Adaptive Semi-Private Email Aliases

Beng Heng Ng, Alexander Crowell, Atul Prakash
Department of Computer Science and Engineering
University of Michigan
{bengheng, crowella, aprakash}@eecs.umich.edu

ABSTRACT

Email address leakages are the cause of several security problems
including spam and privacy loss. With current email addresses,
once the address leaks without its owner’s consent, it becomes ef-
fectively compromised, creating a struggle for the user to keep the
address out of the hands of new spammers. To compound the prob-
lem, some websites require addresses belonging to a certain domain
(e.g., <university>.edu) as a partial proof of the user’s affil-
iation with an organization. This leaves the user not much choice
except to have faith that the address will not be misused.

To address the problem, this paper improves on the prior work on
disposable email addresses by proposing a mechanism called semi-
private aliases. Semi-private aliases make two contributions. First,
they have a lifecycle model that permits gradual, selective controls
on the use of the alias by senders without requiring any special
infrastructure on the part of senders or receivers. Second, semi-
private aliases can be easily used to validate a user belonging to a
certain organization (e.g., university or company) and reveal only
selected attributes to a service while hiding the real identity. The
second aspect recently proved useful in allowing students in one of
our freshmen courses to register easily and safely at Piazza.com,
a discussion forum for courses, that, by default, requires students
to provide a university email address, but has privacy policies that
differ from a university’s.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-
rity and Protection; H.4.3 [Information Systems Applications]:
Communication Applications—Electronic Mail

General Terms

Design, Security

Keywords

Semi-Private, Alias, Email Aliases, Lifecycle, Affiliation Valida-
tion, Disposable Email Addresses, Email Address Leakages, Spam,
Unsolicited Email

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASIACCS ’12, May 2-4, 2012, Seoul, Korea.

Copyright 2012 ACM 978-1-4503-1303-2/12/05 ...$10.00.

1. INTRODUCTION

Since its inception in the 1970s, electronic mail, or email, has
come to largely replace snail mail for a variety of reasons, includ-
ing its low cost, user convenience, ease of use, and high delivery
efficiency. But for these very same reasons the problem of unso-
licited bulk email messages, commonly referred to as spam, has
grown along with email since the 1990s, spurring huge research
efforts for finding tools to combat spam. Although the state-of-the-
art in spam detection has been successful at detecting most obvious
cases of spam, false positives and false negatives are still not en-
tirely uncommon.

One primary cause of the spam problem is the way in which
email addresses are typically used. To provide a fixed address at
which they can be reached, most users treat their email IDs as per-
manent and only abandon them in rare circumstances. As a result,
once a user’s email address leaks to spammers, it is nearly impos-
sible to entirely prevent them from sending messages to the user’s
inbox. Users usually have no recourse if they wish to retract the re-
lease of an email address to a certain party. And although one may
take extreme care to prevent one’s email address from falling in to
the wrong hands, because anyone with the address could then leak it
to a third party, either intentionally or unintentionally, such an effort
can easily be futile. The situation becomes further complicated if
we consider that a user may later change their mind about whether
they should have given their email address to a certain party.

To compound the problem, some services require corporate email
addresses as part of the proof of a user’s affiliation with the orga-
nization before deeming the user as eligible for certain services or
discounts. Early examples included Facebook, which required uni-
versity affiliations when it started. More recently, Piazza.com is
used by many universities to host threaded forums between students
and professors and, by default, it requires users to sign in with an
email ID that validates them to their university. This creates a po-
tential dilemma for professors as to whether it is proper to require
students to sign up for an external service with a different privacy
policy on protection of students’ email IDs than their university’s.
Many companies offering corporate discounts on their services or
products, for example, Sprint and AT&T in the U.S., also require
customers to provide their corporate email ID to receive discounts
on their monthly bills. While alternative proof methods may be al-
lowed, these are usually troublesome. This also creates concerns:
a corporate address is potentially being used to receive non-work
email, making it more susceptible to marketing use.

This paper proposes a mechanism called semi-private aliases, a
novel solution that attempts to blend the user control provided by
disposable email addresses with the flexible nature of ubiquitous
permanent email addresses to provide an email aliasing mecha-
nism that can limit misuse without being overly restrictive to either

the address owners or their trusted correspondents. Semi-private
aliases are email addresses that can be attached seamlessly to a
user’s regular inbox, and serve as aliases for that inbox that can
be distributed in the same fashion as Disposable Email Addresses
(DEAs) [1, 2]. These aliases make two significant contributions:

1. Concept of alias lifecycle: A lifecycle, in the form of a state
machine, allows the user to adaptively add restrictions to an
alias as the effects of an address leak begin to show them-
selves. Starting out as unrestricted and open to all incom-
ing mail, an alias can be marked partly restricted when un-
solicited email begins to be received, resulting in no added
restrictions for those who have corresponded with the alias
before the identified compromise. New senders sending to a
partly restricted alias receive a CAPTCHA challenge, after
which the user is prompted to accept or reject that sender’s
correspondence. Once an alias has reached the point where
the user does not expect any new contacts on it, they may
mark it as fully restricted, at which time only those contacts
on the alias’ whitelist are permitted to send. Finally, a user
might choose to disable an alias if it eventually falls entirely
out of use.

2. Privacy-protecting affiliation validation: When deployed by
an organization, the service can be used by individuals in the
organization to validate their organizational affiliation (and
optionally a selection of other information such as their name
or role in the organization) to external service providers with-
out the risk of exposing the real corporate email ID informa-
tion to the providers. Instead, service providers are provided
with an email alias.

Some challenges in designing our system for semi-private aliases,
which we call SEAL, are how to make it work with existing email
infrastructure and services as well as how to avoid requiring sig-
nificant authentication steps (e.g. CAPTCHAs) along communi-
cation paths. SEAL achieves these goals, using encrypted SMTP
supported by existing infrastructure, including Gmail and software
clients such as Mozilla Thunderbird, for sending messages; for au-
thentication of senders to aliases, we make use of alias lifecycles
to identify when senders are likely to be potential spammers and
execute authentication steps only in these cases.

We note that SEAL primarily aims to give users selective control
over their privacy rather than provide complete anonymity over the
web. We assume that the SEAL infrastructure is trusted, but we
attempt to design it so that the theft of information in the database
maintained by SEAL for its functioning is of limited use to spam-
mers.

The paper is structured as follows. We first discuss related work
in Section 2. Then we present SEAL from an end-user’s perspective
in Section 3. We also discuss the design and describe our prototype
in Section 4. Next, we evaluate the effectiveness of the system in
restricting aliases and tracing alias leakages, and the deployment
of our system in a real world scenario in Section 5. Finally, we
discuss potential limitations and defenses against potential attacks
on the SEAL design in Section 6 before concluding in Section 7.

2. RELATED WORK

Variants of disposable email aliases are supported by several sys-
tems. We divide current DEA solutions into two groups, charac-
terizing them as either incomplete or overly restrictive. The first
category of DEA systems are specialized services that allow users
to create DEAs but do not provide full email services. They can be
sub-categorized into receive-only systems that do not allow a user

to reply to emails, and temporary systems that only allow users to
access their inbox for a limited amount of time [3]. Others, e.g.,
Mailinator [4, 5], provide a single shared inbox for all users, and so
there is no notion of privacy; anyone with the email ID string can
access the email to that email ID.

In the second category, the DEA systems are overly restrictive,
either only permitting the complete removal of an address to pre-
vent spam or requiring that every correspondent solve a CAPTCHA.
One example of such work is Inexpensive Email Addresses (IEA)[6].
IEA cryptographically generates exclusive email addresses for each
sender that must be verified by CAPTCHA. This greatly limits the
system’s practicality, making it difficult to use with automated sys-
tems like mailing lists, newsletters, and password recovery ser-
vices. For normal users, it requires them to go through an extra
step of solving a CAPTCHA before being able to send an email.
Yahoo Mail’s aliases require removal of an alias to prevent spam,
once traditional filters break down.

Ioannidis proposed the concept of a Single-Purpose Address (SPA)
[7], where an SPA has cryptographic properties and encodes secu-
rity policies that can be enforced by receivers into the email ad-
dress itself. When a receiver creates an SPA, an expiration date
is supplied that determines its lifetime. This encoding of policy
into SPAs severely limits their usefulness; an encoded policy can
never be changed during the life of the email address, so a single
compromise means the owner must live with spam until the address
expires or switch to a new key, thereby invalidating all of his exist-
ing SPAs. The unlikely event of a server compromise also poses a
much greater problem for SPAs, since the leak of a key requires the
owner to invalidate all of their SPAs and start from scratch. SEAL
avoids these limitations by keeping state on the server, allowing
the user to flexibly respond to address leaks by restricting specific
aliases. A side benefit of this is that in the event of a temporary
compromise of the server itself, once control is regained the user
can restrict all of their preexisting aliases, avoiding a temporary
complete loss of service due to the need to create and distribute
entirely new email addresses.

The Tagged Message Delivery Agent (TMDA) is a challenge/re-
sponse system that aims to mitigate spam [8]. One feature of TMDA
is tagged addresses that can contain date information used in a sim-
ilar manner to SPA for determining the expiration of the addresses.
Similar to SPA, the expiration date has to be determined at the point
of creation. Again, the tagged address may be leaked before it ex-
pires.

The free online classified advertising site Craigslist generates a
random anonymous email address for the user when a posting is
made. While this conceals the user’s real address from email har-
vesters that scrape websites, Craigslist is often attacked by spam-
mers who post fake advertisements. An unknowing user who replies
to the fake email reveals his real address. With SEAL, a user can
simply use a semi-private alias when creating or responding to an
ad on Craigslist, giving them the ability to block spam sent to that
address at any point.

OpenlD [9] permits users to sign up for external services us-
ing an existing email ID, such as their Facebook ID or Google ID,
while providing some privacy controls. SEAL accomplishes a sim-
ilar goal but without requiring the service provider to use a specific
authentication infrastructure and having full control over the infor-
mation that is disclosed with the email alias.

Spam filtering has been well-studied [10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24], and is complementary to our
approach. While SEAL is not a spam filter, the life-cycle man-
agement controls provide an additional layer of spam control when
traditional spam filtering fails, without requiring an alias to be com-

<H———>|Browser

e | SEAL [s
Client Internet Service [€3—| Email €=
- Provider | 5 g
&—=—1 -9
. Bob
Alice Bob's Server

—>» Normal email flow
-=» Command email flow
<— Http

Figure 1: Overview of the Seal Service

pletely disabled.

3. USER’S PERSPECTIVE

Senders correspond with users of SEAL using semi-private email
aliases. An example of such an alias would be
bob.89dtzx3r@sealserver, where bob is the alias name
and 89dtzx3r is the randomization string. An alias is formed
by joining the alias name and the randomization string with a de-
limiting character in between. The alias name is specified by the
user while the randomization string is a randomly generated string,
created by SEAL.

Figure 1 shows an overview of the email interactions between a
SEAL user and a sender who wishes to correspond with that user.
A user of the SEAL service sends mail through a SEAL server that
processes the mail and forwards it to the recipient. A person send-
ing to a SEAL user addresses their mail to the user’s semi-private
alias, and the SEAL service performs any necessary restrictions,
after which the mail can be forwarded to the user at their normal
inbox. Users can also manage their aliases directly over a provided
web interface.

To become a user of SEAL, one creates an account with an email
provider and configures the account to relay emails through SEAL.
The system could also potentially play the role of an email provider.
However, segregating the roles has two practical advantages.

Reduced attack surface: Leveraging existing email providers al-
lows SEAL to obviate the need to provide message storage.
This reduces the attack surface of SEAL and also insulates
the user’s emails from theft or corruption in the event of an
attack.

User familiarity: Most users are already familiar with the user in-
terfaces of their current email providers. Many email providers
also provide other useful features. Using the services of ex-
isting email providers for SEAL eliminates the need for users
to learn a new interface and allows them to continue using
their favorite features.

To achieve this, we require the mail provider to support sending
mails over authenticated SMTP, which is supported by some email
providers, including Gmail, as well as most modern software-based
email clients such as Mozilla Thunderbird. This is necessary to
prevent masquerading attacks on SEAL.

In addition to normal emails, the user can also send command
emails to two Service Addresses that allow the user to provide in-
structions to SEAL. Users can also receive feedback on the com-
mands from these Service Addresses. Table 1 lists the commands
supported. When an email is received at a Service Address, only the
Subject line is parsed for commands. Table 2 summarizes whether
a sender is allowed to send email to a semi-private alias for each of
the different alias states. Figure 8 in the Appendix shows the state
transitions of an alias.

Table 1: Commands used by SEAL. All commands are specified
in the email Subject line. The contents of the message bodies are
ignored.

Service Account
getalias @sealserver

Command
Request alias

Subject Line
(alias name)

Partly restrict alias | service@sealserver | restrict (alias)
Fully restrict alias service@sealserver | restrict full (alias)
Trust sender service@sealserver | trust (email address)

Distrust sender service@sealserver | distrust (email address)

Table 2: Capability matrix between sender status (columns) and
alias states (rows). A ‘v’ denotes that the sender is allowed to send
to the alias, while a ‘X’ denotes the contrary. CAPTCHA denotes
that the sender will be arbitrated to be trusted or not by solving a
CAPTCHA challenge and receiving explicit permission from the
user.

Distrusted | Unknown | Trusted
Unrestricted v v v
Partly Restricted X CAPTCHA v
Fully Restricted X X v/
Disabled X X X

3.1 Lifecycle of a Semi-Private Alias

After creating a user account, the user can request an alias name
that is not in use by other users. Using the alias name, the user
can request aliases for distribution to contacts. Figure 2 shows the
lifecycles for three aliases. At ¢1, the user requests a new alias
for the alias name bob. We discuss the different methods for re-
questing a new alias in Section 3.3. The system returns the new
alias bob . rzkyt 7y4 which can be distributed to the user’s con-
tacts. The user corresponds with the contacts on bob . rzkyt7y4
until he observes that it has been leaked at ¢ and informs SEAL
via a command email. SEAL then marks all senders prior to ¢
as trusted, marks the alias as partly restricted, and generates the
successor alias bob.ulpvwf47.

At this point, it may be possible that spammers prior to t2 are
erroneously marked as trusted. However, this is reversible. The
user can refine which senders should be trusted. Another possible
approach may be to let the user decide the earliest time when the
first spam to the alias is found and to mark all senders prior to that
time as trusted. However, if the user makes a mistake in finding the
first spam, mail from legitimate senders may be blocked, especially
for automated systems like mailing lists. Therefore, we decided to

partly Sully
__ restricted restricted

unrestricted . disabled
i

\

bob.rzkyt7y4

"
0
4
'
I

|
i bob.ulpvw‘f47

T
'

'
I

L

bob.wal2tfcm ‘

t ta t3 1 t5 Time
Figure 2: Lifecycle scenarios of three aliases. The unshaded part
of a bar shows the alias is unrestricted while the shaded part shows
that it has been leaked and becomes restricted.

take the more conservative approach.

Between t2 and ¢3, SEAL checks that the senders of email ad-
dressed to the leaked bob.rzkyt7y4 are trusted before relay-
ing their mail to the user. This also indicates that the sender has
not updated his address book to send to the new unrestricted alias
bob.ulpvwf47 and so upon the user’s reply, SEAL sends the
original sender a reminder of the change. Email from untrusted
senders is dropped. If the sender is neither trusted nor untrusted,
we drop the mail and send a CAPTCHA to the sender. If the sender
solves the CAPTCHA, a command email is sent to the user seeking
permission to trust the sender. When the user agrees, the sender
is added to the group of trusted senders and notified. Requiring
the sender to solve a CAPTCHA first prevents the user from being
overrun with requests, narrowing them down to requests only for
senders who are likely to be human. Requiring the user’s approval
to add the sender ensures that consent is explicitly given.

At s, the first alias, bob . rzkyt 7y4 is changed to the fully re-
stricted state. In this state, only trusted senders can successfully
send emails to the user. No new sender can become trusted as
no CAPTCHA will be issued. At time t4, bob.ulpvwf47 is
found to be leaked. The new successor bob.wal2tfcm is cre-
ated. Trusted senders still sending to bob . rzkyt 7y 4 will receive
the notification to update the address of the user to the newest suc-
cessor, which in this case is bob.wal2tfcm.

At time ts, the original alias is disabled and no emails will be
delivered through it to the user. However, we do not expect this to
be a common operation since aliases in fully restricted mode allow
the user to maintain communication with already trusted users, and
also due to the likely overhead of distributing a new email address
to a user’s correspondents. Hence, so long as the user does not wish
to notify anyone else of the locked-down alias it can continue to be
used without the generation of a replacement. More importantly, no
new senders sending through the alias would be marked as trusted,
thus essentially denying them from emailing the user.

3.2 Aliases as Proof of Affiliation

As mentioned in the introduction, semi-private aliases can also
be used as a means of offering an affiliation validation service,
which provides proof of a user’s affiliation with some organization
in order for them to gain access to certain services or discounts.
Trivially, our implementation could be extended further, with the
organization providing an additional service that allows its mem-
bers to attach a supplementary information profile to each alias and
host that profile on a directory service as more detailed proof of the
identity associated with a certain alias address. At this time, with
our current real-world deployment that gives students access to Pi-
azza.com forums, we have only needed to provide basic affiliation
validation.

3.3 Requesting an Alias

The user may need to distribute aliases under a multitude of sce-
narios. We broadly categorize them as online and offline. By on-
line, we mean that the user needs to distribute an alias while she has
network access to SEAL'’s server. In contrast, in an offline scenario,
the user is not able to interact with SEAL over the network. How-
ever, we assume that there are opportunities for the user to access
SEAL at some point in time prior to needing an alias. We sub-
categorize online scenarios into alias requests and retrievals. An
alias request creates a new alias that the user can distribute to a new
contact. An alias retrieval refers to scenarios where the user wishes
to retrieve a previously requested alias associated with a website
URL. To minimize the learning curve, it is important that minimal
effort be required from the user when requesting new aliases under

the different scenarios. We now give an overview of the most likely
scenarios and describe briefly four mechanisms provided by SEAL
to request aliases under different scenarios.

3.3.1 Request via Command Emails

In an online scenario, a user who has access to an email client can
send command emails to the service address getalias@seal-
server to request a new alias. This is the catchall mechanism
since we can assume that users will normally have access to some
email client. The server responds with an email containing an alias
that the user can distribute to contacts. SEAL’s response would
be stored in the user’s inbox. We also allow the user to specify a
hint as a reminder to the context under which the alias is generated.
Figure 9 in the Appendix shows a request example on the left and
the server’s response on the right.

3.3.2 Request via Browser Extensions

Another common online scenario requires the user to request
an alias which may be subsequently needed for identification pur-
poses. Specific examples of such a scenario include accessing the
user’s account information for a website and posting on forums. To
cater to such situations, SEAL provides a browser extension that
uses magic sequences for alias request and retrieval.

To detect the magic sequences, we use the same approach as
PwdHash [25]. In that work, a browser extension transparently
generates a unique password for the user. The other functionali-
ties of the two extensions differ. We developed a Firefox exten-
sion that operates in two modes, request and retrieval, triggered
by two magic sequences. For each browser session, when a magic
sequence is detected, the extension authenticates the user with our
system via their credentials. Once authenticated, a session key is
generated and stored by the extension for the current session. Re-
quest mode automatically fetches a new alias from our server and is
triggered by typing the magic sequence “## [alias]# [hint]#”.
A salted hash of the site’s domain is stored. Retrieval mode is trig-
gered by the magic sequence “##5$” and is used when the user logs
in to a previously registered site that requires an email address for
authentication. The salted hash of the domain is used for looking
up the previously created alias.

3.3.3 Request for Offline Distribution

The most challenging scenarios occur when a user is offline. For
example, the user could be filling out a paper form at some place
lacking an Internet connection. Though we have not implemented
this, we envisage an SMS service that replies with a new semi-
private alias whenever the user makes a request. In addition, a
mobile application that caches several aliases while it has network
access and dispenses them as needed could be used.

An even more challenging scenario is posting email IDs on web
pages, printed documents, or on business cards. Since such IDs
are widely disseminated, they are likely to generate both spam and
legitimate use very quickly, even if the IDs are semi-private aliases.
We discuss a potential solution to the problem in Section 6.

4. ARCHITECTURE

SEAL’s architecture is illustrated in Figure 3. The three main
components in SEAL’s core architecture are the Dispatcher,
Email Processor, and Command Processor. The Dis—
patcher receives email over SMTP and passes them to the appro-
priate modules. If the email is a normal email, it is dispatched to the
Email Processor. Otherwise, a command email is sent to the
Command Processor. Other than using emails, it is also possi-
ble to interact with the Command Processor over HTTP/S. We

Mail Provider Browser User I
Normal Email Flow —» (Private Address) Extensionl] | Website ’ User
..... > - { J‘
Command Flow A outgoing incoming get/restrict return A get A roturn signup
emails emails alias, alias alias alias
to user from user trust/un-trust
user
o o y] SEAL
incoming emails N
from sender ->| Dispatcher | Core
T
CAPTCHA_response ? alias_restricted ? getalias v
. - . A
y Verify_response check_restrictions | e @ T
7 I1as Creator |
CAPTCHA Ver|ﬁer| i) alias_unrestricted ? Signup
rela
| Tesi e e Er Y restrictalias Manager
sender_trusted ? relay ’I Alias Restricter |
sender_new ? send_CAPTCHA
\ 4 B - \} trust/untrust sender
oo g omere l | -->| Sender Truster |

5 cender | Email Header Processor

Email Processor

Command Processor

Figure 3: SEAL architecture.

discuss the components with reference to their functionalities.

Figure 4 shows a simplified version of our database. Each user
has a salt that is used for hashing sensitive information, such as the
sender’s email addresses. This is to limit potential information loss
in the event that SEAL is compromised.

4.1 Account Creation

The user creates a SEAL account by visiting SEAL’s signup
page and specifying the username, password, and relay address.
The Signup Manager records this information to the database.
The username and password are used for SMTP authentication by
the user’s mail provider when sending email through SEAL, with
the username being converted to a sender address taking the form
<username>@sealserver. Itis worth noting that this email
address constructed from the username could be revealed to arbi-
trary recipients via reply messages or other means, but such a leak
would not compromise the user’s account since email sent to that
address is simply dropped. All incoming messages to aliases and
replies to command emails are sent to the relay address. By storing
only the basic necessary information for SEAL’s proper function-
ing, we aim to minimize the risks of theft of sensitive user data
should our server ever become compromised. While our system
works with any existing email account whose provider supports
sending email as a user of another SMTP server, ideally, a new
account should be created so as to start from a clean slate since the
existing address might have already been leaked.

4.2 Alias Request

Requests for new aliases are sent to Alias Creator. This
could be done either using a command email or an HTTP GET Re-
quest. The Alias Creator takes an alias name and an optional
hint as inputs. If the alias name has not been taken by another user,
Alias Creator creates a randomization string of length eight.
We allow 32 possible alphanumeric case-insensitive characters (ex-
cluding ‘0’, ‘0’, ‘1", and ‘I’ to avoid potential user confusion) in the
randomization string, providing a base entropy of 2*° bits for each
alias address. This randomization helps to make it difficult for a
spammer to correctly distinguish valid aliases from invalid ones.
Implicitly, since the maximum allowable length of an email ID is
64 characters and a delimiter is used, this restricts the alias name to
a maximum of 55 characters.

We note, however, that since the randomization string exists pri-

marily to help thwart guessing attacks, there is a tradeoff that can
be made by those deploying a SEAL server between the reduced
guessability provided by longer randomization strings and the im-
proved readability and greater potential length of alias names pro-
vided by short randomization strings. We chose a length of eight
characters as an heuristic compromise between the two, but the
length could easily be made shorter or the randomization even elim-
inated entirely if it is not felt to be of particular importance. One
possible design could be to allow the user the liberty to generate
her own random string. However, an adversary could then guess
existing aliases trivially.

The optional hint replaces the user’s name in the To header and
can be used to remind the user of the context for which the alias
is intended. Figure 10 shows an example of a hint “work”. To
prevent the original sender from observing the hint, it is removed
in the reply mail to the sender.

4.3 Managing the Alias Lifecycle

An alias’ lifecycle begins when the user makes arequest. Alias
Creator then creates an entry in the database.

When a new email is received for an alias from a non-user, the
Dispatcher checks the state of the alias. If it is unrestricted,
Email Header Processor (EHP)replaces the To header with
the user’s relay address and appends the alias to the Reply—-To
header before sending it out. This causes the user to send their re-
ply to the alias, which will result in SEAL processing the reply mail
to appear as if it had been sent by that alias.

On the other hand, if the alias is restricted, the email is dis-
patched to the Restriction Checker, which then checks if
the sender is trusted. If it is, the email is relayed to the email
provider via EHP. If the sender has not yet been encountered by the
recipient alias, the Restriction Checker tells EHP to gener-
ate a CAPTCHA response for the sender. Otherwise, the sender is
untrusted and the email is dropped.

If an email arrives from a user, it is dispatched directly to EHP,
which will replace the From header with the alias specified in the
To header, so long as it is owned by that user.

If Dispatcher detects that the incoming email is a response
to a CAPTCHA challenge, it forwards the email to the CAPTCHA
Verifier, which will validate the response and send a system
message to the user to confirm the sender as trusted. While waiting
for user validation, the sender will be treated as untrusted.

user

uid | username hpwd relayaddr salt
1 bob fd26f4e5b5... bob_private@gmail.com 0dWZUW1kws...
— — } I —
aid | uid aliasname rid | aid rand hint state hid rid |[issender cid cid hcontact istrusted
1 1 bob_work 1 1 xgw31e86 food 0 1 4 1 1 1 ecc8f54a0l... 0
2 1 bob_home 2 1 curudspx deals 0 2 5 1 2 2 aB83796a7da... 1
aliasname 3 2 1z7wegta 1 3 3 1 3 3 99e665d822... 1
4 2 2u47kqg36 receipts 0 4 3 0 3 contact
5 2 f4xdxh8u 2 5 5 0 2
aliasrand history

Figure 4: Simplified SEAL database. In table aliasrand, the states 0, 1, and 2 mean unrestricted, partly restricted and fully restricted

respectively.

The user may mark a particular alias as partly restricted or fully
restricted. The user does this by sending a command email to
service@sealserver, which will be dispatched tothe Alias
Restricter. Similarly, the user may mark a sender as trusted
or untrusted. The command is dispatched to Sender Truster.
Note that the restriction level for an alias is monotonically increas-
ing. Once an alias is leaked, it cannot reach the unleaked state
again. On the other hand, the trust level for a sender is reversible.

One possible method to automate the process of restricting leaked
aliases is to leverage existing spam technologies. For example,
when an incoming mail to a particular alias is flagged by a spam
filter, we automatically restrict the alias. However, given the con-
dition of current-state-of-the-art anti-spam technologies, false pos-
itives are still possible. Thus, to avoid erroneously marking an alias
as leaked, we let the user perform the marking.

5. EVALUATION

We implemented a proof-of-concept system using Postfix as the
mail transfer agent and Dovecot Simple Authentication and Se-
curity Layer (SASL) for user authentication [26, 27]. We imple-
mented the system core as Postfix advanced content filter using
Python scripts. This allows us to examine and modify email head-
ers. Frontend web scripts provide account management functions
for users. We also implemented a browser extension for Firefox by
modifying PwdHash [25] so that the user can request reproducible
email IDs for filling out web forms.

There are four main parts to our experiments. In the first part,
we present a simple case study demonstrating how a semi-private
alias would be used to prevent unwanted emails from an example
advertising website. In the second part, we offered the system as
an option to a class that was asked to sign up with a discussion fo-
rum that requires their affiliation with the university to be validated
using email addresses. Thirdly, we registered with several websites
and studied potential address leakages. And lastly, we provide an
analysis of the processing overhead incurred by SEAL as it for-
wards email messages.

5.1 Case Study

As a case study for our system for semi-private aliases, we cre-
ated a new alias and registered it with the online travel website
tripadvisor.com. This particular website was chosen for the
case study because we had previously observed, while testing SEAL,
that they used multiple affiliated, but unique, domains for advertis-
ing different types of offers to registered users. Hence, the pat-
tern of emails we would anticipate receiving on an alias registered
with the site intuitively serves as a good simulation of address leak-
age, providing a simple test of SEAL’s effectiveness at providing
user control. Although we acknowledge that the choice of a single
website does not count as rigorous testing, we note that this case

study only attempts to demonstrate SEAL’s potential effectiveness
at reacting to an address leak. To provide a better demonstration
of SEAL’s effectiveness, attempts were made to find websites or
newsletters that actually leaked addresses (See Section 5.3.1). But
the authors came to realize that most spam sites appear to be either
quickly taken down or not reliable enough for performing experi-
ments. Furthermore, it is unrealistic that people would actually go
out of their way to register with spam sites in reality, in turn making
such an experiment also somewhat unrealistic.

After registering our newly created alias with the travel web-
site, the emails received at the alias could be classified into two
broad types: those addressed from the tripadvisor.com do-
main and those addressed from some affiliate of tripadvisor
(e.g. cruisecritic.com). Otherwise, no serious address leak-
age was observed to have occurred in the case study. Treating this
as a simulated leakage — to the non-t ripadvisor domains —
intuitively, SEAL’s ideal operation would be to allow the user to
block all of the messages received from the affiliate domains while
preserving the receipt of emails directly from t ripadvisor.com.

All of the email received on our alias during the 40-day case
study from the t ripadvisor.com domain was addressed from
either of two different email addresses, while the affiliate emails
were addressed from a variety of sources, none of which featured a
tripadvisor domain. Because of this, at any point after at least
one email from each of the t ripadvisor sources has been re-
ceived by the alias, partly restricting the alias and marking any un-
trusted senders (those senders from the unaffiliated domains) will
successfully restrict the email received to only those messages sent
from t ripadvisor. For the case study, this point occurred within
six days from the time the alias was registered. Since we anticipate
that address leaks to spammers would typically occur much later
than this in real-world practice, the need for the user to not receive
spam within the first six days of using their alias for correct func-
tionality appears reasonable.

5.2 Affiliation Validation

To study the system being used in a real world scenario where
a web service requires an official email address for validating the
user’s affiliation, for one semester, we provided the students of a
class an option to use the system for receiving updates from a dis-
cussion forum that accepts only email addresses having university
domains. Including three instructors, there were 68 potential partic-
ipants. The students were neither incentivized nor disincentivized
to use SEAL. They would have been able to register with the dis-
cussion forum using their academic email addresses. 55 (80.9%)
people proceeded to create aliases and used SEAL actively for the
whole semester. Five of the users created two aliases, one created
three aliases, and another created five aliases. The others created
one alias. Figure 5(a) shows the number of emails processed by

Random Aliases vs Unique Sender Domains
70

60 1
50 1
40 1
30 1

20 R

Number of random aliases

1 2 3 4 5 6 13 14 16 128
Number of unique sender domains

Figure 6: Histogram of the number of aliases for different number

of unique sender domains.

SEAL per day while Figure 5(b) shows the daily number of aliases
that were active. The days with low email transactions coincide
with weekends, school break, and public holidays. While not all
aliases may be active daily, the figures show that the number of
users using the system remains relatively constant throughout the
semester. Even though the system is only a prototype, there were
no participants who stopped using the system prematurely, demon-
strating the practicality of the system prototype.

5.3 Leakages

In this part of the experiments, we examine potential leakages of
email aliases.

5.3.1 Leakage by Websites

To examine whether websites and mailing lists are sources of
email address leakages, we created aliases and used them to reg-
ister with 56 websites. In an attempt to diversify the websites in-
stead of choosing only those ranked as highly popular by survey
companies such as Alexa [28], the websites were chosen arbitrar-
ily by searching for keywords including “shopping”, “fast cash”,
“movies”, “music”, “cheap flights”, and “education”. We attempted
to register with 70 web sites, succeeding in registering on 56 of
them. Two of the websites initially rejected the registrations as
they did not accept email ID lengths exceeding 30 characters. How-
ever, we were able to register successfully after using a shorter alias
name to satisfy that requirement. Three websites disallowed the pe-
riod character in email ids. We do not view this as a limitation of
our system since the RFC clearly states that the email ID may be
up to 64 characters long with the period character allowed [29], and
also since periods are supported by prominent email services like
Gmail. The remaining 10 failures were due to requiring credit card
information and real cellphone numbers.

Using aliases, we also registered with another 101 websites from
15 categories listed by Alexa as the most popular sites using unique
aliases [28]. The 15 categories are arts, business, computers, games,
health, home, kids and teens, news, recreation, reference, regional,
science, shopping, society, and sports. In addition, we subscribed
to 15 mailing lists. The mailing lists were ranked as among those
having the most subscribers by L-Soft, the company that invented
electronic mailing lists [30].

After fifteen days, we collected and analyzed the domains from
which the senders were emailing each of the aliases. We used
the domains contained in the email envelopes instead of the email
headers, although it is easy for an adversary to spoof either the
“From” header or envelope source address. Figure 6 shows the dis-
tribution for the different numbers of aliases for varying numbers
of unique sender domains. Table 3 lists examples of the sender
domains. In the interest of space, only interesting cases are shown.

Table 4: Table of aliases used for classified advertising and forum
postings, sorted in increasing number of unique sender domains.
The layout is the same as in Table 3. Sender domains in bold are
identified instances of leakages.

CaseID | Aliases # | Sender Domains

Bl m4kkxadd 1 my.ohecampus.com

B2 dpuxgbxg 1 gmail.com

B3 bob.m4kkxadd 2 health.webmd.com,
webmdmessage.com

B4 bob.n13va5ck 2 adobe.com, macromedia.com

BS bob.qf1 Imd51 2 alibaba.com, hotmail.com

B6 bob.wal2tfcm 8 maestro.independenttraveler.com,

cruisecritic.com, tripadvisor.com,
gmail.com, lists.sniqueaway.com,
lists.airfarewatchdog.com, etc.

B7 bob.dpuxgbxg 14 | semc050.net, ns2014560.ovh.net,
kataros.com, fbi.gov, gmx.us,
$15355439.onlinehome-server.info,
muhleheidemusikanten.nl, etc.

There were mails sent to 88 of the aliases. 62 (70.45%) of the
aliases had senders from only one domain. Having senders from
multiple domains does not necessarily constitute a leak as some
domains are affiliated. We define two domains to be affiliated if the
registrants for the domains are the same or they are declared to be
affiliated in the privacy policies or terms of service. Referring to
Table 3, we examined the domain affiliations for Cases A1l through
A20 and identified sender domains affiliated for each alias.

We noticed that for Cases A21 through A24, the number of unique
sender domains ranged from 13 to 128. We returned to examine
the private policies for these websites. All four policies stated that
email addresses will be shared with other sites. An example of
such a clause is, “We may share User information with third par-
ties as reasonably necessary for us to operate this website and to
provide offers and services to Users". It is easy for users to miss
such clauses as they are usually obscured within lengthy privacy
policies.

In practice, while investigating the sender domains, the ease with
which we were able to find all emails sent to a particular alias was
very encouraging. This demonstrated the advantage of using aliases
for investigating potential leakages. Without using aliases, it might
have been an extremely challenging task for the user to distill out
bad websites such as for Cases A21 through A24. The user can
then surgically mark the aliases for these cases as leaked without
affecting the registrations for the good websites.

5.3.2 Leakages by Online Posts

To study the email address leakages through online message post-
ings, we posted messages on seven forums and one popular classi-
fied advertising site. These were found from among the 45 sites we
used in Section 5.3.1. For each posting, we generated a new alias
and displayed it in the clear in the message body. After 15 days, we
examined the mail sent to these aliases. Table 4 shows the sender
domains for aliases that had emails sent to them. We observed
two leakages on two forums hosted by t ripadvisor.com and
webmd . com. These are Cases B1, B3, and B6. Cases B1 and B3
are related. Clearly, the sender in Case B1 was intending to send to
bob.mdkkxadd. However, perhaps due to parsing error, the mail
was sent to m4kkxa4d instead. We were able to observe this ab-
normality because we intercepted all emails sent to our server. The
email in Case B1 was not forwarded to the user’s email provider.
The emails sent in Cases B4 and B5 were legitimate responses to
our forum postings.

In addition, there were 24 emails from various senders sent to
the alias that we used for posting an advertisement on a classified
advertising site. These are Cases B1 and B6 in Table 4. Based on

Number of Emails Per Day Number of Active Aliases Per Day

450)
400 1 60 | |
» 350 ¢ T
g 300 1 2
2 o250t 1 = 4f i
=} =]
g 200 | g 30 L |
150 |
= =3 20 F -
“ 00 z
50 4 10 |
o ket MALE I A28 LI C PR AL IRLR RO S R W S W3 A
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85
Day Day
(a) Number of emails processed daily. (b) Number of active aliases per day.

Figure 5: SEAL usage.

Table 3: Table of aliases used for website, mailing list and newsletter registrations, sorted in increasing number of unique sender domains.
The first column lists the Case IDs while the second column shows the alias. The third column indicates the number of unique domains of
the senders and the last column lists some of the domains. In the interest of space, entries with senders from more than six unique domains
are truncated.

Case ID # Sender Domains

Al 2 website.mlb.com, bounce.ed10.net

A2 2 emailconfirm.com.com, noreply.gamespot.com

A3 2 australia.care2.com, bounce.bluestatedigital.com

A4 2 connect.match.com, returnpath.bluehornet.com

AS 2 bounce.em.ign.com, bounce.mkt1839.com

A6 2 paypal.com, bounce.ed10.net

A7 2 signaturesurveys.com, server220.go-mama-hosting.com

A8 2 b.mypoints.com, mail.hpshopping.com

A9 2 envfrm.rsys5.com, animoto.com

Al10 2 crosswalkmail.com, salememail.net

All 2 email.decrease4u.net, QuickenLoans.com

Al12 2 ebay.com, us.emarsys.net

Al13 3 email-bounces.amazonses.com, facebookmail.com, bounce.game.e.playdom.com

Al4 3 echineselearning.com, in.constantcontact.com, bmsend.com

AlS5 3 mail.christianmingle.com, ChristianMingle.com, believe.com

Al6 3 pandaresearch.com, paidsurveysforyou.com, arcamax.com

Al17 4 yourfreesurveys.com, surveyhelpcenter.com, myview.com, bounce.exacttarget.com

Al18 5 rootsweb.com, email.ancestry.ca, email.ancestry.com.au, email.ancestry.com, email.ancestry.co.uk

A19 6 ssprd9.net, 5inSnow.com, clearvoicesurveysmail.com, mailboto24.com, bounce.npdmr.com, mailboto21.com

A20 6 jangomail.com, ownattention.com, freebieape.info, royalofficials.com, weekenddefeat.com, galabenefits.com

A21 13 litmus.modulelaunches.net, squaresz.com, nast.zoncatalor.com, tourer.fillsavings.com, ecipwriver.com, tingly.muterdepordet.com, etc.
A22 14 downpours.net, berks.philosophersr.com, unff.neswooleston.com, brazil.Ixxia.com, pinch.istrowesturase.com, paolo.flatstudio.net, etc.
A23 16 mydailymoment.com, list.cheapflights.com, inboxpays.com, bounces.lifescript.com, inboxdollars.com, mailboto21.com, etc.

A24 128 | sellingprocess.info, theconfident.info, yourcouponworld.info, mycontentsite.info, mycrowdsourcecentral.info, emilestone.info, etc.

Table 5: Percentages for five groups of shortest delays.

Delay (secs) | Percentage | Number
Oto1 81.383 103,189
1to2 9.465 12,001
2t03 1.779 2,255
3to4 0.900 1,141
4t05 0.605 767

the email contents, seven of these appear to be legitimate queries,
while the remaining 17 emails contained messages that were irrel-
evant to the original context. Six emails claimed to be from the
administrator of the site, one from FBI and one from a reputable
bank. Eight of them contained links to external suspicious sites.

5.4 Timing Performance

Email systems use a store-and-forward model. Numerous fac-
tors contribute towards the time taken for an email to be sent to
its recipient, including network latency, spam or virus detection fil-
tering, and overloaded relay servers. While delays are generally
tolerable, any additional processing on the emails by servers such
as SEAL should be reasonable. Towards understanding the tim-
ing overheads incurred by SEAL, we measured the arrival times
of emails at the email relay servers as indicated by the time stated
in the Received header field. While this is not ideal for several
reasons including clock skew between different servers, incorrect
date and time on some servers, and timing information having only
a granularity of seconds, it allows us to approximate the overhead
incurred by SEAL. Moreover, the lack of access to other servers
does not allow us a detailed comparison of performance data.

We synchronized SEAL’s clock with an NTP server and assume
that other servers did the same. The Received header fields are
added by each SMTP server as the email is accepted. Figure 7
shows an example of these fields for an email. We compute the
differences between the timestamps of two consecutive entries and
refer to them as delays. In the example, we use the delay between
entries 2 and 3 as an indication of the processing time required by
SEAL to analyze and forward the email. At entry 2, the email is
marked as received by SEAL, after which it is processed. It is then
sent to the outgoing queue with entry 3 added. While we could
have timed the scripts, the lack of data from other servers would
render any comparison meaningless.

Table 5 shows the percentages for the five groups of the shortest
delays. 126,794 delays for emails were collected from one of the
author’s email accounts and a SEAL account. The mean and stan-
dard deviation for these delays is 105.116 seconds and 21,232.627
seconds respectively. 3,706 delays were incurred by SEAL, with
the maximum and minimum delays being five and one seconds re-
spectively. The average delay contributed by SEAL is 0.274 sec-
onds. This is at 0.00494 standard deviation away from the mean.
This can also be inferred from Table 5 that shows the percentages
for the five groups of shortest delays. 81.383% of the delays are
from zero seconds to one second, in which SEAL’s average delay
lies. The delay incurred by SEAL is thus insignificant in compari-
son to other delays.

6. DISCUSSION
6.1 Security

Although our construction of semi-private aliases seeks to min-
imize inconvenience to legitimate senders, there are remaining is-
sues, some of which also apply to existing DEA systems. During
the transition of an alias to the restricted state, there are some cases

(6) by 10.231.190.83
with SMTP id dh1l9csp37616ibb;
Sat, 25 Feb 2012 07:02:20 -0800 (PST)
(5) by 10.50.178.73
with SMTP id cw9mr72741271gc.23.1330182140761;
Sat, 25 Feb 2012 07:02:20 -0800 (PST)
(4) from seal.eecs.umich.edu
(d-110-235.eecs.umich.edu. [141.212.110.235])
by mx.google.com
with ESMTP id nol0si2673927igc.10.2012.02.25.07.02.20;

Sat, 25 Feb 2012 07:02:20 -0800 (PST)

(3) from seal.eecs.umich.edu (localhost [127.0.0.11])
by seal.eecs.umich.edu (Postfix)
with ESMTP id EE11954C72F
for <johnsmith@gmail.com>;

Sat, 25 Feb 2012 10:05:12 -0500 (EST)

(2) from backend.www.inm.smartertravel.net
(backend.www.inm.smartertravel.net [75.98.73.172])
by seal.eecs.umich.edu (Postfix)
with ESMTPS id CA35354C722
for <ads.jlpdkga5@seal.eecs.umich.edu>;

Sat, 25 Feb 2012 10:05:12 -0500 (EST)

(1) from smarter (helo=localhost)
by backend.www.inm.smartertravel.net
with local-bsmtp (Exim 4.76)

(envelope-from
<b-KEEXNPCTCQ-38936-2893808-AWDSubscriptionUtils
@lists.airfarewatchdog.com>)

id 151J8d-0007SB-QG

for ads.jlpdkgaS@seal.eecs.umich.edu;

Sat, 25 Feb 2012 10:02:19 -0500

Figure 7: Values of the Received header fields for an email, an-
notated with the order in which they were pushed onto the mail
header. The receipt timestamps are highlighted in gray.

in which known legitimate senders may be treated as untrusted. For
instance, in a more severe case, if a user is subscribed to a mailing
list under a semi-private alias that the user later marks as restricted,
and then the domain name of the mailing list’s server is changed,
the mailing list would then be treated as untrusted and would likely
ignore our service’s prompts to solve a CAPTCHA challenge, re-
sulting in that newsletter being silently blocked. One simple miti-
gation would be to deliver these messages to the user’s spam folder,
instead of completely blocking them (this requires cooperation be-
tween SEAL and the mail provider). The user can then mark the
senders that are incorrectly delivered as trusted.

Another concern is the potential misuse of SEAL by spammers.
For example, they could create aliases to be used in the From field
of spam messages, providing a channel for the recipients of spam
to respond (e.g. to spam advertisements). But it is unclear if this
offers significant advantages to spammers since it is trivial for them
to create multiple email addresses using mail servers they control
and, as far as we are aware, this does not help them bypass existing
spam defense mechanisms. Note that a spammer would still have to
create an account with an email provider that is coupled with their
SEAL account. Legitimate SEAL servers could be configured to
permit only coupling with email providers that have checks against
spammer registration or receipt of large amounts of bulk mail in
short intervals (e.g., Gmail appears to have such controls). Illegiti-
mate SEAL servers that are primarily designed to protect spammers
would probably get blacklisted over time, just as mail servers do.

Spammers could also attempt to attack SEAL protocols directly.
For example, a spammer could attempt to spoof a legitimate user
and send commands to add themselves to the trusted set. But, to
do that, the spammer would need several pieces of information that
are not easy to get: email ID with the mail provider and account
userid/password on SEAL. Email sent to command addresses, such
as getalias @sealserver, is rejected unless it arrives over an authen-
ticated SMTP session and the commands are executed under the
identity of the user that authenticated, rather than the content of the

“From” field in the message headers.

Spammers could attempt to compromise SEAL infrastructure as
well. While SEAL servers should be secured using best practices,
one should minimize the damage that results in case the server is
compromised. We consider two forms of attacks: (1) a one-time
intrusion that simply steals all the data within the databases and (2)
an active attack where the attacker compromises the code within
the server. In the first case, the only email IDs that the attacker gets
hold of are the user’s email ID at the mail provider (Gmail ID in
Figure 3. All other email IDs are stored as salted hashes, which
should be difficult to reverse'. Our implementation recommends
that the user create a fresh, private account on the Gmail provider.
That email address should not be publicly used — all email from it
is routed via the SEAL server by configuration of SMTP settings
within the mail provider. Recipients only see semi-private aliases.
If the email ID at the mail provider is ever leaked, it is easy to
change, since it is only relevant to the owner and not shared.

In the second case, if a spammer compromises the SEAL servers,
they can monitor emails flowing through the system and collect ad-
dresses. While this is serious, the addresses collected are limited
to the time that the attack goes unnoticed. It is certainly less se-
rious than the compromise of an email provider, where both older
messages and future email are potentially accessible.

SEAL is not designed to provide anonymity against local net-
work snooping. A government, for example, could monitor the
network channels to a SEAL server and collect emails, since they
could go over unauthenticated and unencrypted SMTP from arbi-
trary senders. As far as we are aware, this is not a typical attack
used by spammers.

6.2 Usability

Despite our efforts to make SEAL easy to use and minimize im-
pact on non-spam senders, we acknowledge that some users will
still prefer permanent addresses to semi-private aliases. Permanent
addresses have the advantage that they can be printed on business
cards, are easy to remember, and thus hand out. With SEAL, a user
could generate an alias on a mobile device and then write it by hand
on a form or business card (which may not be too bad for one-on-
one situations). For better scalability when the user is handing out
the cards to a large number of users, a possible solution would be to
publish a means for a requester to send a text message and receive
the alias as a response. This ties the requester’s cell phone number
to the alias. Cell phones are sufficiently common now among email
users that we don’t see this as a significant usage barrier.

For publishing email IDs on web pages, we are currently exper-
imenting with a mechanism that generates a semi-private alias on
the web page based on the IP address from which the HTTP request
was received. The reason for looking into this is to investigate if
this provides additional means to identify servers that are used to
harvest email IDs from web sites. We are still in the process of
collecting data from this mechanism.

One significant usability concern with SEAL is that, over time,
one person could appear multiple times in an address book. This
would occur when email containing aliases in the From or To fields
is sent to a group. When those aliases are added to an address book,
one person may end up with multiple aliases in an address book.
This occurs today also to some extent as people both have work and
personal email accounts. As a result, many address books permit
multiple email IDs to be associated with one person. With SEAL,
being able to mark an email ID as the preferred or primary email

"Besides, if the spammer had a dictionary of email IDs, there are
cheaper means of verifying them than trying to do a dictionary at-
tack on the salted hashes.

ID will be useful. In our design, we require the alias name of an
alias to be associated with a single account. As a result, a SEAL-
compatible address book could automatically associate all email
IDs that have the same alias name (e.g., aliasname.* @sealserver)
with the same person.

As mentioned before, the browser extension for using aliases as
web usernames was adapted from PwdHash [25], and so it comes
with some of the same limitations as their work, including lack
of portability to all applications that render HTML, vulnerability
to spyware coexisting on the same computer, and susceptibility to
attacks on DNS to confuse the resolution of domain names. One
potential improvement in usability over PwdHash comes from the
convenient fact that the username field is not normally scrambled
on login web forms, so that the user can more easily see the fetching
and replacement of their username and know that it was successful.
It is also notable that while the user must input a sensitive pass-
word when using PwdHash, the information being input for our
extension is not nearly as sensitive, and so attacks such as focus
stealing are not likely to pose as substantial a threat to web account
security.

7. CONCLUSION

The current paradigm does not provide email address owners
sufficient control of their addresses, leading to email address leak-
ages. In addition to traditional risks posed by underground crack-
ers, some services require the users’ official addresses to validate
their affiliations with certain organizations. Current technologies
do not allow users to provide alternative addresses that do not over-
disclose user information to these services.

We propose the concept of semi-private email aliases and its em-
bodiment, SEAL, a system that provides users more control over
their email aliases and allows web services to validate the user’s
affiliation with an organization without having access to the user’s
private information. Semi-private aliases are randomized email ad-
dresses that can be restricted progressively when the user detects
that they have leaked. This is related to the common disposal fea-
ture of DEA systems. However, what distinguishes SEAL from
other DEA systems is that it both includes a more advanced mech-
anism for managing finer-grained alias lifecycles, allowing for a
more flexible approach to retiring compromised email addresses,
and also that it integrates fully with current email systems while
at the same time not being overly restrictive. Experimental results
indicate that SEAL can be useful in controlling unsolicited email,
while being compatible with existing email systems.

In corporate settings, SEAL also permits use of aliases to val-
idate a user’s affiliation, while preventing disclosure of the work-
related email ID or associated information. This proved useful in
a test deployment where an instructor of a freshmen course at our
institution required students to use an online forum provided by Pi-
azza.com but did not wish to require the students to disclose their
university email ID to the service because of concerns about stu-
dent privacy. Piazza.com’s default sign-up mechanism uses stu-
dent’s email IDs to validate their university affiliation. Over 80%
of students chose to use email aliases issued by SEAL rather than
their university email ID, to sign up at Piazza.com.

8. ACKNOWLEDGMENTS

This paper is based upon work supported by the National Sci-
ence Foundation Grant No. CNS 0916126. Any opinions, findings,
and conclusions or recommendations expressed in this paper are
those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

9.

(1]

(2]

(3]
(4]

(5]
(6]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

David Mazieres and M. Frans Kaashoek. The design,
implementation and operation of an email pseudonym server.
In Proceedings of the 5th ACM conference on Computer and
communications security, CCS ’98, pages 27-36, New York,
NY, USA, 1998. ACM.

Jean-Marc Seigneur and Christian Damsgaard Jensen.
Privacy recovery with disposable email addresses. IEEE
Security and Privacy, 1:35-39, November 2003.
Anonymous Email: Free disposable email service for
receiving emails anonymously. Online, 2011.

Your Own Protection Mail. Online.
http://www.yopmail.com/en/, 2011.

Mailinator. Online, 2011.

Aram Yegenian and Tassos Dimitriou. Inexpensive Email
Addresses: An Email Spam-Combating System. In Sushil
Jajodia, Jianying Zhou, Ozgur Akan, Paolo Bellavista,
Jiannong Cao, Falko Dressler, Domenico Ferrari, Mario
Gerla, Hisashi Kobayashi, Sergio Palazzo, Sartaj Sahni,
Xuemin (Sherman) Shen, Mircea Stan, Jia Xiaohua, Albert
Zomaya, and Geoffrey Coulson, editors, Security and
Privacy in Communication Networks, volume 50 of Lecture
Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, pages
35-52. Springer Berlin Heidelberg, 2010.

John Ioannidis. Fighting spam by encapsulating policy in
email addresses.

TMDA. Tagged Message Delivery Agent (TMDA). Online.
David Recordon and Drummond Reed. Openid 2.0: a
platform for user-centric identity management. In
Proceedings of the second ACM workshop on Digital identity
management, DIM ’06, pages 11-16, New York, NY, USA,
2006. ACM.

Gary Robinson. A statistical approach to the spam problem.
Linux J., 2003:3—, March 2003.

Le Zhang, Jingbo Zhu, and Tianshun Yao. An evaluation of
statistical spam filtering techniques. ACM Trans. Asian Lang.
Inf. Process., 3(4):243-269, December 2004.

Ion Androutsopoulos, John Koutsias, Konstantinos
Chandrinos, Georgios Paliouras, and Constantine D.
Spyropoulos. An evaluation of Naive Bayesian anti-spam
filtering. CoRR, ¢s.CL/0006013, 2000.

Ion Androutsopoulos, John Koutsias, Konstantinos V.
Chandrinos, and Constantine D. Spyropoulos. An
experimental comparison of naive Bayesian and
keyword-based anti-spam filtering with personal e-mail
messages. In Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development in
information retrieval, SIGIR *00, pages 160-167, New York,
NY, USA, 2000. ACM.

Karl-Michael Schneider. A comparison of event models for
Naive Bayes anti-spam e-mail filtering. In Proceedings of the
tenth conference on European chapter of the Association for
Computational Linguistics - Volume 1, EACL °03, pages
307-314, Stroudsburg, PA, USA, 2003. Association for
Computational Linguistics.

Tony A. Meyer and Brendon Whateley. Spambayes:
Effective open-source, bayesian based, email classification
system. In CEAS, 2004.

Cormac O’Brien and Carl Vogel. Spam filters: bayes vs.
chi-squared; letters vs. words. In Proceedings of the st
international symposium on Information and communication

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]

(30]

technologies, ISICT ’03, pages 291-296. Trinity College
Dublin, 2003.

Jonathan A. Zdziarski. Ending Spam: Bayesian Content
Filtering and the Art of Statistical Language Classification.
No Starch Press, San Francisco, CA, USA, 2005.

Vipul Ved Prakash and Adam O’Donnell. Fighting Spam
with Reputation Systems. Queue, 3:36—41, November 2005.
Jennifer Golbeck and James Hendler. Reputation Network
Analysis for Email Filtering. In In Proc. of the Conference
on Email and Anti-Spam (CEAS), Mountain View, 2004.

P. Oscar Boykin and Vwani Roychowdhury. Personal Email
Networks: An Effective Anti-Spam Tool. I[EEE
COMPUTER, 38:61, 2004.

Sushant Sinha, Michael Bailey, and Farnam Jahanian.
Shades of Grey: On the Effectiveness of Reputation-based
“blacklists”. In Proceedings of the 3rd International
Conference on Malicious and Unwanted Software
(MALWARE °08), pages 57-64, Fairfax, Virginia, USA,
October 2008.

Joshua Goodman and Robert Rounthwaite. Stopping
Outgoing Spam, 2004.

Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon
Enright, Geoffrey M. Voelker, Vern Paxson, and Stefan
Savage. Spamalytics: an empirical analysis of spam
marketing conversion. In Proceedings of the 15th ACM
conference on Computer and communications security, CCS
’08, pages 3—14, New York, NY, USA, 2008. ACM.

Martin Abadi, Andrew Birrell, Mike Burrows, Frank Dabek,
and Ted Wobber. Bankable Postage for Network Services. In
In Proc. Asian Computing Science Conference, pages 72-90,
2003.

Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and
John C. Mitchell. Stronger password authentication using
browser extensions. In Proceedings of the 14th conference on
USENIX Security Symposium - Volume 14, pages 2-2,
Berkeley, CA, USA, 2005. USENIX Association.

Postfix. Postfix. http://www.postfix.org/, 2011.
Dovecot. Dovecot. http://www.dovecot.org/, 2011.
Alexa. Alexa The Web Information Company. Online.
http://www.alexa.com/, 2011.

IETE. RFC 5322: Internet Message Format. Online, October
2008.

Listserv. Lists with 10,000 subscribers or more. Online, July
2011.

APPENDIX
A. APPENDIX

. Compromised ™
G i has_email{sender, user trusted(sender) == Fal \/W—\ ired == (Di
ncom promised _ k. ftrusted(sender) alse] > ait for Email [expired == True] Disabled
do fWait for email
trusted(sender) has_email(sender, user)
== Trug| ificati
lis_captcha_response(email) == True] { verify captcha (Captcha Verification
~\do fverify sender]
lelse] [trusted(sender) == Trug] / relay email
[else]
[trusted(sender) == False] / drop email
[else] [trusted(sender) == Urknown] / send Captcha
.
Figure 8: State diagram for alias.
From: bob@sealserver From: getalias@sealserver

To: getalias@sealserver || To: bob@sealserver

Body:
Your new randomized email is:

Subject: bobhome Reply-To: bobhome.b3f9cehd@sealserver
Subject: bobhome.b3f9cehd@sealserver

Append this to your recipient list. We do not recommend
using this address for multiple recipients.

"bobhome .b3f9%cehd@sealserver"

Figure 9: (L) Example email sent by Bob to request an alias. (R) Example response to Bob’s alias request.

From: bob@sealserver

To: "work" alice@gmail.com
Reply-To: bob@sealserver
Subject: Business Proposal
Body:

Dear Alice,

Figure 10: Example of using hint.

