy-preserving monitoring for cloud-assisted
mhealth systems. In Computer Communications
(INFOCOM), 2015 IEEE Conference on, pages
1026–1034. IEEE, 2015.

[18] E. Lau, F. S. Mowat, M. A. Kelsh, J. C. Legg, N. M.
Engel-Nitz, H. N. Watson, and et al. Use of electronic
medical records (emr) for oncology outcomes

research:assessing the comparability of emr
information to patient registry and health claims data.
In Clinical Epidemiology, 2011.

[19] S. Laur, H. Lipmaa, and T. Mielikäinen.
Cryptographically private support vector machines. In
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 618–624. ACM, 2006.

[20] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou. Scalable
and secure sharing of personal health records in cloud
computing using attribute-based encryption. Parallel
and Distributed Systems, IEEE Transactions on,
24(1):131–143, 2013.

[21] H. Lin, J. Shao, C. Zhang, and Y. Fang. Cam:
cloud-assisted privacy preserving mobile health
monitoring. volume 8, pages 985–997. IEEE, 2013.

[22] M. Mailman, M. Feolo, Y. Jin, M. Kimura, K. Tryka,
R. Bagoutdinov, and et al. The ncbi dbgap database
of genotypes and phenotypes. In National Genetology,
2007.

[23] S. Roy and M. Chuah. Secure data retrieval based on
ciphertext policy attribute-based encryption (cp-abe)
system for the dtns. Technical report, Citeseer, 2009.

[24] A. Sahai and B. Waters. Fuzzy identity-based
encryption. In Advances in Cryptology–EUROCRYPT
2005, pages 457–473. Springer, 2005.

[25] D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In Security
and Privacy, 2000. S&P 2000. Proceedings. 2000
IEEE Symposium on, pages 44–55. IEEE, 2000.

[26] J. Sun, X. Zhu, C. Zhang, and Y. Fang. Hcpp:
Cryptography based secure ehr system for patient
privacy and emergency healthcare. In Distributed
Computing Systems (ICDCS), 2011 31st International
Conference on, pages 373–382. IEEE, 2011.

[27] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou,
and H. Li. Privacy-preserving multi-keyword text
search in the cloud supporting similarity-based
ranking. In Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and
communications security, pages 71–82. ACM, 2013.

[28] M. J. Tildesley, T. A. House, M. C. Bruhn, R. J.
Curry, M. ONeil, J. E. Allpress, and et al. Impact of
spatial clustering on disease transmission and optimal
control. In Proceedings of National Academy Science,
2010.

[29] C. Wang, K. Ren, S. Yu, and K. M. R. Urs. Achieving
usable and privacy-assured similarity search over
outsourced cloud data. In INFOCOM, 2012
Proceedings IEEE, pages 451–459. IEEE, 2012.

[30] C. Wang, B. Zhang, K. Ren, J. M. Roveda, C. W.
Chen, and Z. Xu. A privacy-aware cloud-assisted
healthcare monitoring system via compressive sensing.
In INFOCOM, 2014 Proceedings IEEE, pages
2130–2138. IEEE, 2014.

[31] K. Xu, C. Wen, Q. Yuan, X. He, and J. Tie. A
mapreduce based parallel svm for email classification.
volume 9, pages 1640–1647, 2014.

852

